1
|
Anderson PJ, Xiao P, Zhong Y, Kaakati A, Alfonso-DeSouza J, Zhang T, Zhang C, Yu K, Qi L, Ding W, Liu S, Pani B, Krishnan A, Chen O, Jassal C, Strawn J, Sun JP, Rajagopal S. β-Arrestin Condensates Regulate G Protein-Coupled Receptor Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647240. [PMID: 40236194 PMCID: PMC11996538 DOI: 10.1101/2025.04.05.647240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the genome and control many signaling cascades essential for survival. GPCR signaling is regulated by β-arrestins, multifunctional adapter proteins that direct receptor desensitization, internalization, and signaling. While at many GPCRs, β-arrestins interact with a wide array of signaling effectors, it is unclear how β-arrestins promote such varied functions. Here we show that β-arrestins undergo liquid-liquid phase separation (LLPS) to form condensates that regulate GPCR function. We demonstrate that β-arrestin oligomerization occurs in proximity to the GPCR and regulates GPCR functions such as internalization and signaling. This model is supported by a cryoEM structure of the adhesion receptor ADGRE1 in a 2:2 complex with β-arrestin 1, with a β-arrestin orientation that can promote oligomerization. Our work provides a paradigm for β-arrestin condensates as regulators of GPCR function, with LLPS serving as an important promoter of signaling compartmentalization at GPCRs.
Collapse
|
2
|
Vishnivetskiy SA, Paul T, Gurevich EV, Gurevich VV. The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding. Int J Mol Sci 2025; 26:715. [PMID: 39859432 PMCID: PMC11765510 DOI: 10.3390/ijms26020715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin. Profound effects of mutations identified lysine-15 as the main phosphate sensor and phenylalanine-13 as the key anchor of the C-terminus. These residues are conserved in all arrestin subtypes. Substitutions of five other residues reduced arrestin-1 selectivity for phosphorylated rhodopsin, indicating that wild-type residues participate in fine-tuning of arrestin-1 binding. Differential effects of numerous substitutions in wild-type and an enhanced mutant arrestin-1 suggest that these two proteins bind rhodopsin differently.
Collapse
Affiliation(s)
- Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Trishita Paul
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (E.V.G.)
| |
Collapse
|
3
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
4
|
Gurevich VV, Gurevich EV. Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. APPLIED MAGNETIC RESONANCE 2024; 55:11-25. [DOI: 10.1007/s00723-023-01561-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 02/03/2025]
|
5
|
Vishnivetskiy SA, Zhan X, Gurevich VV. Expression of Untagged Arrestins in E. coli and Their Purification. Curr Protoc 2023; 3:e832. [PMID: 37671938 PMCID: PMC10491425 DOI: 10.1002/cpz1.832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Purified arrestin proteins are necessary for biochemical, biophysical, and structural studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in Escherichia coli and purification of tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by Heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases, the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases, both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that the overall salt concentration is maintained at or above physiological levels. © 2023 Wiley Periodicals LLC. Basic Protocol: Large-scale expression and purification of arrestins Alternate Protocol: Purification of arrestin-3 and truncated form of arrestin-1-(1-378) Support Protocol: Small-scale test expression of wild-type and mutant arrestins in E. coli.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
6
|
Vishnivetskiy SA, Weinstein LD, Zheng C, Gurevich EV, Gurevich VV. Functional Role of Arrestin-1 Residues Interacting with Unphosphorylated Rhodopsin Elements. Int J Mol Sci 2023; 24:8903. [PMID: 37240250 PMCID: PMC10219436 DOI: 10.3390/ijms24108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Arrestin-1, or visual arrestin, exhibits an exquisite selectivity for light-activated phosphorylated rhodopsin (P-Rh*) over its other functional forms. That selectivity is believed to be mediated by two well-established structural elements in the arrestin-1 molecule, the activation sensor detecting the active conformation of rhodopsin and the phosphorylation sensor responsive to the rhodopsin phosphorylation, which only active phosphorylated rhodopsin can engage simultaneously. However, in the crystal structure of the arrestin-1-rhodopsin complex there are arrestin-1 residues located close to rhodopsin, which do not belong to either sensor. Here we tested by site-directed mutagenesis the functional role of these residues in wild type arrestin-1 using a direct binding assay to P-Rh* and light-activated unphosphorylated rhodopsin (Rh*). We found that many mutations either enhanced the binding only to Rh* or increased the binding to Rh* much more than to P-Rh*. The data suggest that the native residues in these positions act as binding suppressors, specifically inhibiting the arrestin-1 binding to Rh* and thereby increasing arrestin-1 selectivity for P-Rh*. This calls for the modification of a widely accepted model of the arrestin-receptor interactions.
Collapse
Affiliation(s)
| | | | | | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (S.A.V.); (L.D.W.); (C.Z.); (E.V.G.)
| |
Collapse
|
7
|
Seckler JM, Robinson EN, Lewis SJ, Grossfield A. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Proteins 2023; 91:99-107. [PMID: 35988049 PMCID: PMC9771995 DOI: 10.1002/prot.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Arrestins are important scaffolding proteins that are expressed in all vertebrate animals. They regulate cell-signaling events upon binding to active G-protein coupled receptors (GPCR) and trigger endocytosis of active GPCRs. While many of the functional sites on arrestins have been characterized, the question of how these sites interact is unanswered. We used anisotropic network modeling (ANM) together with our covariance compliment techniques to survey all the available structures of the nonvisual arrestins to map how structural changes and protein-binding affect their structural dynamics. We found that activation and clathrin binding have a marked effect on arrestin dynamics, and that these dynamics changes are localized to a small number of distant functional sites. These sites include α-helix 1, the lariat loop, nuclear localization domain, and the C-domain β-sheets on the C-loop side. Our techniques suggest that clathrin binding and/or GPCR activation of arrestin perturb the dynamics of these sites independent of structural changes.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily N. Robinson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Vishnivetskiy SA, Huh EK, Karnam PC, Oviedo S, Gurevich EV, Gurevich VV. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding. Int J Mol Sci 2022; 23:13887. [PMID: 36430370 PMCID: PMC9694801 DOI: 10.3390/ijms232213887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Arrestins preferentially bind active phosphorylated G protein-coupled receptors (GPCRs). The middle loop, highly conserved in all arrestin subtypes, is localized in the central crest on the GPCR-binding side. Upon receptor binding, it directly interacts with bound GPCR and demonstrates the largest movement of any arrestin element in the structures of the complexes. Comprehensive mutagenesis of the middle loop of rhodopsin-specific arrestin-1 suggests that it primarily serves as a suppressor of binding to non-preferred forms of the receptor. Several mutations in the middle loop increase the binding to unphosphorylated light-activated rhodopsin severalfold, which makes them candidates for improving enhanced phosphorylation-independent arrestins. The data also suggest that enhanced forms of arrestin do not bind GPCRs exactly like the wild-type protein. Thus, the structures of the arrestin-receptor complexes, in all of which different enhanced arrestin mutants and reengineered receptors were used, must be interpreted with caution.
Collapse
Affiliation(s)
| | - Elizabeth K. Huh
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samantha Oviedo
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
9
|
Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021; 288:2529-2549. [DOI: 10.1111/febs.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Aydin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| | - Irene Coin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| |
Collapse
|
10
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin-GPCR interactions has been extensively studied and discussed from the "arrestin perspective", focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the "receptor perspective", focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter's transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48167-75952, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | | |
Collapse
|
11
|
Vishnivetskiy SA, Zheng C, May MB, Karnam PC, Gurevich EV, Gurevich VV. Lysine in the lariat loop of arrestins does not serve as phosphate sensor. J Neurochem 2021; 156:435-444. [PMID: 32594524 PMCID: PMC7765740 DOI: 10.1111/jnc.15110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Arrestins demonstrate strong preference for phosphorylated over unphosphorylated receptors, but how arrestins "sense" receptor phosphorylation is unclear. A conserved lysine in the lariat loop of arrestins directly binds the phosphate in crystal structures of activated arrestin-1, -2, and -3. The lariat loop supplies two negative charges to the central polar core, which must be disrupted for arrestin activation and high-affinity receptor binding. Therefore, we hypothesized that receptor-attached phosphates pull the lariat loop via this lysine, thus removing the negative charges and destabilizing the polar core. We tested the role of this lysine by introducing charge elimination (Lys->Ala) and reversal (Lys->Glu) mutations in arrestin-1, -2, and -3. These mutations in arrestin-1 only moderately reduced phospho-rhodopsin binding and had no detectable effect on arrestin-2 and -3 binding to cognate non-visual receptors in cells. The mutations of Lys300 in bovine and homologous Lys301 in mouse arrestin-1 on the background of pre-activated mutants had variable effects on the binding to light-activated phosphorylated rhodopsin, while affecting the binding to unphosphorylated rhodopsin to a greater extent. Thus, conserved lysine in the lariat loop participates in receptor binding, but does not play a critical role in phosphate-induced arrestin activation.
Collapse
Affiliation(s)
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
12
|
Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:169-197. [PMID: 32312421 PMCID: PMC7977737 DOI: 10.1016/bs.apcsb.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
Collapse
Affiliation(s)
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019; 76:4413-4421. [PMID: 31422444 PMCID: PMC11105767 DOI: 10.1007/s00018-019-03272-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
14
|
Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019; 484:34-41. [PMID: 30703488 PMCID: PMC6377262 DOI: 10.1016/j.mce.2019.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol 2019; 10:125. [PMID: 30837883 PMCID: PMC6389790 DOI: 10.3389/fphar.2019.00125] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Every animal species expresses hundreds of different G protein-coupled receptors (GPCRs) that respond to a wide variety of external stimuli. GPCRs-driven signaling pathways are involved in pretty much every physiological function and in many pathologies. Therefore, GPCRs are targeted by about a third of clinically used drugs. The signaling of most GPCRs via G proteins is terminated by the phosphorylation of active receptor by specific kinases (GPCR kinases, or GRKs) and subsequent binding of arrestin proteins, that selectively recognize active phosphorylated receptors. In addition, GRKs and arrestins play a role in multiple signaling pathways in the cell, both GPCR-initiated and receptor-independent. Here we focus on the mechanisms of GRK- and arrestin-mediated regulation of GPCR signaling, which includes homologous desensitization and redirection of signaling to additional pathways by bound arrestins.
Collapse
|
16
|
Gurevich VV, Gurevich EV, Uversky VN. Arrestins: structural disorder creates rich functionality. Protein Cell 2018; 9:986-1003. [PMID: 29453740 PMCID: PMC6251804 DOI: 10.1007/s13238-017-0501-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023] Open
Abstract
Arrestins are soluble relatively small 44-46 kDa proteins that specifically bind hundreds of active phosphorylated GPCRs and dozens of non-receptor partners. There are binding partners that demonstrate preference for each of the known arrestin conformations: free, receptor-bound, and microtubule-bound. Recent evidence suggests that conformational flexibility in every functional state is the defining characteristic of arrestins. Flexibility, or plasticity, of proteins is often described as structural disorder, in contrast to the fixed conformational order observed in high-resolution crystal structures. However, protein-protein interactions often involve highly flexible elements that can assume many distinct conformations upon binding to different partners. Existing evidence suggests that arrestins are no exception to this rule: their flexibility is necessary for functional versatility. The data on arrestins and many other multi-functional proteins indicate that in many cases, "order" might be artificially imposed by highly non-physiological crystallization conditions and/or crystal packing forces. In contrast, conformational flexibility (and its extreme case, intrinsic disorder) is a more natural state of proteins, representing true biological order that underlies their physiologically relevant functions.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
17
|
Bandyopadhyay A, Van Eps N, Eger BT, Rauscher S, Yedidi RS, Moroni T, West GM, Robinson KA, Griffin PR, Mitchell J, Ernst OP. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin. J Mol Biol 2018; 430:4102-4118. [PMID: 30120952 DOI: 10.1016/j.jmb.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
Photoreceptors of the squid Loligo pealei contain a G-protein-coupled receptor (GPCR) signaling system that activates phospholipase C in response to light. Analogous to the mammalian visual system, signaling of the photoactivated GPCR rhodopsin is terminated by binding of squid arrestin (sArr). sArr forms a light-dependent, high-affinity complex with squid rhodopsin, which does not require prior receptor phosphorylation for interaction. This is at odds with classical mammalian GPCR desensitization where an agonist-bound phosphorylated receptor is needed to break stabilizing constraints within arrestins, the so-called "three-element interaction" and "polar core" network, before a stable receptor-arrestin complex can be established. Biophysical and mass spectrometric analysis of the squid rhodopsin-arrestin complex indicates that in contrast to mammalian arrestins, the sArr C-tail is not involved in a stable three-element interaction. We determined the crystal structure of C-terminally truncated sArr that adopts a basal conformation common to arrestins and is stabilized by a series of weak but novel polar core interactions. Unlike mammalian arrestin-1, deletion of the sArr C-tail does not influence kinetic properties of complex formation of sArr with the receptor. Hydrogen-deuterium exchange studies revealed the footprint of the light-activated rhodopsin on sArr. Furthermore, double electron-electron resonance spectroscopy experiments provide evidence that receptor-bound sArr adopts a conformation different from the one known for arrestin-1 and molecular dynamics simulations reveal the residues that account for the weak three-element interaction. Insights gleaned from studying this system add to our general understanding of GPCR-arrestin interaction.
Collapse
Affiliation(s)
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Ravikiran S Yedidi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tina Moroni
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Graham M West
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kelly Ann Robinson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
18
|
Vishnivetskiy SA, Sullivan LS, Bowne SJ, Daiger SP, Gurevich EV, Gurevich VV. Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant. Invest Ophthalmol Vis Sci 2018; 59:13-20. [PMID: 29305604 PMCID: PMC5756042 DOI: 10.1167/iovs.17-22180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/01/2017] [Indexed: 01/31/2023] Open
Abstract
PURPOSE The purpose of this study was to identify the molecular defect in the disease-causing human arrestin-1 C147F mutant. METHODS The binding of wild-type (WT) human arrestin-1 and several mutants with substitutions in position 147 (including C147F, which causes dominant retinitis pigmentosa in humans) to phosphorylated and unphosphorylated light-activated rhodopsin was determined. Thermal stability of WT and mutant human arrestin-1, as well as unfolded protein response in 661W cells, were also evaluated. RESULTS WT human arrestin-1 was selective for phosphorylated light-activated rhodopsin. Substitutions of Cys-147 with smaller side chain residues, Ala or Val, did not substantially affect binding selectivity, whereas residues with bulky side chains in the position 147 (Ile, Leu, and disease-causing Phe) greatly increased the binding to unphosphorylated rhodopsin. Functional survival of mutant proteins with bulky substitutions at physiological and elevated temperature was also compromised. C147F mutant induced unfolded protein response in cultured cells. CONCLUSIONS Bulky Phe substitution of Cys-147 in human arrestin-1 likely causes rod degeneration due to reduced stability of the protein, which induces unfolded protein response in expressing cells.
Collapse
Affiliation(s)
| | - Lori S. Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Sara J. Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
19
|
Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV, Brautigam CA, Klug CS, Gurevich VV, Iverson TM. Structural basis of arrestin-3 activation and signaling. Nat Commun 2017; 8:1427. [PMID: 29127291 PMCID: PMC5681653 DOI: 10.1038/s41467-017-01218-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathaniel C Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Prashant K Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, 26723, Germany
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
20
|
Vishnivetskiy SA, Lee RJ, Zhou XE, Franz A, Xu Q, Xu HE, Gurevich VV. Functional role of the three conserved cysteines in the N domain of visual arrestin-1. J Biol Chem 2017; 292:12496-12502. [PMID: 28536260 PMCID: PMC5535024 DOI: 10.1074/jbc.m117.790386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
Arrestins specifically bind active and phosphorylated forms of their cognate G protein-coupled receptors, blocking G protein coupling and often redirecting the signaling to alternative pathways. High-affinity receptor binding is accompanied by two major structural changes in arrestin: release of the C-tail and rotation of the two domains relative to each other. The first requires detachment of the arrestin C-tail from the body of the molecule, whereas the second requires disruption of the network of charge-charge interactions at the interdomain interface, termed the polar core. These events can be facilitated by mutations destabilizing the polar core or the anchoring of the C-tail that yield "preactivated" arrestins that bind phosphorylated and unphosphorylated receptors with high affinity. Here we explored the functional role in arrestin activation of the three native cysteines in the N domain, which are conserved in all arrestin subtypes. Using visual arrestin-1 and rhodopsin as a model, we found that substitution of these cysteines with serine, alanine, or valine virtually eliminates the effects of the activating polar core mutations on the binding to unphosphorylated rhodopsin while only slightly reducing the effects of the C-tail mutations. Thus, these three conserved cysteines play a role in the domain rotation but not in the C-tail release.
Collapse
Affiliation(s)
| | - Regina J Lee
- Vanderbilt University, Nashville, Tennessee 37232
| | - X Edward Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | | - Qiuyi Xu
- Vanderbilt University, Nashville, Tennessee 37232
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | |
Collapse
|
21
|
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 2016; 531:661-4. [PMID: 27007855 DOI: 10.1038/nature17198] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
(β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling.
Collapse
|
22
|
Gurevich VV, Gurevich EV. Arrestins: Critical Players in Trafficking of Many GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:1-14. [PMID: 26055052 PMCID: PMC5841159 DOI: 10.1016/bs.pmbts.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arrestins specifically bind active phosphorylated G protein-coupled receptors (GPCRs). Receptor binding induces the release of the arrestin C-tail, which in non-visual arrestins contains high-affinity binding sites for clathrin and its adaptor AP2. Thus, serving as a physical link between the receptor and key components of the internalization machinery of the coated pit is the best-characterized function of non-visual arrestins in GPCR trafficking. However, arrestins also regulate GPCR trafficking less directly by orchestrating their ubiquitination and deubiquitination. Several reports suggest that arrestins play additional roles in receptor trafficking. Non-visual arrestins appear to be required for the recycling of internalized GPCRs, and the mechanisms of their function in this case remain to be elucidated. Moreover, visual and non-visual arrestins were shown to directly bind N-ethylmaleimide-sensitive factor, an important ATPase involved in vesicle trafficking, but neither molecular details nor the biological role of these interactions is clear. Considering how many different proteins arrestins appear to bind, we can confidently expect the elucidation of additional trafficking-related functions of these versatile signaling adaptors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Chen Q, Vishnivetskiy SA, Zhuang T, Cho MK, Thaker TM, Sanders CR, Gurevich VV, Iverson TM. The rhodopsin-arrestin-1 interaction in bicelles. Methods Mol Biol 2015; 1271:77-95. [PMID: 25697518 DOI: 10.1007/978-1-4939-2330-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232-6600, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2015; 50:440-452. [PMID: 26453028 PMCID: PMC4852696 DOI: 10.3109/10409238.2015.1067185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here, we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- a Department of Pharmacology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
25
|
Ostermaier MK, Schertler GFX, Standfuss J. Molecular mechanism of phosphorylation-dependent arrestin activation. Curr Opin Struct Biol 2014; 29:143-51. [PMID: 25484000 DOI: 10.1016/j.sbi.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022]
Abstract
The past years have seen tremendous progress towards understanding how arrestins recognize phosphorylated G protein-coupled receptors (GPCRs). Two arrestin crystal structures, one of a pre-activated splice variant and one bound to a GPCR phosphopeptide, provided insights into the conformational changes upon phosphate recognition. Scanning mutagenesis and spectroscopic studies complete the picture of arrestin activation and receptor binding. Most perspicuous is the C-tail exchange mechanism, by which the C-tail of arrestin is released from its basal conformation and replaced by the phosphorylated GPCR C-terminus. Three positively charged clusters could act as conserved arrestin phosphosensors. Variations in the pattern of phosphorylation in a GPCR and variations within the C-terminus of different GPCRs may encode specificity to arrestin subtypes and particular physiological responses.
Collapse
Affiliation(s)
- Martin K Ostermaier
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland; Deparment of Biology, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| |
Collapse
|
26
|
Vishnivetskiy SA, Zhan X, Chen Q, Iverson TM, Gurevich VV. Arrestin expression in E. coli and purification. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.11.1-2.11.19. [PMID: 25446290 PMCID: PMC4260927 DOI: 10.1002/0471141755.ph0211s67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purified arrestin proteins are necessary for biochemical, biophysical, and crystallographic studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in E. coli and purification of the tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that overall salt concentration is maintained at or above physiological levels.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
27
|
Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 2014; 289:20991-21002. [PMID: 24867953 PMCID: PMC4110305 DOI: 10.1074/jbc.m114.560680] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.
Collapse
Affiliation(s)
- Ya Zhuo
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sergey A Vishnivetskiy
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xuanzhi Zhan
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Candice S Klug
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
28
|
Abstract
Virtually all currently used therapeutic agents are small molecules, largely because the development and delivery of small molecule drugs is relatively straightforward. Small molecules have serious limitations: drugs of this type can be fairly good enzyme inhibitors, receptor ligands, or allosteric modulators. However, most cellular functions are mediated by protein interactions with other proteins, and targeting protein-protein interactions by small molecules presents challenges that are unlikely to be overcome with these compounds as the only tools. Recent advances in gene delivery techniques and characterization of cell type-specific promoters open the prospect of using reengineered signaling-biased proteins as next-generation therapeutics. The first steps in targeted engineering of proteins with desired functional characteristics look very promising. As quintessential scaffolds that act strictly via interactions with other proteins in the cell, arrestins represent a perfect model for the development of these novel therapeutic agents with enormous potential: custom-designed signaling proteins will allow us to tell the cell what to do and when to do it in a way it cannot disobey.
Collapse
|
29
|
Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal 2014; 26:766-776. [PMID: 24412749 PMCID: PMC3936466 DOI: 10.1016/j.cellsig.2014.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
Although arrestins bind dozens of non-receptor partners, the interaction sites for most signaling proteins remain unknown. Here we report the identification of arrestin-3 elements involved in binding MAP kinase JNK3α2. Using purified JNK3α2 and MBP fusions containing separated arrestin-3 domains and peptides exposed on the non-receptor-binding surface of arrestin-3 we showed that both domains bind JNK3α2 and identified one element on the N-domain and two on the C-domain that directly interact with JNK3α2. Using in vitro competition we confirmed that JNK3α2 engages identified N-domain element and one of the C-domain peptides in the full-length arrestin-3. The 25-amino acid N-domain element has the highest affinity for JNK3α2, suggesting that it is the key site for JNK3α2 docking. The identification of elements involved in protein-protein interactions paves the way to targeted redesign of signaling proteins to modulate cell signaling in desired ways. The tools and methods developed here to elucidate the molecular mechanism of arrestin-3 interactions with JNK3α2 are suitable for mapping of arrestin-3 sites involved in interactions with other partners.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alejandro Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Gurevich VV, Song X, Vishnivetskiy SA, Gurevich EV. Enhanced phosphorylation-independent arrestins and gene therapy. Handb Exp Pharmacol 2014; 219:133-152. [PMID: 24292828 PMCID: PMC4516159 DOI: 10.1007/978-3-642-41199-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
31
|
Gimenez LE, Vishnivetskiy SA, Gurevich VV. Targeting individual GPCRs with redesigned nonvisual arrestins. Handb Exp Pharmacol 2014; 219:153-70. [PMID: 24292829 DOI: 10.1007/978-3-642-41199-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
32
|
Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, Hanson SM, Palazzo MC, Chen J, Hubbell WL, Gurevich EV, Gurevich VV. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 2013; 25:2613-2624. [PMID: 24012956 PMCID: PMC3833262 DOI: 10.1016/j.cellsig.2013.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miyeon Kim
- University of California Los Angeles, Los Angeles, CA 90095
| | - Evan K. Brooks
- University of California Los Angeles, Los Angeles, CA 90095
| | | | - Yuan Hong
- Vanderbilt University, Nashville, TN 37232
| | | | | | - Jeannie Chen
- University of Southern California, Los Angeles, California 90033
| | | | | | | |
Collapse
|
33
|
Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem 2013; 288:28535-28547. [PMID: 23960075 PMCID: PMC3789954 DOI: 10.1074/jbc.m113.508085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
Arrestin-3 was previously shown to bind JNK3α2, MKK4, and ASK1. However, full JNK3α2 activation requires phosphorylation by both MKK4 and MKK7. Using purified proteins we show that arrestin-3 directly interacts with MKK7 and promotes JNK3α2 phosphorylation by both MKK4 and MKK7 in vitro as well as in intact cells. The binding of JNK3α2 promotes an arrestin-3 interaction with MKK4 while reducing its binding to MKK7. Interestingly, the arrestin-3 concentration optimal for scaffolding the MKK7-JNK3α2 module is ∼10-fold higher than for the MKK4-JNK3α2 module. The data provide a mechanistic basis for arrestin-3-dependent activation of JNK3α2. The opposite effects of JNK3α2 on arrestin-3 interactions with MKK4 and MKK7 is the first demonstration that the kinase components in mammalian MAPK cascades regulate each other's interactions with a scaffold protein. The results show how signaling outcomes can be affected by the relative expression of scaffolding proteins and components of signaling cascades that they assemble.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
34
|
Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV. Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 2013; 288:11741-11750. [PMID: 23476014 PMCID: PMC3636863 DOI: 10.1074/jbc.m113.450031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/28/2013] [Indexed: 11/06/2022] Open
Abstract
Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of variable lengths and made several substitutions of Lys-142 in it and Asp-72 in the adjacent loop. Several mutants with perturbations in the 139-loop demonstrate increased binding to P-Rh*, dark P-Rh, Rh*, and phospho-opsin. Enhanced binding of arrestin-1 mutants to non-preferred forms of rhodopsin correlates with decreased thermal stability. The 139-loop perturbations increase P-Rh* binding of arrestin-1 at low temperatures and further change its binding profile on the background of 3A mutant, where the C-tail is detached from the body of the molecule by triple alanine substitution. Thus, the 139-loop stabilizes basal conformation of arrestin-1 and acts as a brake, preventing its binding to non-preferred forms of rhodopsin. Conservation of this loop in other subtypes suggests that it has the same function in all members of the arrestin family.
Collapse
Affiliation(s)
| | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristen R. Findley
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
35
|
Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci U S A 2013; 110:942-947. [PMID: 23277586 PMCID: PMC3549108 DOI: 10.1073/pnas.1215176110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K(D) > 150 μM), its affinity for P-Rh (K(D) ~80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K(D) of~50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Department of Biochemistry
- Center for Structural Biology
| | - Qiuyan Chen
- Center for Structural Biology
- Department of Pharmacology, and
| | | | | | - Tina M. Iverson
- Department of Biochemistry
- Center for Structural Biology
- Department of Pharmacology, and
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Charles R. Sanders
- Department of Biochemistry
- Center for Structural Biology
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
36
|
Gurevich VV, Gurevich EV. Structural determinants of arrestin functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:57-92. [PMID: 23764050 PMCID: PMC4514030 DOI: 10.1016/b978-0-12-394440-5.00003-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
37
|
Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. G protein-coupled receptors--recent advances. Acta Biochim Pol 2012; 59:515-529. [PMID: 23251911 PMCID: PMC4322417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.
Collapse
Affiliation(s)
- Dorota Latek
- Biomodeling Laboratory, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Modzelewska
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Bartosz Trzaskowski
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio USA
| | - Sławomir Filipek
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Gaffney BJ, Bradshaw MD, Frausto SD, Wu F, Freed JH, Borbat P. Locating a lipid at the portal to the lipoxygenase active site. Biophys J 2012; 103:2134-44. [PMID: 23200047 PMCID: PMC3512035 DOI: 10.1016/j.bpj.2012.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022] Open
Abstract
Lipoxygenase enzymes initiate diverse signaling pathways by specifically directing oxygen to different carbons of arachidonate and other polyunsaturated acyl chains, but structural origins of this specificity have remained unclear. We therefore determined the nature of the lipoxygenase interaction with the polar-end of a paramagnetic lipid by electron paramagnetic resonance spectroscopy. Distances between selected grid points on soybean seed lipoxygenase-1 (SBL1) and a lysolecithin spin-labeled on choline were measured by pulsed (electron) dipolar spectroscopy. The protein grid was designed by structure-based modeling so that five natural side chains were replaced with spin labels. Pairwise distances in 10 doubly spin-labeled mutants were examined by pulsed dipolar spectroscopy, and a fit to the model was optimized. Finally, experimental distances between the lysolecithin spin and each single spin site on SBL1 were also obtained. With these 15 distances, distance geometry localized the polar-end and the spin of the lysolecithin to the region between the two domains in the SBL1 structure, nearest to E236, K260, Q264, and Q544. Mutation of a nearby residue, E256A, relieved the high pH requirement for enzyme activity of SBL1 and allowed lipid binding at pH 7.2. This general approach could be used to locate other flexible molecules in macromolecular complexes.
Collapse
Affiliation(s)
- Betty J Gaffney
- Department of Biological Science Department, Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL. Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci U S A 2012; 109:18407-18412. [PMID: 23091036 PMCID: PMC3494953 DOI: 10.1073/pnas.1216304109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron-electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a "clam-shell" model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the "finger loop," residues 67-79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to "plastic" regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.
Collapse
Affiliation(s)
- Miyeon Kim
- Jules Stein Eye Institute, Department of Ophthalmology, and
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | - Ned Van Eps
- Jules Stein Eye Institute, Department of Ophthalmology, and
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | | | | | | | | | - Oliver P. Ernst
- Departments of Biochemistry and
- Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jens Meiler
- Departments of Pharmacology
- Chemistry, and
- Biomedical Informatics, Vanderbilt University, Nashville, TN 37232; and
| | | | - Wayne L. Hubbell
- Jules Stein Eye Institute, Department of Ophthalmology, and
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
40
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-1908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
41
|
Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012; 287:29495-29505. [PMID: 22787152 PMCID: PMC3436164 DOI: 10.1074/jbc.m112.366674] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Indexed: 01/14/2023] Open
Abstract
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV. Silent scaffolds: inhibition OF c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 2012; 287:19653-19664. [PMID: 22523077 PMCID: PMC3366000 DOI: 10.1074/jbc.m112.358192] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Indexed: 12/29/2022] Open
Abstract
We established a new in vivo arrestin-3-JNK3 interaction assay based on bioluminescence resonance energy transfer (BRET) between JNK3-luciferase and Venus-arrestins. We tested the ability of WT arrestin-3 and its 3A mutant that readily binds β2-adrenergic receptors as well as two mutants impaired in receptor binding, Δ7 and KNC, to directly bind JNK3 and to promote JNK3 phosphorylation in cells. Both receptor binding-deficient mutants interact with JNK3 significantly better than WT and 3A arrestin-3. WT arrestin-3 and Δ7 mutant robustly promoted JNK3 activation, whereas 3A and KNC mutants did not. Thus, receptor binding, JNK3 interaction, and JNK3 activation are three distinct arrestin functions. We found that the KNC mutant, which tightly binds ASK1, MKK4, and JNK3 without facilitating JNK3 phosphorylation, has a dominant-negative effect, competitively decreasing JNK activation by WT arrestin-3. Thus, KNC is a silent scaffold, a novel type of molecular tool for the suppression of MAPK signaling in living cells.
Collapse
Affiliation(s)
- Maya Breitman
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Britney N. Lizama
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Maria C. Palazzo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
43
|
Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 2012; 287:9028-9040. [PMID: 22275358 PMCID: PMC3308753 DOI: 10.1074/jbc.m111.311803] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - M. Rafiuddin Ahmed
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
44
|
Yanamala N, Gardner E, Riciutti A, Klein-Seetharaman J. The cytoplasmic rhodopsin-protein interface: potential for drug discovery. Curr Drug Targets 2012; 13:3-14. [PMID: 21777183 PMCID: PMC3275648 DOI: 10.2174/138945012798868461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 01/20/2023]
Abstract
The mammalian dim-light photoreceptor rhodopsin is a prototypic G protein coupled receptor (GPCR), interacting with the G protein, transducin, rhodopsin kinase, and arrestin. All of these proteins interact with rhodopsin at its cytoplasmic surface. Structural and modeling studies have provided in-depth descriptions of the respective interfaces. Overlap and thus competition for binding surfaces is a major regulatory mechanism for signal processing. Recently, it was found that the same surface is also targeted by small molecules. These ligands can directly interfere with the binding and activation of the proteins of the signal transduction cascade, but they can also allosterically modulate the retinal ligand binding pocket. Because the pocket that is targeted contains residues that are highly conserved across Class A GPCRs, these findings imply that it may be possible to target multiple GPCRs with the same ligand(s). This is desirable for example in complex diseases such as cancer where multiple GPCRs participate in the disease networks.
Collapse
Affiliation(s)
- Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Eric Gardner
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Alec Riciutti
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
45
|
Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 2011; 6:e28723. [PMID: 22174878 PMCID: PMC3236217 DOI: 10.1371/journal.pone.0028723] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/14/2011] [Indexed: 01/27/2023] Open
Abstract
Arrestins are multifunctional signaling adaptors originally discovered as proteins that "arrest" G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β(2)-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the "constitutively inactive" arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.
Collapse
Affiliation(s)
- Sergio Coffa
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Susan M. Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kari Callaway
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
46
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
47
|
Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci U S A 2011; 108:18690-5. [PMID: 22039220 DOI: 10.1073/pnas.1015461108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.
Collapse
|
48
|
Coffa S, Breitman M, Spiller BW, Gurevich VV. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 2011; 50:6951-8. [PMID: 21732673 PMCID: PMC3153575 DOI: 10.1021/bi200745k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arrestins regulate the signaling and trafficking of G protein-coupled receptors (GPCRs). GPCR complexes with both nonvisual arrestins channel signaling to G protein-independent pathways, one of which is the activation of extracellular signal regulated kinase 1/2 (ERK1/2). Here we used alanine-scanning mutagenesis of residues on the nonreceptor-binding surface conserved between arrestin-2 and arrestin-3. We show that an Arg307Ala mutation significantly reduced arrestin-2 binding to c-Raf1, whereas the binding of the mutant to active phosphorylated receptor and downstream kinases MEK1 and ERK2 was not affected. In contrast to wild-type arrestin-2, the Arg307Ala mutant failed to rescue arrestin-dependent ERK1/2 activation via β2-adrenergic receptor in arrestin-2/3 double knockout mouse embryonic fibroblasts. Thus, Arg307 plays a specific role in arrestin-2 binding to c-Raf1 and is indispensable in the productive scaffolding of c-Raf1-MEK1-ERK1/2 signaling cascade. Arg307Ala mutation specifically eliminates arrestin-2 signaling through ERK, which makes arrestin-2-Arg307Ala the first signaling-biased arrestin mutant constructed. In the crystal structure the side chain of homologous arrestin-3 residue Lys308 points in a different direction. Alanine substitution of Lys308 does not significantly affect c-Raf1 binding to arrestin-3 and its ability to promote ERK1/2 activation, suggesting that the two nonvisual arrestins perform the same function via distinct molecular mechanisms.
Collapse
Affiliation(s)
- Sergio Coffa
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
49
|
Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 2011; 6:e22797. [PMID: 21818392 PMCID: PMC3144249 DOI: 10.1371/journal.pone.0022797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/02/2011] [Indexed: 01/10/2023] Open
Abstract
Light-induced rhodopsin signaling is turned off with sub-second kinetics by rhodopsin phosphorylation followed by arrestin-1 binding. To test the availability of the arrestin-1 pool in dark-adapted outer segment (OS) for rhodopsin shutoff, we measured photoresponse recovery rates of mice with arrestin-1 content in the OS of 2.5%, 5%, 60%, and 100% of wild type (WT) level by two-flash ERG with the first (desensitizing) flash at 160, 400, 1000, and 2500 photons/rod. The time of half recovery (t(half)) in WT retinas increases with the intensity of the initial flash, becoming ∼2.5-fold longer upon activation of 2500 than after 160 rhodopsins/rod. Mice with 60% and even 5% of WT arrestin-1 level recovered at WT rates. In contrast, the mice with 2.5% of WT arrestin-1 had a dramatically slower recovery than the other three lines, with the t(half) increasing ∼28 fold between 160 and 2500 rhodopsins/rod. Even after the dimmest flash, the rate of recovery of rods with 2.5% of normal arrestin-1 was two times slower than in other lines, indicating that arrestin-1 level in the OS between 100% and 5% of WT is sufficient for rapid recovery, whereas with lower arrestin-1 the rate of recovery dramatically decreases with increased light intensity. Thus, the OS has two distinct pools of arrestin-1: cytoplasmic and a separate pool comprising ∼2.5% that is not immediately available for rhodopsin quenching. The observed delay suggests that this pool is localized at the periphery, so that its diffusion across the OS rate-limits the recovery. The line with very low arrestin-1 expression is the first where rhodopsin inactivation was made rate-limiting by arrestin manipulation.
Collapse
Affiliation(s)
- Whitney M. Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elviche L. Tsakem
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jungwon Seo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeannie Chen
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
50
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-99. [PMID: 21471193 PMCID: PMC3129209 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
Affiliation(s)
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Derek J. Francis
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Susan M. Hanson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Wayne L. Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Candice S. Klug
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|