1
|
Yu J, Wu B, Dong Y, Lin Z, Yao H. Genome-Wide Identification and Expression Analysis of the ALDH Gene Family in Sinonovacula constricta Bivalve in Response to Acute Hypersaline Stress. Animals (Basel) 2024; 15:64. [PMID: 39795007 PMCID: PMC11718799 DOI: 10.3390/ani15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The razor clam Sinonovacula constricta, a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)+-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism. This study presents the first comprehensive analysis of the ALDH family in S. constricta under acute high salt stress conditions and identifies 16 ScALDH genes across 10 subfamilies. These genes are located on eight chromosomes, with tandem duplications observed on chromosome 10; they encode mostly acidic and hydrophilic proteins. Among them, ScALDH18A1 contains a conserved P5CS domain that is implicated in proline synthesis and osmotic regulation. The expression of 14 ScALDH members were significantly altered under acute salt stress conditions, with ScALDH8 and ScALDH18A1 showing increased expression levels, suggesting their involvement in osmotic pressure regulation. This research provides insights into the characteristics, evolution, and response to salinity stress of the ScALDH gene family while shedding light on ALDH function in bivalves, as well as serving as a foundation for further studies on osmotic stress regulation.
Collapse
Affiliation(s)
- Jianing Yu
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yinghui Dong
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Zhihua Lin
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Hanhan Yao
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| |
Collapse
|
2
|
Masopustová M, Goga A, Soural M, Kopečná M, Šebela M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids 2024; 56:52. [PMID: 39207552 PMCID: PMC11362210 DOI: 10.1007/s00726-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.
Collapse
Affiliation(s)
- Michaela Masopustová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Adam Goga
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Wang X, Wu M, Yu S, Zhai L, Zhu X, Yu L, Zhang Y. Comprehensive analysis of the aldehyde dehydrogenase gene family in Phaseolus vulgaris L. and their response to saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1283845. [PMID: 38450406 PMCID: PMC10915231 DOI: 10.3389/fpls.2024.1283845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Background Aldehyde dehydrogenase (ALDH) scavenges toxic aldehyde molecules by catalyzing the oxidation of aldehydes to carboxylic acids. Although ALDH gene family members in various plants have been extensively studied and were found to regulate plant response to abiotic stress, reports on ALDH genes in the common bean (Phaseolus vulgaris L.) are limited. In this study, we aimed to investigate the effects of neutral (NS) and basic alkaline (AS) stresses on growth, physiological and biochemical indices, and ALDH activity, ALDH gene expression of common bean. In addition, We used bioinformatics techniques to analyze the physical and chemical properties, phylogenetic relationships, gene replication, collinearity, cis-acting elements, gene structure, motifs, and protein structural characteristics of PvALDH family members. Results We found that both NS and AS stresses weakened the photosynthetic performance of the leaves, induced oxidative stress, inhibited common bean growth, and enhanced the antioxidative system to scavenge reactive oxygen species. Furthermore, we our findings revealed that ALDH in the common bean actively responds to NS or AS stress by inducing the expression of PvALDH genes. In addition, using the established classification criteria and phylogenetic analysis, 27 PvALDHs were identified in the common bean genome, belonging to 10 ALDH families. The primary expansion mode of PvALDH genes was segmental duplication. Cis-acting elemental analysis showed that PvALDHs were associated with abiotic stress and phytohormonal responses. Gene expression analysis revealed that the PvALDH gene expression was tissue-specific. For instance, PvALDH3F1 and PvALDH3H1 were highly expressed in flower buds and flowers, respectively, whereas PvALDH3H2 and PvALDH2B4 were highly expressed in green mature pods and young pods, respectively. PvALDH22A1 and PvALDH11A2 were highly expressed in leaves and young trifoliates, respectively; PvALDH18B2 and PvALDH18B3 were highly expressed in stems and nodules, respectively; and PvALDH2C2 and PvALDH2C3 were highly expressed in the roots. PvALDHs expression in the roots responded positively to NS-AS stress, and PvALDH2C3, PvALDH5F1, and PvALDH10A1 were significantly (P < 0.05) upregulated in the roots. Conclusion These results indicate that AS stress causes higher levels of oxidative damage than NS stress, resulting in weaker photosynthetic performance and more significant inhibition of common bean growth. The influence of PvALDHs potentially modulates abiotic stress response, particularly in the context of saline-alkali stress. These findings establish a basis for future research into the potential roles of ALDHs in the common bean.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lingxia Zhai
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, Heilongjiang, China
| | - Xuetian Zhu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
5
|
Šebela M, Rašková M. Polyamine-Derived Aminoaldehydes and Acrolein: Cytotoxicity, Reactivity and Analysis of the Induced Protein Modifications. Molecules 2023; 28:7429. [PMID: 37959847 PMCID: PMC10648994 DOI: 10.3390/molecules28217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | |
Collapse
|
6
|
Zhang X, Zhong J, Cao L, Ren C, Yu G, Gu Y, Ruan J, Zhao S, Wang L, Ru H, Cheng L, Wang Q, Zhang Y. Genome-wide characterization of aldehyde dehydrogenase gene family members in groundnut ( Arachis hypogaea) and the analysis under saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1097001. [PMID: 36875623 PMCID: PMC9978533 DOI: 10.3389/fpls.2023.1097001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Groundnut or peanut (Arachis hypogaea) is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in Arachis hypogaea. In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, cis-acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of AhALDHs. AhALDHs exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of AhALDH members under saline-alkali stress. The results revealed that some AhALDHs members could be involved in response to abiotic stress. Our findings on AhALDHs provide insights for further study.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- Agricultural College, Northeast Agricultural University, Harbin, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingwen Zhong
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingwen Ruan
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Siqi Zhao
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Lei Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Haishun Ru
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Guan Y, Tanwar UK, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Comparative genomic analysis of the aldehyde dehydrogenase gene superfamily in Arabidopsis thaliana - searching for the functional key to hypoxia tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1000024. [PMID: 36466248 PMCID: PMC9714362 DOI: 10.3389/fpls.2022.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Flooding entails different stressful conditions leading to low oxygen availability for respiration and as a result plants experience hypoxia. Stress imposed by hypoxia affects cellular metabolism, including the formation of toxic metabolites that dramatically reduce crop productivity. Aldehyde dehydrogenases (ALDHs) are a group of enzymes participating in various aspects of plant growth, development and stress responses. Although we have knowledge concerning the multiple functionalities of ALDHs in tolerance to various stresses, the engagement of ALDH in plant metabolism adjustment to hypoxia is poorly recognized. Therefore, we explored the ALDH gene superfamily in the model plant Arabidopsis thaliana. Genome-wide analyses revealed that 16 AtALDH genes are organized into ten families and distributed irregularly across Arabidopsis 5 chromosomes. According to evolutionary relationship studies from different plant species, the ALDH gene superfamily is highly conserved. AtALDH2 and ALDH3 are the most numerous families in plants, while ALDH18 was found to be the most distantly related. The analysis of cis-acting elements in promoters of AtALDHs indicated that AtALDHs participate in responses to light, phytohormones and abiotic stresses. Expression profile analysis derived from qRT-PCR showed the AtALDH2B7, AtALDH3H1 and AtALDH5F1 genes as the most responsive to hypoxia stress. In addition, the expression of AtALDH18B1, AtALDH18B2, AtALDH2B4, and AtALDH10A8 was highly altered during the post-hypoxia-reoxygenation phase. Taken together, we provide comprehensive functional information on the ALDH gene superfamily in Arabidopsis during hypoxia stress and highlight ALDHs as a functional element of hypoxic systemic responses. These findings might help develop a framework for application in the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | | |
Collapse
|
8
|
Shi Q, Chen Y, Li X, Dong H, Chen C, Zhong Z, Yang C, Liu G, Su D. The tetrameric assembly of 2-aminomuconic 6-semialdehyde dehydrogenase is a functional requirement of cofactor NAD + binding. Environ Microbiol 2021; 24:2994-3012. [PMID: 34806815 DOI: 10.1111/1462-2920.15840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
The bacterium Pseudomonas sp. AP-3 is able to use the environmental pollutant 2-aminophenol as its sole source of carbon, nitrogen, and energy. Eight genes (amnA, B, C, D, E, F, G, and H) encoding 2-aminophenol metabolizing enzymes are clustered into a single operon. 2-Aminomuconic 6-semialdehyde dehydrogenase (AmnC), a member of the aldehyde dehydrogenase (ALDH) superfamily, is responsible for oxidizing 2-aminomuconic 6-semialdehyde to 2-aminomuconate. In contrast to many other members of the ALDH superfamily, the structural basis of the catalytic activity of AmnC remains elusive. Here, we present the crystal structure of AmnC, which displays a homotetrameric quaternary assembly that is directly involved in its enzymatic activity. The tetrameric state of AmnC in solution was also presented using small-angle X-ray scattering. The tetramerization of AmnC is mediated by the assembly of a protruding hydrophobic beta-strand motif and residues V121 and S123 located in the NAD+ -binding domain of each subunit. Dimeric mutants of AmnC dramatically lose NAD+ binding affinity and failed to oxidize the substrate analogue 2-hydroxymuconate-6-semialdehyde to α-hydroxymuconic acid, indicating that tetrameric assembly of AmnC is functional requirement.
Collapse
Affiliation(s)
- Qiuli Shi
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Yanjuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xinxin Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhihui Zhong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Cheng Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Guangfeng Liu
- Shanghai Synchrotron Radiation Facility and Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| |
Collapse
|
9
|
Bhatt V, Barvkar VT, Furtado A, Henry RJ, Nadaf A. Fragrance in Pandanus amaryllifoliusRoxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2. Int J Mol Sci 2021; 22:ijms22136968. [PMID: 34203477 PMCID: PMC8269274 DOI: 10.3390/ijms22136968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In the present study, a full-length BADH2 sequence was reconstructed from the transcriptome data of leaf tissue from P. amaryllifolius seedlings. Based on this sequence, a 1509 bp coding sequence was defined that encoded a 54 kD PaBADH2 protein. This revealed the presence of a full-length BADH2 protein in P. amaryllifolius. Moreover, quantitative real-time PCR analysis, combined with BADH2 enzyme activity, confirmed the expression and functionality of the PaBADH2 protein. To understand the apparent structural variation, docking analysis was carried out in which protein showed a good affinity with both betaine aldehyde (BAD) and γ-aminobutyraldehyde (GAB-ald) as substrates. Overall, the analysis showed the presence of a functional BADH2, along with substantial 2AP synthesis (4.38 ppm). Therefore, we conclude that unlike all other plants studied to date, 2AP biosynthesis in P. amaryllifolius is not due to the inactivation of BADH2.
Collapse
Affiliation(s)
- Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (V.B.); (V.T.B.)
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (V.B.); (V.T.B.)
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4072, Australia; (A.F.); (R.J.H.)
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD 4072, Australia; (A.F.); (R.J.H.)
| | - Altafhusain Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (V.B.); (V.T.B.)
- Correspondence:
| |
Collapse
|
10
|
Singh P, Kaufholdt D, Awadalah M, Hänsch R, Beerhues L, Gaid M. Cytosolic aromatic aldehyde dehydrogenase provides benzoic acid for xanthone biosynthesis in Hypericum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:82-93. [PMID: 33482582 DOI: 10.1016/j.plaphy.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/09/2021] [Indexed: 05/09/2023]
Abstract
Benzoic acid is a building block of a multitude of well-known plant natural products, such as paclitaxel and cocaine. Its simple chemical structure contrasts with its complex biosynthesis. Hypericum species are rich in polyprenylated benzoic acid-derived xanthones, which have received attention due to their biological impact on human health. The upstream biosynthetic sequence leading to xanthones is still incomplete. To supply benzoic acid for xanthone biosynthesis, Hypericum calycinum cell cultures use the CoA-dependent non-β-oxidative pathway, which starts with peroxisomal cinnamate CoA-ligase (HcCNL). Here, we use the xanthone-producing cell cultures to identify the transcript for benzaldehyde dehydrogenase (HcBD), a pivotal player in the non-β-oxidative pathways. In addition to benzaldehyde, the enzyme efficiently catalyzes the oxidation of trans-cinnamaldehyde in vitro. The enzymatic activity is strictly dependent on the presence of NAD+ as co-factor. HcBD is localized to the cytosol upon ectopic expression of reporter fusion constructs. HcBD oxidizes benzaldehyde, which moves across the peroxisome membrane, to form benzoic acid. Increases in the HcCNL and HcBD transcript levels precede the elicitor-induced xanthone accumulation. The current work addresses a crucial step in the yet incompletely understood CoA-dependent non-β-oxidative route of benzoic acid biosynthesis. Addressing this step may offer a new biotechnological tool to enhance product formation in biofactories.
Collapse
Affiliation(s)
- Poonam Singh
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - David Kaufholdt
- Technische Universität Braunschweig, Institute of Plant Biology, Humboldtstraße 1, Braunschweig, 38106, Germany
| | - Mina Awadalah
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - Robert Hänsch
- Technische Universität Braunschweig, Institute of Plant Biology, Humboldtstraße 1, Braunschweig, 38106, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Ludger Beerhues
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstraße 1, Braunschweig, 38106, Germany; Technische Universität Braunschweig, Centre of Pharmaceutical Engineering, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| | - Mariam Gaid
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstraße 1, Braunschweig, 38106, Germany; Technische Universität Braunschweig, Centre of Pharmaceutical Engineering, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany.
| |
Collapse
|
11
|
Jacques F, Zhao Y, Kopečná M, Končitíková R, Kopečný D, Rippa S, Perrin Y. Roles for ALDH10 enzymes in γ-butyrobetaine synthesis, seed development, germination, and salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7088-7102. [PMID: 32845293 DOI: 10.1093/jxb/eraa394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Plant genomes generally contain two aldehyde dehydrogenase 10 (ALDH10) genes, which encode NAD+-dependent enzymes. These oxidize various aminoaldehydes that are produced by the catabolism of amino acids and polyamines. ALDH10s are closely related to the animal and fungal trimethylaminobutyraldehyde dehydrogenases (TMABADHs) that are involved in the synthesis of γ-butyrobetaine, the precursor of carnitine. Here, we explore the ability of the Arabidopsis thaliana proteins AtALDH10A8 and AtALDH10A9 to oxidize aminoaldehydes. We demonstrate that these enzymes display high TMABADH activities in vitro. Moreover, they can complement the Candida albicans tmabadhΔ/Δ null mutant. These findings illustrate the link between AtALDH10A8 and AtALDH10A9 and γ-butyrobetaine synthesis. An analysis of single and double knockout Arabidopsis mutant lines revealed that the double mutants had reduced γ-butyrobetaine levels. However, there were no changes in the carnitine contents of these mutants. The double mutants were more sensitive to salt stress. In addition, the siliques of the double mutants had a significant proportion of seeds that failed to mature. The mature seeds contained higher amounts of triacylglycerol, facilitating accelerated germination. Taken together, these results show that ALDH10 enzymes are involved in γ-butyrobetaine synthesis. Furthermore, γ-butyrobetaine fulfils a range of physiological roles in addition to those related to carnitine biosynthesis.
Collapse
Affiliation(s)
- Florian Jacques
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yingjuan Zhao
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
- Department of Applied Chemistry, School of Science, Xi'an University of Technology, Xi'an, China
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc CZ, Czech Republic
| | - Sonia Rippa
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| | - Yolande Perrin
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu - CS, Compiègne Cedex, France
| |
Collapse
|
12
|
Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation. Int J Biol Macromol 2020; 164:1715-1728. [PMID: 32758605 DOI: 10.1016/j.ijbiomac.2020.07.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/30/2023]
Abstract
The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed FeIII sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.
Collapse
|
13
|
Frömmel J, Končitíková R, Kopečný D, Soural M, Šebela M. Oxidation of imidazole- and pyrazole-derived aldehydes by plant aldehyde dehydrogenases from the family 2 and 10. Chem Biol Interact 2019; 304:194-201. [PMID: 30768969 DOI: 10.1016/j.cbi.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
Abstract
Plant cytosolic aldehyde dehydrogenases from family 2 (ALDH2s, EC 1.2.1.3) are non-specific enzymes and participate for example in the metabolism of acetaldehyde or biosynthesis of phenylpropanoids. Plant aminoaldehyde dehydrogenases (AMADHs, ALDH10 family, EC 1.2.1.19) are broadly specific and play an important role in polyamine degradation or production of osmoprotectants. We have tested imidazole and pyrazole carbaldehydes and their alkyl-, allyl-, benzyl-, phenyl-, pyrimidinyl- or thienyl-derivatives as possible substrates of plant ALDH2 and ALDH10 enzymes. Imidazole represents a building block of histidine, histamine as well as certain alkaloids. It also appears in synthetic pharmaceuticals such as imidazole antifungals. Biological compounds containing pyrazole are rare (e.g. pyrazole-1-alanine and pyrazofurin antibiotics) but the ring is often found as a constituent of many synthetic drugs and pesticides. The aim was to evaluate whether aldehyde compounds based on azole heterocycles are oxidized by the enzymes, which would further support their expected role as detoxifying aldehyde scavengers. The analyzed imidazole and pyrazole carbaldehydes were only slowly converted by ALDH10s but well oxidized by cytosolic maize ALDH2 isoforms (particularly by ALDH2C1). In the latter case, the respective Km values were in the range of 10-2000 μmol l-1; the kcat values appeared mostly between 0.1 and 1.0 s-1. The carbaldehyde group at the position 4 of imidazole was oxidized faster than that at the position 2. Such a difference was not observed for pyrazole carbaldehydes. Aldehydes with an aromatic substituent on their heterocyclic ring were oxidized faster than those with an aliphatic substituent. The most efficient of the tested substrates were comparable to benzaldehyde and p-anisaldehyde known as the best aromatic aldehyde substrates of plant cytosolic ALDH2s in vitro.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Miroslav Soural
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Kinetic and structural analysis of human ALDH9A1. Biosci Rep 2019; 39:BSR20190558. [PMID: 30914451 PMCID: PMC6487263 DOI: 10.1042/bsr20190558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αβE region consisting of an α-helix and a β-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete β-nicotinamide adenine dinucleotide (NAD+) binding pocket.
Collapse
|
15
|
Magro M, Baratella D, Miotto G, Frömmel J, Šebela M, Kopečná M, Agostinelli E, Vianello F. Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids 2019; 51:679-690. [PMID: 30725223 DOI: 10.1007/s00726-019-02704-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
The preservation of enzymatic activity is a fundamental requirement for exploiting hybrid nano-bio-conjugates, and the control over protein-nanoparticle interactions, leading to stable and catalytically active hybrids, represents the key for designing new biosensing platforms. In this scenario, surface active maghemite nanoparticles (SAMNs) represent a new class of naked magnetic nanoparticles, displaying peculiar electrocatalytic features and the ability to selectively bind proteins. Recombinant aminoaldehyde dehydrogenase from tomato (SlAMADH1) was used as a model protein, and successfully immobilized by self-assembly on the surface of naked SAMNs, where its enzymatic activity resulted preserved for more than 6 months. The hybrid nanomaterial (SAMN@SlAMADH1) was characterized by UV-Vis spectroscopy, mass spectrometry, and TEM microscopy, and applied for the development of a biosensor for the determination of aminoaldehydes in alcoholic beverages. Measurements were carried out in a low volume electrochemical flow cell comprising a SAMN modified carbon paste electrode for the coulometric determination of the NADH produced during the enzymatic catalysis. The present findings, besides representing the first example of an electrochemical biosensor for aminoaldehydes in an alcoholic matrix, open the door to the use of immobilized enzymes on naked metal oxides nanomaterials for biosensing.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy.,Proteomic Center of Padua University, VIMM and Padua University Hospital, Via G. Orus 2b, 35129, Padua, Italy
| | - Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Enzo Agostinelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome La Sapienza and CNR, Institute of Biology and Molecular Pathology, 00185, Rome, Italy.,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy. .,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy.
| |
Collapse
|
16
|
Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants. J Mol Biol 2018; 431:576-592. [PMID: 30580036 DOI: 10.1016/j.jmb.2018.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD+-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate. Sedimentation equilibrium and small-angle X-ray scattering analyses reveal that in solution both plant GSALDHs exist as equilibrium between a domain-swapped dimer and the dimer-of-dimers tetramer. Plant GSALDHs share very low-sequence identity with bacterial, fungal, and animal GSALDHs (classified as ALDH4), which are the closest related ALDH superfamily members. Nevertheless, the crystal structure of ZmALDH12 at 2.2-Å resolution shows that nearly all key residues involved in the recognition of GSAL are identical to those in ALDH4, indicating a close functional relationship with ALDH4. Phylogenetic analysis suggests that the transition from ALDH4 to ALDH12 occurred during the evolution of the endosymbiotic plant ancestor, prior to the evolution of green algae and land plants. Finally, ALDH12 expression in maize and moss is downregulated in response to salt and drought stresses, possibly to maintain proline levels. Taken together, these results provide molecular insight into the biological roles of the plant ALDH12 family.
Collapse
|
17
|
Jacques F, Rippa S, Perrin Y. Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:432-440. [PMID: 30080631 DOI: 10.1016/j.plantsci.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 05/24/2023]
Abstract
L-carnitine is present in all living kingdoms where it acts in diverse physiological processes. It is involved in lipid metabolism in animals and yeasts, notably as an essential cofactor of fatty acid intracellular trafficking. Its physiological significance is poorly understood in plants, but L-carnitine may be linked to fatty acid metabolism among other roles. Indeed, carnitine transferases activities and acylcarnitines are measured in plant tissues. Current knowledge of fatty acid trafficking in plants rules out acylcarnitines as intermediates of the peroxisomal and mitochondrial fatty acid metabolism, unlike in animals and yeasts. Instead, acylcarnitines could be involved in plastidial exportation of de novo fatty acid, or importation of fatty acids into the ER, for synthesis of specific glycerolipids. L-carnitine also contributes to cellular maintenance though antioxidant and osmolyte properties in animals and microbes. Recent data indicate similar features in plants, together with modulation of signaling pathways. The biosynthesis of L-carnitine in the plant cell shares similar precursors as in the animal and yeast cells. The elucidation of the biosynthesis pathway of L-carnitine, and the identification of the enzymes involved, is today essential to progress further in the comprehension of its biological significance in plants.
Collapse
Affiliation(s)
- Florian Jacques
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Sonia Rippa
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Yolande Perrin
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
18
|
Baicharoen A, Vijayan R, Pongprayoon P. Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza sativa explored by modeling and simulations. Sci Rep 2018; 8:12892. [PMID: 30150624 PMCID: PMC6110774 DOI: 10.1038/s41598-018-31204-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 12/02/2022] Open
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) plays a key role in the accumulation of 2-acetyl-1-pyrroline (2AP), a fragrant compound in rice (Oryza sativa). BADH2 catalyses the oxidation of aminoaldehydes to carboxylic acids. An inactive BADH2 is known to promote fragrance in rice. The 3D structure and atomic level protein-ligand interactions are currently unknown. Here, the 3D dimeric structure of BADH2 was modeled using homology modeling. Furthermore, two 0.5 µs simulations were performed to explore the nature of BADH2 dimer structurally and dynamically. Each monomer comprises of 3 domains (substrate-binding, NAD+-binding, and oligomerization domains). The NAD+-binding domain is the most mobile. A scissor-like motion was observed between the monomers. Inside the binding pocket, N162 and E260 are tethered by strong hydrogen bonds to residues in close proximity. In contrast, the catalytic C294 is very mobile and interacts occasionally with N162. The flexibility of the nucleophilic C294 could facilitate the attack of free carbonyl on an aldehyde substrate. Key inter-subunit salt bridges contributing to dimerization were also identified. E487, D491, E492, K498, and K502 were found to form strong salt bridges with charged residues on the adjacent monomer. Specifically, the nearly permanent R430-E487 hydrogen bond (>90%) highlights its key role in dimer association. Structural and dynamic insights of BADH2 obtained here could play a role in the improvement of rice fragrance, which could lead to an enhancement in rice quality and market price.
Collapse
Affiliation(s)
- Apisara Baicharoen
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box, 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand. .,Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
19
|
Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Int J Mol Sci 2018; 19:ijms19051409. [PMID: 29747375 PMCID: PMC5983644 DOI: 10.3390/ijms19051409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
In saffron, the cleavage of zeaxanthin by means of CCD2 generates crocetin dialdehyde, which is then converted by an unknown aldehyde dehydrogenase to crocetin. A proteome from saffron stigma was released recently and, based on the expression pattern and correlation analyses, five aldehyde dehydrogenases (ALDHs) were suggested as possible candidates to generate crocetin from crocetin dialdehydes. We selected four of the suggested ALDHs and analyzed their expression in different tissues, determined their activity over crocetin dialdehyde, and performed structure modeling and docking calculation to find their specificity. All the ALDHs were able to convert crocetin dialdehyde to crocetin, but two of them were stigma tissue-specific. Structure modeling and docking analyses revealed that, in all cases, there was a high coverage of residues in the models. All of them showed a very close conformation, indicated by the low root-mean-square deviation (RMSD) values of backbone atoms, which indicate a high similarity among them. However, low affinity between the enzymes and the crocetin dialdehyde were observed. Phylogenetic analysis and binding affinities calculations, including some ALDHs from Gardenia jasmonoides, Crocus sieberi, and Buddleja species that accumulate crocetin and Bixa orellana synthetizing the apocarotenoid bixin selected on their expression pattern matching with the accumulation of either crocins or bixin, pointed out that family 2 C4 members might be involved in the conversion of crocetin dialdehyde to crocetin with high specificity.
Collapse
|
20
|
Liu Y, Song Y, Zeng S, Patra B, Yuan L, Wang Y. Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr. PHYSIOLOGIA PLANTARUM 2018; 163:73-87. [PMID: 29297198 DOI: 10.1111/ppl.12669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
As compatible solute, glycine betaine (GB) plays a significant role in salinity tolerance in GB accumulating plants. Solanaceous crops such as tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum) are salt sensitive and naturally GB non-accumulators. In Solanaceae, only the Lycium genus has been recorded as halophytes in China, and several Lycium species have been reported as GB accumulators. The last biosynthetic step of GB is catalyzed by aminoaldehyde dehydrogenase (AMADH) with betaine aldehyde dehydrogenase (BADH) activities. Failure of GB synthesis in tomato and tobacco was attributed to lack of BADH activity. Here, by comparing the BADH functional residues of AMADHs between the Lycium genus and solanaceous crops, we predict that all studied AMADH1s have low BADH activities while only LbAMADH2 from L. barbarum has high BADH activity. For two AMADHs in L. ruthenicum, results from substrate enzyme assays confirmed low BADH activity of LrAMADH1 and no BADH activity of LrAMADH2. Despite the very low GB contents in L. ruthenicum seedlings (< 0.5 μmol g-1 fresh weight), GB contents in fruits are up to 150 μmol g-1 FW, inferring fruits of L. ruthenicum as good GB sources. In NaCl treated seedlings, accompanied by elevated GB accumulation, expression of LrAMADH1 was up-regulated, indicating response of LrAMADH1 to salt stress in L. ruthenicum. Virus-induced silence of LrAMADH1 leads to less GB accumulation than control, revealing that LrAMADH1 participates in GB synthesis in planta. Collectively, our results show that LrAMADH1 is the bona fide BADH, which responds to salt stress in L. ruthenicum.
Collapse
Affiliation(s)
- Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Yanli Song
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Barunava Patra
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- The Kentucky Tobacco Research and Development Center, Lexington, KY 40546, USA
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
21
|
Kopečná M, Vigouroux A, Vilím J, Končitíková R, Briozzo P, Hájková E, Jašková L, von Schwartzenberg K, Šebela M, Moréra S, Kopečný D. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP + -dependent succinic semialdehyde dehydrogenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:229-243. [PMID: 28749584 DOI: 10.1111/tpj.13648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP+ -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD+ is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP+ binding induces a conformational change of the loop carrying Arg-228, which seals the NADP+ in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5.
Collapse
Affiliation(s)
- Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Armelle Vigouroux
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - Jan Vilím
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRA-AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, F-78026, Versailles, France
| | - Eva Hájková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Jašková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | | | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CNRS-CEA-Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, F-91198, Gif-sur-Yvette, France
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
22
|
Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chem Biol Interact 2017; 276:65-74. [PMID: 28212821 DOI: 10.1016/j.cbi.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.
Collapse
|
23
|
Nemati F, Amoozadeh A. The role of thiophenol in the proposed mechanism for one pot transformation of 2-phenylthio-3-aminocyclohexanols to dehydropiperidine derivatives. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2011.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep 2016; 6:35115. [PMID: 27725774 PMCID: PMC5057122 DOI: 10.1038/srep35115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Collapse
|
25
|
Frömmel J, Tarkowski P, Kopečný D, Šebela M. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates. N Biotechnol 2016; 33:666-675. [DOI: 10.1016/j.nbt.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
26
|
Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications. Biochem J 2016; 473:873-85. [DOI: 10.1042/bj20151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022]
Abstract
The activity of plant BADH enzymes may be down-regulated in the short term by a novel and physiologically relevant mechanism, consisting of the reversible formation of a thiohemiacetal between a conserved non-essential cysteine residue and the substrate betaine aldehyde.
Collapse
|
27
|
Zarei A, Trobacher CP, Shelp BJ. NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and β-alanine production during terminal oxidation of polyamines in apple fruit. FEBS Lett 2015; 589:2695-700. [PMID: 26296314 DOI: 10.1016/j.febslet.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
The last step of polyamine catabolism involves the oxidation of 3-aminopropanal or 4-aminobutanal via aminoaldehyde dehydrogenase. In this study, two apple (Malus x domestica) AMADH genes were selected (MdAMADH1 and MdAMADH2) as candidates for encoding 4-aminobutanal dehydrogenase activity. Maximal activity and catalytic efficiency were obtained with NAD(+) and 3-aminopropanal, followed by 4-aminobutanal, at pH 9.8. NAD(+) reduction was accompanied by the production of GABA and β-alanine, respectively, when 4-aminobutanal and 3-aminopropanal were utilized as substrates. MdAMADH2 was peroxisomal and MdAMADH1 cytosolic. These findings shed light on the potential role of apple AMADHs in 4-aminobutyrate and β-alanine production.
Collapse
Affiliation(s)
- Adel Zarei
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
28
|
Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 2015; 468:109-23. [PMID: 25734422 DOI: 10.1042/bj20150009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.
Collapse
Affiliation(s)
- Radka Končitíková
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Armelle Vigouroux
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Martina Kopečná
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Tomáš Andree
- †Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Jan Bartoš
- §Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic
| | - Marek Šebela
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Solange Moréra
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - David Kopečný
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| |
Collapse
|
29
|
Halavaty AS, Rich RL, Chen C, Joo JC, Minasov G, Dubrovska I, Winsor JR, Myszka DG, Duban M, Shuvalova L, Yakunin AF, Anderson WF. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1159-75. [PMID: 25945581 PMCID: PMC4427200 DOI: 10.1107/s1399004715004228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023]
Abstract
When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Chao Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeong Chan Joo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - James R. Winsor
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Mark Duban
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| |
Collapse
|
30
|
González-Segura L, Riveros-Rosas H, Julián-Sánchez A, Muñoz-Clares RA. Residues that influence coenzyme preference in the aldehyde dehydrogenases. Chem Biol Interact 2015; 234:59-74. [PMID: 25601141 DOI: 10.1016/j.cbi.2014.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/12/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022]
Abstract
To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can easily be changed through evolution and selected in response to physiological needs.
Collapse
Affiliation(s)
- Lilian González-Segura
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico.
| |
Collapse
|
31
|
Frömmel J, Šebela M, Demo G, Lenobel R, Pospíšil T, Soural M, Kopečný D. N-acyl-ω-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases. Amino Acids 2015; 47:175-87. [PMID: 25344796 DOI: 10.1007/s00726-014-1853-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Plant aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases and participate in the metabolism of compounds related to amino acids such as polyamines or osmoprotectants. Their broad specificity covers ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The substrate preference of plant AMADHs is determined by the presence of aspartic acid and aromatic residues in the substrate channel. In this work, 15 new N-acyl derivates of 3-aminopropanal (APAL) and 4-aminobutanal (ABAL) were synthesized and confirmed as substrates of two pea AMADH isoenzymes (PsAMADH 1 and 2). The compounds were designed considering the previously demonstrated conversion of N-acetyl derivatives as well as substrate channel dimensions (5-8 Å × 14 Å). The acyl chain length and its branching were found less significant for substrate properties than the length of the initial natural substrate. In general, APAL derivatives were found more efficient than the corresponding ABAL derivatives because of the prevailing higher conversion rates and lower K m values. Differences in enzymatic performance between the two isoenzymes corresponded in part to their preferences to APAL to ABAL. The higher PsAMADH2 affinity to substrates correlated with more frequent occurrence of an excess substrate inhibition. Molecular docking indicated the possible auxiliary role of Tyr163, Ser295 and Gln451 in binding of the new substrates. The only derivative carrying a free carboxyl group (N-adipoyl APAL) was surprisingly better substrate than ABAL in PsAMADH2 reaction indicating that also negatively charged aldehydes might be good substrates for ALDH10 family.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
32
|
Muñoz-Clares RA, Riveros-Rosas H, Garza-Ramos G, González-Segura L, Mújica-Jiménez C, Julián-Sánchez A. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine. BMC PLANT BIOLOGY 2014; 14:149. [PMID: 24884441 PMCID: PMC4046141 DOI: 10.1186/1471-2229-14-149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/22/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. RESULTS We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators have the peroxisomal C441-type, suggesting some limitations in the peroxisomal GB synthesis. CONCLUSION Our findings shed light on the evolution of the synthesis of GB in plants, a metabolic trait of most ecological and physiological relevance for their tolerance to drought, hypersaline soils and cold. Together, our results are consistent with smooth evolutionary pathways for the acquisition of the BADH function from ancestral I441-type AMADHs, thus explaining the relatively high occurrence of this event.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Lilian González-Segura
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
| | - Carlos Mújica-Jiménez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D.F., México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| |
Collapse
|
33
|
Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Appl Environ Microbiol 2014; 80:3992-4002. [PMID: 24747910 DOI: 10.1128/aem.00215-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.
Collapse
|
34
|
Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 2013; 9:156-70. [PMID: 24356774 DOI: 10.1038/nprot.2013.172] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metals have vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules in which metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal-binding environments. The CheckMyMetal (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal-binding sites in macromolecular structures using parameters derived from 7,350 metal-binding sites observed in a benchmark data set of 2,304 high-resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal-binding sites, as well as how it can alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal-binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the ANTICIPATED RESULTS section. CMM was designed for a broad audience--biomedical researchers studying metal-containing proteins and nucleic acids--but it is equally well suited for structural biologists validating new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure with 2-5 metal sites and a few hundred amino acids.
Collapse
|
35
|
Partial purification, characterization and cDNA cloning of aminoaldehyde dehydrogenase in germinated soybean (Glycine max L.). Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2043-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Yuan Z, Yin B, Wei D, Yuan YRA. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J Struct Biol 2013; 182:125-35. [PMID: 23500184 DOI: 10.1016/j.jsb.2013.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of aldehydes to carboxylic acids. Cyanobacterium Synechococcus contains one ALDH enzyme (Sp2771), together with a novel 2-oxoglutarate decarboxylase, to complete a non-canonical tricarboxylic acid cycle. However, the molecular mechanisms for substrate selection and cofactor preference by Sp2771 are largely unknown. Here, we report crystal structures of wild type Sp2771, Sp2771 S419A mutant and ternary structure of Sp2771 C262A mutant in complex with NADP(+) and SSA, as well as binary structure of Gluconobacter oxydans aldehyde dehydrogenase (Gox0499) in complex with PEG. Structural comparison of Sp2771 with Gox0499, coupled with mutational analysis, demonstrates that Ser157 residue in Sp2771 and corresponding Pro159 residue in Gox0499 play critical structural roles in determining NADP(+) and NAD(+) preference for Sp2771 and Gox0499, respectively, whereas size and distribution of hydrophobic residues along the substrate binding funnel determine substrate selection. Hence, our work has provided insightful structural information into cofactor and substrate selection by ALDH.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
37
|
Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 2013; 288:9491-507. [PMID: 23408433 DOI: 10.1074/jbc.m112.443952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
Collapse
Affiliation(s)
- David Kopečny
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
González-Segura L, Riveros-Rosas H, Díaz-Sánchez AG, Julián-Sánchez A, Muñoz-Clares RA. Potential monovalent cation-binding sites in aldehyde dehydrogenases. Chem Biol Interact 2013; 202:41-50. [PMID: 23295228 DOI: 10.1016/j.cbi.2012.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Potassium ions are non-essential activators of several aldehyde dehydrogenases (ALDHs), whereas a few others require the cation for activity. Two kinds of cation-binding sites, which we named intra-subunit and inter-subunit, have been observed in crystal structures of ALDHs, and based on reported crystallographic data, we here propose the existence of a third kind located in the central cavity of some tetrameric ALDHs. Given the high structural similarity between these enzymes, cation-binding sites may be present in many other members of this superfamily. To explore the prevalence of these sites, we compared 37 known crystal structures from 13 different ALDH families and evaluated the possible existence of a cation on the basis of the number, distance and geometry of its potential interactions, as well as of B-factor values of modeled cations obtained in new refinements of some reported crystal structures. Also, by performing multiple alignments of 855 non-redundant amino acid sequences, we assessed the degree of conservation in their respective families of the amino acid residues putatively relevant for cation binding. Among the ALDH enzymes studied, and according to our analyses, potential intra-subunit cation-binding sites seem to be present in most members of ALDH2, ALDH1L, ALDH4, ALDH5, ALDH7, ALDH10, and ALDH25 families, as well as in the bacterial and fungal members of the ALDH9 family and in a few ALDH1, ALDH6, ALDH11 and ALDH26 enzymes; potential inter-subunit sites in members of ALDH1L, ALDH3, ALDH4 from bacillales, ALDH5, ALDH7, ALDH9, ALDH10, ALDH11 and ALDH25 families; and potential central-cavity sites only in some bacterial and animal ALDH9s and in most members of the ALDH1L family. Because potassium is the most abundant intracellular cation, we propose that these are potassium-binding sites, but the specific structural and/or functional roles of the cation bound to these different sites remain to be investigated.
Collapse
Affiliation(s)
- Lilian González-Segura
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | | | | | | | | |
Collapse
|
39
|
Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. PLANTA 2013; 237:189-210. [PMID: 23007552 PMCID: PMC3536936 DOI: 10.1007/s00425-012-1749-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melpomene Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Carpenter
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yucheng Zhang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Xiping Wang
- Key Laboratory of Horticultural Plant Biology and Germplasm, Innovation in Northwest China, College of Horticulture, Ministry of Agriculture, Northwest A&F University, Yangling, Shanxi 712100, People's Republic of China
| | - Simeon O. Kotchoni
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, Carbondale, IL 62901, USA
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - David Kopečný
- Faculty of Science, Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palackyý University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Daniel W. Nebert
- Department of Environmental Health, University of Cincinnati, Medical Center, Cincinnati, OH 45267, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences, Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
41
|
Rippa S, Zhao Y, Merlier F, Charrier A, Perrin Y. The carnitine biosynthetic pathway in Arabidopsis thaliana shares similar features with the pathway of mammals and fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:109-14. [PMID: 22922110 DOI: 10.1016/j.plaphy.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/02/2012] [Indexed: 05/01/2023]
Abstract
Carnitine is an essential quaternary ammonium amino acid that occurs in the microbial, plant and animal kingdoms. The role and synthesis of this compound are very well documented in bacteria, fungi and mammals. On the contrary, although the presence of carnitine in plant tissue has been reported four decades ago and information about its biological implication are available, nothing is known about its synthesis in plants. We designed experiments to determine if the carnitine biosynthetic pathway in Arabidopsis thaliana is similar to the pathway in mammals and in the fungi Neurospora crassa and Candida albicans. We first checked for the presence of trimetyllysine (TML) and γ-butyrobetaine (γ-BB), two precursors of carnitine in fungi and in mammals, using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Both compounds were shown to be present in plant extracts at concentrations in the picomole range per mg of dry weight. We next synthesized deuterium-labeled TML and transferred A. thaliana seedlings on growth medium supplemented with 1 mM of the deuterated precursor. LC-ESI-MS/MS analysis of plant extracts clearly highlighted the synthesis of deuterium labeled γ-BB and labeled carnitine in deuterated-TML fed plants. The similarities between plant, fungal and mammalian pathways provide very useful information to search homologies between genomes. As a matter of fact the analysis of A. thaliana protein database provides homology for several enzymes responsible for carnitine synthesis in fungi and mammals. The study of mutants affected in the corresponding genes would be very useful to elucidate the plant carnitine biosynthetic pathway and to investigate further the role of carnitine in plant physiology.
Collapse
Affiliation(s)
- Sonia Rippa
- Génie Enzymatique et Cellulaire (GEC), UMR 6022 CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu, BP 20529, 60205 Compiègne Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Frömmel J, Soural M, Tylichová M, Kopečný D, Demo G, Wimmerová M, Sebela M. Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino Acids 2012; 43:1189-202. [PMID: 22160258 DOI: 10.1007/s00726-011-1174-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/21/2011] [Indexed: 11/29/2022]
Abstract
The metabolic degradation of aldehydes is catalyzed by oxidoreductases from which aldehyde dehydrogenases (EC 1.2.1) comprise nonspecific or substrate-specific enzymes. The latter subset is represented, e.g., by NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs; EC 1.2.1.19) oxidizing a group of naturally occurring ω-aminoaldehydes including polyamine oxidation products. Recombinant isoenzymes from pea (PsAMADH1 and 2) and tomato (LeAMADH1 and 2) were subjected to kinetic measurements with synthetic aldehydes containing a nitrogenous heterocycle such as pyridinecarbaldehydes and their halogenated derivatives, (pyridinylmethylamino)-aldehydes, pyridinyl propanals and aldehydes derived from purine, 7-deazapurine and pyrimidine to characterize their substrate specificity and significance of the resulting data for in vivo reactions. The enzymatic production of the corresponding carboxylic acids was analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry. Although the studied AMADHs are largely homologous and supposed to have a very similar active site architecture, significant differences were observed. LeAMADH1 displayed the broadest specificity oxidizing almost all compounds followed by PsAMADH2 and 1. In contrast, LeAMADH2 accepted only a few compounds as substrates. Pyridinyl propanals were converted by all isoenzymes, usually better than pyridinecarbaldehydes and aldehydes with fused rings. The K (m) values for the best substrates were in the range of 10(-5)-10(-4) M. Nevertheless, the catalytic efficiency values (V (max)/K (m)) reached only a very small fraction of that with 3-aminopropanal (except for LeAMADH1 activity with two pyridine-derived compounds). Docking experiments using the crystal structure of PsAMADH2 were involved to discuss differences in results with position isomers or alkyl chain homologs.
Collapse
Affiliation(s)
- Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
43
|
Jiamsomboon K, Treesuwan W, Boonyalai N. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Biochimie 2012; 94:1773-83. [DOI: 10.1016/j.biochi.2012.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/07/2012] [Indexed: 11/16/2022]
|
44
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
45
|
Wongpanya R, Boonyalai N, Thammachuchourat N, Horata N, Arikit S, Myint KM, Vanavichit A, Choowongkomon K. Biochemical and enzymatic study of rice BADH wild-type and mutants: an insight into fragrance in rice. Protein J 2012; 30:529-38. [PMID: 21959793 DOI: 10.1007/s10930-011-9358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ(1)-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.
Collapse
Affiliation(s)
- Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 2012; 52:735-46. [PMID: 22206977 DOI: 10.1016/j.freeradbiomed.2011.11.033] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor γ (PPARγ) with polyunsaturated fatty acids or PPARγ transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPARγ with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation.
Collapse
Affiliation(s)
- G Muzio
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
47
|
Lee YC, Lin DT, Ong PL, Chen HL, Lo HF, Lin LL. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:1233-1241. [PMID: 22117550 DOI: 10.1134/s0006297911110058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Based on the sequence homology, we have modeled the three-dimensional structure of Bacillus licheniformis aldehyde dehydrogenase (BlALDH) and identified two different residues, Glu255 and Cys289, that might be responsible for the catalytic function of the enzyme. The role of these residues was further investigated by site-directed mutagenesis and biophysical analysis. The expressed parental and mutant proteins were purified by nickel-chelate chromatography, and their molecular masses were determined to be approximately 53 kDa by SDS-PAGE. As compared with the parental BlALDH, a dramatic decrease or even complete loss of the dehydrogenase activity was observed for the mutant enzymes. Structural analysis showed that the intrinsic fluorescence and circular dichroism spectra of the mutant proteins were similar to the parental enzyme, but most of the variants exhibited a different sensitivity towards thermal- and guanidine hydrochloride-induced denaturation. These observations indicate that residues Glu255 and Cys289 play an important role in the dehydrogenase activity of BlALDH, and the rigidity of the enzyme has been changed as a consequence of the mutations.
Collapse
Affiliation(s)
- Yen-Chung Lee
- Department of Bioagricultural Science, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Kuaprasert B, Silprasit K, Horata N, Khunrae P, Wongpanya R, Boonyalai N, Vanavichit A, Choowongkomon K. Purification, crystallization and preliminary X-ray analysis of recombinant betaine aldehyde dehydrogenase 2 (OsBADH2), a protein involved in jasmine aroma, from Thai fragrant rice (Oryza sativa L.). Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1221-3. [PMID: 22102032 PMCID: PMC3212367 DOI: 10.1107/s1744309111030971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 08/01/2011] [Indexed: 11/10/2022]
Abstract
Fragrant rice (Oryza sativa L.) betaine aldehyde dehydrogenase 2 (OsBADH2) is a key enzyme in the synthesis of fragrance aroma compounds. The extremely low activity of OsBADH2 in catalyzing the oxidation of acetaldehyde is believed to be crucial for the accumulation of the volatile compound 2-acetyl-1-pyrroline (2AP) in many scented plants, including fragrant rice. Recombinant fragrant rice OsBADH2 was expressed in Escherichia coli as an N-terminal hexahistidine fusion protein, purified using Ni Sepharose affinity chromatography and crystallized using the microbatch method. Initial crystals were obtained within 24 h using 0.1 M Tris pH 8.5 with 30%(w/v) PEG 4000 and 0.2 M magnesium chloride as the precipitating agent at 291 K. Crystal quality was improved when the enzyme was cocrystallized with NAD(+). Improved crystals were grown in 0.1 M HEPES pH 7.4, 24%(w/v) PEG 4000 and 0.2 M ammonium chloride and diffracted to beyond 2.95 Å resolution after being cooled in a stream of N(2) immediately prior to X-ray diffraction experiments. The crystals belonged to space group C222(1), with unit-cell parameters a = 66.03, b = 183.94, c = 172.28 Å. An initial molecular-replacement solution has been obtained and refinement is in progress.
Collapse
Affiliation(s)
- Buabarn Kuaprasert
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Kun Silprasit
- Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Natharinee Horata
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakran 10540, Thailand
| | - Pongsak Khunrae
- Microbiology Department, King Mongkut’s University of Technology Thonburi, Bangmod, Toongkru, Bangkok 10140, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nonlawat Boonyalai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Apichart Vanavichit
- Rice Gene Discovery Unit, Kasetsart University, Kamphangsaen Campus, Nakhon Pathom 73140, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
49
|
Kopečný D, Tylichová M, Snegaroff J, Popelková H, Šebela M. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J 2011; 278:3130-9. [PMID: 21740525 DOI: 10.1111/j.1742-4658.2011.08239.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structures of both isoforms of the aminoaldehyde dehydrogenase from pea (PsAMADH) have been solved recently [Tylichováet al. (2010) J Mol Biol396, 870-882]. The characterization of the PsAMADH2 proteins, altered here by site-directed mutagenesis, suggests that the D110 and D113 residues at the entrance to the substrate channel are required for high-affinity binding of ω-aminoaldehydes to PsAMADH2 and for enzyme activity, whereas N162, near catalytic C294, contributes mainly to the enzyme's catalytic rate. Inside the substrate cavity, W170 and Y163, and, to a certain extent, L166 and M167 probably preserve the optimal overall geometry of the substrate channel that allows for the appropriate orientation of the substrate. Unconserved W288 appears to affect the affinity of the enzyme for the substrate amino group through control of the substrate channel diameter without affecting the reaction rate. Therefore, W288 may be a key determinant of the differences in substrate specificity found among plant AMADH isoforms when they interact with naturally occurring substrates such as 3-aminopropionaldehyde and 4-aminobutyraldehyde.
Collapse
Affiliation(s)
- David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
50
|
Muñoz-Clares RA, González-Segura L, Díaz-Sánchez AG. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Chem Biol Interact 2010; 191:137-46. [PMID: 21195066 DOI: 10.1016/j.cbi.2010.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
The overall chemical mechanism of the reaction catalyzed by the hydrolytic aldehyde dehydrogenases (ALDHs) involves three main steps: (1) nucleophilic attack of the thiol group of the catalytic cysteine on the carbonyl carbon of the aldehyde substrate; (2) hydride transfer from the tetrahedral thiohemiacetal intermediate to the pyridine ring of NAD(P)(+); and (3) hydrolysis of the resulting thioester intermediate (deacylation). Crystal structures of different ALDHs from several organisms-determined in the absence and presence of bound NAD(P)(+), NAD(P)H, aldehydes, or acid products-showed specific details at the atomic level about the catalytic residues involved in each of the catalytic steps. These structures also showed the conformational flexibility of the nicotinamide half of the cofactor, and of the catalytic cysteinyl and glutamyl residues, the latter being the general base that activates the hydrolytic water molecule in the deacylation step. The architecture of the ALDH active site allows for this conformational flexibility, which, undoubtedly, is crucial for catalysis in these enzymes. Focusing in the deacylation step of the ALDH-catalyzed reaction, here we review and systematize the crystallographic evidence of the structural features responsible for the conformational flexibility of the catalytic glutamyl residue, and for the positioning of the hydrolytic water molecule inside the ALDH active site. Based on the analysis of the available crystallographic data and of energy-minimized models of the thioester reaction intermediate, as well as on the results of theoretical calculations of the pK(a) of the carboxyl group of the catalytic glutamic acid in its three different conformations, we discuss the role that the conformational flexibility of this residue plays in the activation of the hydrolytic water. We also propose a critical participation in the water activation process of the peptide bond to which the catalytic glutamic acid in the intermediate conformation is hydrogen bonded.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, Mexico.
| | | | | |
Collapse
|