1
|
Hupfeld E, Schlee S, Wurm JP, Rajendran C, Yehorova D, Vos E, Ravindra Raju D, Kamerlin SCL, Sprangers R, Sterner R. Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα) 8-Barrel Enzyme of Histidine Biosynthesis HisF. JACS AU 2024; 4:3258-3276. [PMID: 39211614 PMCID: PMC11350729 DOI: 10.1021/jacsau.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The overall significance of loop motions for enzymatic activity is generally accepted. However, it has largely remained unclear whether and how such motions can control different steps of catalysis. We have studied this problem on the example of the mobile active site β1α1-loop (loop1) of the (βα)8-barrel enzyme HisF, which is the cyclase subunit of imidazole glycerol phosphate synthase. Loop1 variants containing single mutations of conserved amino acids showed drastically reduced rates for the turnover of the substrates N'-[(5'-phosphoribulosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) and ammonia to the products imidazole glycerol phosphate (ImGP) and 5-aminoimidazole-4-carboxamide-ribotide (AICAR). A comprehensive mechanistic analysis including stopped-flow kinetics, X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations detected three conformations of loop1 (open, detached, closed) whose populations differed between wild-type HisF and functionally affected loop1 variants. Transient stopped-flow kinetic experiments demonstrated that wt-HisF binds PrFAR by an induced-fit mechanism whereas catalytically impaired loop1 variants bind PrFAR by a simple two-state mechanism. Our findings suggest that PrFAR-induced formation of the closed conformation of loop1 brings active site residues in a productive orientation for chemical turnover, which we show to be the rate-limiting step of HisF catalysis. After the cyclase reaction, the closed loop conformation is destabilized, which favors the formation of detached and open conformations and hence facilitates the release of the products ImGP and AICAR. Our data demonstrate how different conformations of active site loops contribute to different catalytic steps, a finding that is presumably of broad relevance for the reaction mechanisms of (βα)8-barrel enzymes and beyond.
Collapse
Affiliation(s)
- Enrico Hupfeld
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sandra Schlee
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dariia Yehorova
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Eva Vos
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Dinesh Ravindra Raju
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Shina Caroline Lynn Kamerlin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Remco Sprangers
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Lopergolo D, Salvatore S, Sorrentino V, Malandrini A, Santorelli FM, Battisti C. Early-onset motor polyneuropathy associated with a novel dominant NAGLU mutation. Neurol Sci 2023; 44:1415-1418. [PMID: 36648562 DOI: 10.1007/s10072-023-06607-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION NAGLU encodes N-acetyl-alpha-glucosaminidase, an enzyme that degrades heparan sulfate. Biallelic NAGLU mutations cause mucopolysaccharidosis IIIB, a severe childhood-onset neurodegenerative disease, while monoallelic mutations are associated to late-onset, dominantly inherited painful sensory neuropathy. However, to date, only one family with a dominant NAGLU-related neuropathy has been described. CASE REPORT Here we describe a patient with early-onset motor polyneuropathy harboring a novel monoallelic NAGLU mutation. We found reduced NAGLU enzymatic activity thus corroborating the pathogenic role of the new variant. DISCUSSION Our report represents the second ever described case with dominant NAGLU-related neuropathy and the first case with early-onset motor symptoms. We underlie the importance of a thorough clinical description of this probably underestimated new clinical entity.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- UOC Neurologia E Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100, Siena, Italy.
| | - Simona Salvatore
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia E Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia E Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100, Siena, Italy
| | | | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia E Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 16, 53100, Siena, Italy
| |
Collapse
|
3
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
4
|
Hoque MA, Zhang Y, Li Z, Cui L, Feng Y. Remodeling enzyme active sites by stepwise loop insertion. Methods Enzymol 2020; 643:111-127. [PMID: 32896277 DOI: 10.1016/bs.mie.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The remolding active site loops via residue insertion/deletion as well as substitution is thought to play a key role in enzyme divergent evolution. However, enzyme engineering by residue insertion in active site loops often severely perturbs the protein structural integrity and causes protein misfolding and activity loss. We have designed a stepwise loop insertion strategy (StLois), in which a pair of randomized residues is introduced in a stepwise manner, efficiently collating mutational fitness effects. The strategy of StLois constitutes three key steps. First, the target regions should be identified through structural and functional analysis on the counterpart enzymes. Second, pair residues can be introduced in loop regions through insertion with NNK codon degeneracy. Third, the best hit used as a template for the next round mutagenesis. The residue insertion process can repeat as many times as necessary. By using the StLois method, we have evolved the substrate preference of a lactonase to phosphotriesterase. In this chapter, we describe the detailed StLois technique, which efficiently expands the residue in the loop region and remolds the architecture of enzyme active site for novel catalytic properties.
Collapse
Affiliation(s)
- Md Anarul Hoque
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Martínez R, Bernal C, Álvarez R, Concha C, Araya F, Cabrera R, Dhoke GV, Davari MD. Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters. Int J Mol Sci 2020; 21:ijms21061990. [PMID: 32183336 PMCID: PMC7139672 DOI: 10.3390/ijms21061990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-ΔW42-ΔD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40-46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization.
Collapse
Affiliation(s)
- Ronny Martínez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Correspondence: ; Tel.: +56-51-2334661; Fax: +56-51-2204446
| | - Claudia Bernal
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Rodrigo Álvarez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena 1710172, Chile
| | - Christopher Concha
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Fernando Araya
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| |
Collapse
|
6
|
Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun 2019; 10:4816. [PMID: 31645552 PMCID: PMC6811678 DOI: 10.1038/s41467-019-12684-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.
Collapse
Affiliation(s)
- Pedro Bule
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Léa Chuzel
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Elena Blagova
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Melissa A Gray
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44-ZENIT, Magdeburg, Germany
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305-4404, USA
| | | | - Gideon J Davies
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
7
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Mähler C, Kratzl F, Vogel M, Vinnenberg S, Weuster‐Botz D, Castiglione K. Loop Swapping as a Potent Approach to Increase Ene Reductase Activity with Nicotinamide Adenine Dinucleotide (NADH). Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christoph Mähler
- Technical University of MunichInstitute of Biochemical Engineering Boltzmannstr. 15 D-85748 Garching Germany
| | - Franziska Kratzl
- Technical University of MunichInstitute of Biochemical Engineering Boltzmannstr. 15 D-85748 Garching Germany
| | - Melina Vogel
- Technical University of MunichInstitute of Biochemical Engineering Boltzmannstr. 15 D-85748 Garching Germany
| | - Stefan Vinnenberg
- Technical University of MunichInstitute of Biochemical Engineering Boltzmannstr. 15 D-85748 Garching Germany
| | - Dirk Weuster‐Botz
- Technical University of MunichInstitute of Biochemical Engineering Boltzmannstr. 15 D-85748 Garching Germany
| | - Kathrin Castiglione
- Friedrich-Alexander-University Erlangen-NürnbergInstitute of Bioprocess Engineering Paul-Gordan-Str. 3 D-91052 Erlangen Germany
| |
Collapse
|
9
|
βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α) 8/TIM Barrels. Methods Mol Biol 2019; 1958:221-236. [PMID: 30945221 DOI: 10.1007/978-1-4939-9161-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
βαβ super-secondary structures constitute the basic building blocks of (β/α)8 class of proteins. Despite the success in designing super-secondary structures, till date, there is not a single example of a natural βαβ sequence known to fold in isolation. In this chapter, to address the finding the "needles" in the haystack scenario, we have combined the sequence preferences and structural features of independent βαβ motifs, dictated by natural selection, with rationally derived parameters from a designed βαβ motif adopting stable fold in solution. Guided by this approach, a set of potential βαβ sequences from (β/α)8/TIM barrels are proposed as likely candidates for autonomously folding based on the assessment of their foldability.
Collapse
|
10
|
Jain S, Chaitanya V, Faruq M. A novel frameshift deletion in NAGLU causing sanfilipo type III-B in an Indian family. Clin Case Rep 2018; 6:2399-2402. [PMID: 30564336 PMCID: PMC6293137 DOI: 10.1002/ccr3.1844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/10/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
Mucopolysaccharidoses are group of inherited lysosomal storage disorder. Two siblings of a family manifested behavioral abnormalities; hepatosplenomegaly and hypotonia of infantile onset were found to have a novel homozygous frameshift variation, p.Leu280TrpfsTer19 in NAGLU. This variant was predicted to cause the loss of TIM-barrel and alpha-helical region of NAGLU protein.
Collapse
Affiliation(s)
- Sweta Jain
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| |
Collapse
|
11
|
Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme Microb Technol 2018; 115:37-44. [DOI: 10.1016/j.enzmictec.2018.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
|
12
|
Schlee S, Klein T, Schumacher M, Nazet J, Merkl R, Steinhoff HJ, Sterner R. Relationship of Catalysis and Active Site Loop Dynamics in the (βα)8-Barrel Enzyme Indole-3-glycerol Phosphate Synthase. Biochemistry 2018; 57:3265-3277. [DOI: 10.1021/acs.biochem.8b00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Thomas Klein
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Magdalena Schumacher
- Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49076 Osnabrück, Germany
| | - Julian Nazet
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49076 Osnabrück, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
13
|
Hoque MA, Zhang Y, Chen L, Yang G, Khatun MA, Chen H, Hao L, Feng Y. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions. ACS Chem Biol 2017; 12:1188-1193. [PMID: 28323400 DOI: 10.1021/acschembio.7b00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >107 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.
Collapse
Affiliation(s)
- Md Anarul Hoque
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuqing Chen
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mst Afroza Khatun
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifeng Chen
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Hao
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial
Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Dutta S, Kundu S, Saha A, Nandi N. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. J Biomol Struct Dyn 2017; 36:878-892. [PMID: 28317434 DOI: 10.1080/07391102.2017.1301272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
Collapse
Affiliation(s)
- Saheb Dutta
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Soumya Kundu
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Amrita Saha
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Nilashis Nandi
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
15
|
Wang QY, Xie NZ, Du QS, Qin Y, Li JX, Meng JZ, Huang RB. Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis. PLoS One 2017; 12:e0169080. [PMID: 28103251 PMCID: PMC5245800 DOI: 10.1371/journal.pone.0169080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
A method, so called “active hydrogen bond network” (AHBN), is proposed for site-directed mutations of hydrolytic enzymes. In an enzyme the AHBN consists of the active residues, functional residues, and conservative water molecules, which are connected by hydrogen bonds, forming a three dimensional network. In the catalysis hydrolytic reactions of hydrolytic enzymes AHBN is responsible for the transportation of protons and water molecules, and maintaining the active and dynamic structures of enzymes. The AHBN of pullulanase BNPulA324 from Bacillus naganoensis was constructed based on a homologous model structure using Swiss Model Protein-modeling Server according to the template structure of pullulanase BAPulA (2WAN). The pullulanase BNPulA324 are mutated at the mutation sites selected by means of the AHBN method. Both thermal stability and pH-sensitivity of pullulanase BNPulA324 were successfully improved. The mutations at the residues located at the out edge of AHBN may yield positive effects. On the other hand the mutations at the residues inside the AHBN may deprive the bioactivity of enzymes. The AHBN method, proposed in this study, may provide an assistant and alternate tool for protein rational design and protein engineering.
Collapse
Affiliation(s)
- Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Neng-Zhong Xie
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qi-Shi Du
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Gordon Life Science Institute, Belmont, MA, United States of America
- * E-mail:
| | - Yan Qin
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jian-Xiu Li
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| | - Jian-Zong Meng
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| | - Ri-Bo Huang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Soto D, Escobar S, Guzmán F, Cárdenas C, Bernal C, Mesa M. Structure-activity relationships on the study of β-galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol. Int J Biol Macromol 2016; 96:87-92. [PMID: 27965126 DOI: 10.1016/j.ijbiomac.2016.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Abstract
Improving the enzyme stability is a challenge for allowing their practical application. The surfactants are stabilizing agents, however, there are still questions about their influence on enzyme properties. The structure-activity/stability relationship for β-galactosidase from Bacillus circulans is studied here by Circular Dichroism and activity measurements, as a function of temperature and pH. The tendency of preserving the β-sheet and α-helix structures at temperatures below 65°C and different pH is the result of the balance between the large- and short-range effects, respecting to the active site. This information is fundamental for explaining the structural changes of this enzyme in the presence of Triton X-100 surfactant and ethanol. The enzyme thermal stabilization in the presence of this surfactant responds to the rearrangement of the secondary structure for having optimal activity/stability. The effect of ethanol is more related with changes in the dielectric properties of the aqueous solution than with protein structural transformations. These results contribute to understand the effects of surfactant-enzyme interactions on the enzyme behavior, from the structural point of view and to rationalize the surfactant-based stabilizing strategies for β-galactosidades.
Collapse
Affiliation(s)
- Dayana Soto
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sindy Escobar
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos e Inmunología Molecular, Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Constanza Cárdenas
- Laboratorio de Síntesis de Péptidos e Inmunología Molecular, Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Claudia Bernal
- Departamento de Ingeniería de Alimentos, Universidad de La Serena, Raul Bitran 1305, La Serena, Chile
| | - Monica Mesa
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
17
|
Tiwari SP, Reuter N. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes. PLoS Comput Biol 2016; 12:e1004834. [PMID: 27015412 PMCID: PMC4807811 DOI: 10.1371/journal.pcbi.1004834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design.
Collapse
Affiliation(s)
- Sandhya P. Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
- * E-mail:
| |
Collapse
|
18
|
Co-occurrence of analogous enzymes determines evolution of a novel (βα)8-isomerase sub-family after non-conserved mutations in flexible loop. Biochem J 2016; 473:1141-52. [PMID: 26929404 DOI: 10.1042/bj20151271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
We investigate the evolution of co-occurring analogous enzymes involved in L-tryptophan and L-histidine biosynthesis in Actinobacteria Phylogenetic analysis of trpF homologues, a missing gene in certain clades of this lineage whose absence is complemented by a dual-substrate HisA homologue, termed PriA, found that they fall into three categories: (i) trpF-1, an L-tryptophan biosynthetic gene horizontally acquired by certain Corynebacterium species; (ii) trpF-2, a paralogue known to be involved in synthesizing a pyrrolopyrrole moiety and (iii) trpF-3, a variable non-conserved orthologue of trpF-1 We previously investigated the effect of trpF-1 upon the evolution of PriA substrate specificity, but nothing is known about the relationship between trpF-3 and priA After in vitro steady-state enzyme kinetics we found that trpF-3 encodes a phosphoribosyl anthranilate isomerase. However, mutation of this gene in Streptomyces sviceus did not lead to auxothrophy, as expected from the biosynthetic role of trpF-1 Biochemical characterization of a dozen co-occurring TrpF-2 or TrpF-3, with PriA homologues, explained the prototrophic phenotype, and unveiled an enzyme activity trade-off between TrpF and PriA. X-ray structural analysis suggests that the function of these PriA homologues is mediated by non-conserved mutations in the flexible L5 loop, which may be responsible for different substrate affinities. Thus, the PriA homologues that co-occur with TrpF-3 represent a novel enzyme family, termed PriB, which evolved in response to PRA isomerase activity. The characterization of co-occurring enzymes provides insights into the influence of functional redundancy on the evolution of enzyme function, which could be useful for enzyme functional annotation.
Collapse
|
19
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|
20
|
Huang PS, Feldmeier K, Parmeggiani F, Velasco DAF, Höcker B, Baker D. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol 2015; 12:29-34. [PMID: 26595462 PMCID: PMC4684731 DOI: 10.1038/nchembio.1966] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022]
Abstract
Despite efforts for over 25 years, de novo protein design has not succeeded in achieving the TIM-barrel fold. Here we describe the computational design of four-fold symmetrical (β/α)8 barrels guided by geometrical and chemical principles. Experimental characterization of 33 designs revealed the importance of side chain-backbone hydrogen bonds for defining the strand register between repeat units. The X-ray crystal structure of a designed thermostable 184-residue protein is nearly identical to that of the designed TIM-barrel model. PSI-BLAST searches do not identify sequence similarities to known TIM-barrel proteins, and sensitive profile-profile searches indicate that the design sequence is distant from other naturally occurring TIM-barrel superfamilies, suggesting that Nature has sampled only a subset of the sequence space available to the TIM-barrel fold. The ability to design TIM barrels de novo opens new possibilities for custom-made enzymes.
Collapse
Affiliation(s)
- Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Kaspar Feldmeier
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fabio Parmeggiani
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
McKee LS, Brumer H. Growth of Chitinophaga pinensis on Plant Cell Wall Glycans and Characterisation of a Glycoside Hydrolase Family 27 β-l-Arabinopyranosidase Implicated in Arabinogalactan Utilisation. PLoS One 2015; 10:e0139932. [PMID: 26448175 PMCID: PMC4598101 DOI: 10.1371/journal.pone.0139932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022] Open
Abstract
The genome of the soil bacterium Chitinophaga pinensis encodes a diverse array of carbohydrate active enzymes, including nearly 200 representatives from over 50 glycoside hydrolase (GH) families, the enzymology of which is essentially unexplored. In light of this genetic potential, we reveal that C. pinensis has a broader saprophytic capacity to thrive on plant cell wall polysaccharides than previously reported, and specifically that secretion of β-l-arabinopyranosidase activity is induced during growth on arabinogalactan. We subsequently correlated this activity with the product of the Cpin_5740 gene, which encodes the sole member of glycoside hydrolase family 27 (GH27) in C. pinensis, CpArap27. Historically, GH27 is most commonly associated with α-d-galactopyranosidase and α-d-N-acetylgalactosaminidase activity. A new phylogenetic analysis of GH27 highlighted the likely importance of several conserved secondary structural features in determining substrate specificity and provides a predictive framework for identifying enzymes with the less common β-l-arabinopyranosidase activity.
Collapse
Affiliation(s)
- Lauren S. McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56–56, 100 44, Stockholm, Sweden
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56–56, 100 44, Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4, BC, Canada
- * E-mail:
| |
Collapse
|
22
|
Popova B, Schubert S, Bulla I, Buchwald D, Kramer W. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules. PLoS One 2015; 10:e0136778. [PMID: 26355961 PMCID: PMC4565649 DOI: 10.1371/journal.pone.0136778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Steffen Schubert
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
- Information Network of Departments of Dermatology (IVDK), Göttingen, Germany
| | - Ingo Bulla
- Theoretical Biology and Biophysics, Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institute for Mathematics and Informatics, Universität Greifswald, Greifswald, Germany
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Daniela Buchwald
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Neurobiology Laboratory, German Primate Center GmbH, Göttingen, Germany
| | - Wilfried Kramer
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Noda-García L, Juárez-Vázquez AL, Ávila-Arcos MC, Verduzco-Castro EA, Montero-Morán G, Gaytán P, Carrillo-Tripp M, Barona-Gómez F. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome. BMC Evol Biol 2015; 15:107. [PMID: 26058375 PMCID: PMC4462073 DOI: 10.1186/s12862-015-0378-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. RESULTS We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2) predicted to adopt a (βα)6-fold, and thus entirely lacking a C-terminus phosphate-binding site, was identified and shown to have HisA activity. CONCLUSION As expected, reconstruction of the evolution of PriA from HisA with HMM profiles suggest that functional shifts involve mutations in evolutionarily intermediate enzymes of otherwise functionally essential residues or motifs. These results are in agreement with a link between promiscuous enzymes and intragenic epistasis. HMM provides a convenient approach for gaining insights into these evolutionary processes.
Collapse
Affiliation(s)
- Lianet Noda-García
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Ana L Juárez-Vázquez
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - María C Ávila-Arcos
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Ernesto A Verduzco-Castro
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - Gabriela Montero-Morán
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México. .,Current Addresses: División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México.
| | - Paul Gaytán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, CP 62250, Cuernavaca, México.
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratories, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato - León, CP 36821, Irapuato, México.
| |
Collapse
|
24
|
Tétreault M, Gonzalez M, Dicaire MJ, Allard P, Gehring K, Leblanc D, Leclerc N, Schondorf R, Mathieu J, Zuchner S, Brais B. Adult-onset painful axonal polyneuropathy caused by a dominant NAGLU mutation. Brain 2015; 138:1477-83. [PMID: 25818867 DOI: 10.1093/brain/awv074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023] Open
Abstract
Late-onset painful sensory neuropathies are usually acquired conditions associated with common diseases. Adult presentations of known hereditary forms are often accompanied by other organ involvement. We recruited a large French-Canadian family with a dominantly inherited late-onset painful sensory neuropathy. The main clinical feature is recurrent leg pain that progresses to constant painful paraesthesias in the feet and later the hands. As it evolves, some patients develop a mild sensory ataxia. We selected four affected individuals for whole exome sequencing. Analysis of rare variants shared by all cases led to a list of four candidate variants. Segregation analysis in all 45 recruited individuals has shown that only the p.Ile403Thr variant in the α-N-acetyl-glucosaminidase (NAGLU) gene segregates with the disease. Recessive NAGLU mutations cause the severe childhood lysosomal disease mucopolysacharidosis IIIB. Family members carrying the mutation showed a significant decrease of the enzymatic function (average 45%). The late-onset and variable severity of the symptoms may have precluded the description of such symptoms in parents of mucopolysaccharidosis IIIB cases. The identification of a dominant phenotype associated with a NAGLU mutation supports that some carriers of lysosomal enzyme mutations may develop later in life much milder phenotypes.
Collapse
Affiliation(s)
- Martine Tétreault
- 1 Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Michael Gonzalez
- 2 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marie-Josée Dicaire
- 1 Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Pierre Allard
- 3 Laboratoire de génétique médicale, CHU-Ste-Justine, Montreal, Quebec, H3T 1C5, Canada
| | - Kalle Gehring
- 4 Department of Biochemistry, McGill University, Montreal, Quebec, H3G 0B1, Canada
| | - Diane Leblanc
- 3 Laboratoire de génétique médicale, CHU-Ste-Justine, Montreal, Quebec, H3T 1C5, Canada
| | - Nadine Leclerc
- 5 Cliniques des maladies neuromusculaires, CSSS-Jonquière, Quebec, G7H 7K9, Canada
| | - Ronald Schondorf
- 6 Department of Neurology and Neurosurgery, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Jean Mathieu
- 5 Cliniques des maladies neuromusculaires, CSSS-Jonquière, Quebec, G7H 7K9, Canada
| | - Stephan Zuchner
- 2 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Bernard Brais
- 1 Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada 5 Cliniques des maladies neuromusculaires, CSSS-Jonquière, Quebec, G7H 7K9, Canada
| |
Collapse
|
25
|
Pélissier MC, Sebban-Kreuzer C, Guerlesquin F, Brannigan JA, Bourne Y, Vincent F. Structural and functional characterization of the Clostridium perfringens N-acetylmannosamine-6-phosphate 2-epimerase essential for the sialic acid salvage pathway. J Biol Chem 2014; 289:35215-24. [PMID: 25320079 DOI: 10.1074/jbc.m114.604272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys(66) as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. (1)H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys(66) for the epimerization reaction with participation of neighboring Arg(43), Asp(126), and Glu(180) residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.
Collapse
Affiliation(s)
- Marie-Cécile Pélissier
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France
| | - Corinne Sebban-Kreuzer
- the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, and
| | - Françoise Guerlesquin
- the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, and
| | - James A Brannigan
- the Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Yves Bourne
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France
| | - Florence Vincent
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France,
| |
Collapse
|
26
|
Affiliation(s)
- Bettina M. Nestl
- Institute
of Technical Biochemistry, University of Stuttgart, Allmandring
31, 70569 Stuttgart, Germany
| | - Bernhard Hauer
- Institute
of Technical Biochemistry, University of Stuttgart, Allmandring
31, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Arpino JAJ, Rizkallah PJ, Jones DD. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2152-62. [PMID: 25084334 PMCID: PMC4118826 DOI: 10.1107/s139900471401267x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/31/2014] [Indexed: 01/23/2023]
Abstract
Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP(D190Δ) containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP(A227Δ) revealed that a `flipping' mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.
Collapse
Affiliation(s)
- James A. J. Arpino
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales
| | | | - D. Dafydd Jones
- School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales
| |
Collapse
|
28
|
Tóth-Petróczy A, Tawfik DS. The robustness and innovability of protein folds. Curr Opin Struct Biol 2014; 26:131-8. [PMID: 25038399 DOI: 10.1016/j.sbi.2014.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Assignment of protein folds to functions indicates that >60% of folds carry out one or two enzymatic functions, while few folds, for example, the TIM-barrel and Rossmann folds, exhibit hundreds. Are there structural features that make a fold amenable to functional innovation (innovability)? Do these features relate to robustness--the ability to readily accumulate sequence changes? We discuss several hypotheses regarding the relationship between the architecture of a protein and its evolutionary potential. We describe how, in a seemingly paradoxical manner, opposite properties, such as high stability and rigidity versus conformational plasticity and structural order versus disorder, promote robustness and/or innovability. We hypothesize that polarity--differentiation and low connectivity between a protein's scaffold and its active-site--is a key prerequisite for innovability.
Collapse
Affiliation(s)
- Agnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
29
|
McMillan AW, Lopez MS, Zhu M, Morse BC, Yeo IC, Amos J, Hull K, Romo D, Glasner ME. Role of an Active Site Loop in the Promiscuous Activities of Amycolatopsis sp. T-1-60 NSAR/OSBS. Biochemistry 2014; 53:4434-44. [DOI: 10.1021/bi500573v] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew W. McMillan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Mariana S. Lopez
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | - Benjamin C. Morse
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Jaleesia Amos
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | | | - Margaret E. Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| |
Collapse
|
30
|
Golynskiy MV, Haugner JC, Seelig B. Highly diverse protein library based on the ubiquitous (β/α)₈ enzyme fold yields well-structured proteins through in vitro folding selection. Chembiochem 2013; 14:1553-63. [PMID: 23956201 DOI: 10.1002/cbic.201300326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 01/22/2023]
Abstract
Proper protein folding is a prerequisite for protein stability and enzymatic activity. Although directed evolution can be a powerful tool to investigate enzymatic function and to isolate novel activities, well-designed libraries of folded proteins are essential. In vitro selection methods are particularly capable of searching for enzymatic activities in libraries of trillions of protein variants, yet high-quality libraries of well-folded enzymes with such high diversity are lacking. We describe the construction and detailed characterization of a folding-enriched protein library based on the ubiquitous (β/α)₈ barrel fold, which is found in five of the six enzyme classes. We introduced seven randomized loops on the catalytic face of the monomeric, thermostable (β/α)₈ barrel of glycerophosphodiester phosphodiesterase (GDPD) from Thermotoga maritima. We employed in vitro folding selection based on protease digestion to enrich intermediate libraries containing three to four randomized loops for folded variants, and then combined them to assemble the final library (10¹⁴ DNA sequences). The resulting library was analyzed by using the in vitro protease assay and an in vivo GFP-folding assay; it contains ∼10¹² soluble monomeric protein variants. We isolated six library members and demonstrated that these proteins are soluble, monomeric and show (β/α)₈-barrel fold-like secondary and tertiary structure. The quality of the folding-enriched library improved up to 50-fold compared to a control library that was assembled without the folding selection. To the best of our knowledge, this work is the first example of combining the ultra-high throughput mRNA display method with selection for folding. The resulting (β/α)₈ barrel libraries provide a valuable starting point to study the unique catalytic capabilities of the (β/α)₈ fold, and to isolate novel enzymes.
Collapse
Affiliation(s)
- Misha V Golynskiy
- BioTechnology Institute & Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin-Cities, 1479 Gortner Ave, St. Paul, MN 55108 (USA)
| | | | | |
Collapse
|
31
|
Ochoa-Leyva A, Montero-Morán G, Saab-Rincón G, Brieba LG, Soberón X. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold. PLoS One 2013; 8:e70582. [PMID: 23950966 PMCID: PMC3741200 DOI: 10.1371/journal.pone.0070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/20/2013] [Indexed: 12/20/2022] Open
Abstract
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome.
Collapse
Affiliation(s)
- Adrián Ochoa-Leyva
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- * E-mail: (AOL); (XS)
| | - Gabriela Montero-Morán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (AOL); (XS)
| |
Collapse
|
32
|
Tóth-Petróczy Á, Tawfik DS. Protein Insertions and Deletions Enabled by Neutral Roaming in Sequence Space. Mol Biol Evol 2013; 30:761-71. [DOI: 10.1093/molbev/mst003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Artificial proteins from combinatorial approaches. Trends Biotechnol 2012; 30:512-20. [DOI: 10.1016/j.tibtech.2012.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 11/21/2022]
|
34
|
Goldsmith M, Tawfik DS. Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struct Biol 2012; 22:406-12. [DOI: 10.1016/j.sbi.2012.03.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
|
35
|
Afriat-Jurnou L, Jackson CJ, Tawfik DS. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 2012; 51:6047-55. [PMID: 22809311 DOI: 10.1021/bi300694t] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.
Collapse
Affiliation(s)
- Livnat Afriat-Jurnou
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|