1
|
Brettrager EJ, Frederick AJ, van Waardenburg RC. Zymolyase Treatment of Saccharomyces cerevisiae Affects Cellular Proteins and Degrades Tyrosyl-DNA Phosphodiesterase I. DNA Cell Biol 2024; 43:353-361. [PMID: 38682313 PMCID: PMC11322624 DOI: 10.1089/dna.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Saccharomyces cerevisiae is a genetically tractable, affordable, and extensively documented eukaryotic single-cell model organism. This budding yeast is amenable for the development of genetic and biochemical experiments and is frequently used to investigate the function, activity, and mechanism of mammalian proteins. However, yeast contains a cell wall that hinders select assays including organelle isolation. Lytic enzymes, with Zymolyase as the most effective and frequently used tool, are utilized to weaken the yeast cell wall resulting in yeast spheroplasts. Spheroplasts are easily lysed by, for example, osmotic-shock conditions to isolate yeast nuclei or mitochondria. However, during our studies of the DNA repair enzyme tyrosyl-DNA phosphodiesterase I (Tdp1), we encountered a negative effect of Zymolyase. We observed that Zymolyase treatment affected the steady-state protein levels of Tdp1. This was revealed by inconsistencies in technical and biological replicate lysates of plasmid-born galactose-induced expression of Tdp1. This off-target effect of Zymolyase is rarely discussed in articles and affects a select number of intracellular proteins, including transcription factors and assays such as chromatin immunoprecipitations. Following extensive troubleshooting, we concluded that the culprit is the Ser-protease, Zymolyase B, component of the Zymolyase enzyme mixture that causes the degradation of Tdp1. In this study, we report the protocols we have used, and our final protocol with an easy, affordable adaptation to any assay/protocol involving Zymolyase.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron J. Frederick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
2
|
Brettrager EJ, Cuya SM, Tibbs ZE, Zhang J, Falany CN, Aller SG, van Waardenburg RCAM. N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells. Sci Rep 2023; 13:1377. [PMID: 36697463 PMCID: PMC9876888 DOI: 10.1038/s41598-023-28564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1's ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.
Collapse
Affiliation(s)
- Evan J Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Zachary E Tibbs
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Cardiothoracic Surgery - Ascension Medical Group, 10580 North Meridian St. Ste 105, Carmel, IN, 46290, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
4
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
5
|
Salomatina OV, Popadyuk II, Zakharenko AL, Zakharova OD, Chepanova AA, Dyrkheeva NS, Komarova NI, Reynisson J, Anarbaev RO, Salakhutdinov NF, Lavrik OI, Volcho KP. Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure-activity relationship and molecular modeling study. Steroids 2021; 165:108771. [PMID: 33221302 DOI: 10.1016/j.steroids.2020.108771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 μM. The activity of N-methyl para-bromoanilides was 3-4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development.
Collapse
Affiliation(s)
- Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation.
| | - Irina I Popadyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Arina A Chepanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nina I Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Konstantin P Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
6
|
Tsuda M, Kitamasu K, Kumagai C, Sugiyama K, Nakano T, Ide H. Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3'-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1). DNA Repair (Amst) 2020; 91-92:102849. [PMID: 32460231 DOI: 10.1016/j.dnarep.2020.102849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
Topoisomerase I (TOP1) resolves DNA topology during replication and transcription. The enzyme forms an intermediate TOP1 cleavage complex (TOP1cc) through transient TOP1-DNA-protein crosslinks. Camptothecin is a frontline anticancer agent that freezes this reaction intermediate, leading to the generation of irreversible TOP1ccs that act as 3'-blocking lesions. It is widely accepted that TOP1cc is repaired via a two-step pathway involving proteasomal degradation of TOP1cc to the crosslinked peptide, followed by removal of the TOP1cc-derived peptide from DNA by tyrosyl-DNA phosphodiesterase 1 (TDP1). In the present study, we developed an assay system to estimate repair kinetics of TOP1cc separately in the first and second steps, using monoclonal antibodies against the TOP1 protein and the TOP1 catalytic site peptide-DNA complex, respectively. Although TDP1-deficient (TDP1-/-) TK6 cells had normal kinetics of the first step, a delay in the kinetics of the second step was observed relative to that in wild-type cells. Tyrosyl-DNA phosphodiesterase 2 (TDP2) reportedly promotes the repair of TOP1-induced DNA damage in the absence of TDP1. The present assays additionally demonstrated that TDP2 promotes the second, but not the first, step of TOP1cc repair in the absence of TDP1. We also analyzed sensitivities of TK6 cells with deficiencies in TDP1 and/or TDP2 to agents that produce 3' -blocking lesions. These experiments showed that TDP1-/-TDP2-/- cells were more sensitive to the agents Azidothymidine (zidovudine), Cytarabine, Abacavir, Gemcitabine, and Trifluridine than TDP1-/- or TDP2-/- cells. Taken together, our findings confirm the roles of TDP2 in the repair of 3'-blocking lesions.
Collapse
Affiliation(s)
- Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Kaito Kitamasu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Chiho Kumagai
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kazuya Sugiyama
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Nakano
- DNA Damage Chemistry Research Group, Institute for Quantum Life Science, National Institutes of Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
7
|
Mei C, Lei L, Tan LM, Xu XJ, He BM, Luo C, Yin JY, Li X, Zhang W, Zhou HH, Liu ZQ. The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmacother 2020; 125:109875. [DOI: 10.1016/j.biopha.2020.109875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
|
8
|
Brettrager EJ, van Waardenburg RC. Targeting Tyrosyl-DNA phosphodiesterase I to enhance toxicity of phosphodiester linked DNA-adducts. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1153-1163. [PMID: 31875206 PMCID: PMC6929713 DOI: 10.20517/cdr.2019.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1's unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
9
|
Tyrosyl-DNA Phosphodiesterase I N-Terminal Domain Modifications and Interactions Regulate Cellular Function. Genes (Basel) 2019; 10:genes10110897. [PMID: 31698852 PMCID: PMC6895789 DOI: 10.3390/genes10110897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) removes a diverse array of adducts from the end of DNA strand breaks. Tdp1 specifically catalyzes the hydrolysis of phosphodiester linked DNA-adducts. These DNA lesions range from damaged nucleotides to peptide-DNA adducts to protein-DNA covalent complexes and are products of endogenously or exogenously induced insults or simply failed reaction products. These adducts include DNA inserted ribonucleotides and non-conventional nucleotides, as well as covalent reaction intermediates of DNA topoisomerases with DNA and a Tdp1-DNA adduct in trans. This implies that Tdp1 plays a role in maintaining genome stability and cellular homeostasis. Dysregulation of Tdp1 protein levels or catalysis shifts the equilibrium to genome instability and is associated with driving human pathologies such as cancer and neurodegeneration. In this review, we highlight the function of the N-terminal domain of Tdp1. This domain is understudied, structurally unresolved, and the least conserved in amino acid sequence and length compared to the rest of the enzyme. However, over time it emerged that the N-terminal domain was post-translationally modified by, among others, phosphorylation, SUMOylation, and Ubiquitinoylation, which regulate Tdp1 protein interactions with other DNA repair associated proteins, cellular localization, and Tdp1 protein stability.
Collapse
|
10
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
12
|
Zakharenko AL, Luzina OA, Sokolov DN, Kaledin VI, Nikolin VP, Popova NA, Patel J, Zakharova OD, Chepanova AA, Zafar A, Reynisson J, Leung E, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topoteсan on in vivo tumor models. Eur J Med Chem 2018; 161:581-593. [PMID: 30396105 DOI: 10.1016/j.ejmech.2018.10.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
The druggability of the tyrosyl-DNA phosphodiesterase 1 (Tdp1) enzyme was investigated in conjunction with topoisomerase 1 inhibition. A novel class of thiazole, aminothiazole and hydrazonothiazole usnic acid derivatives was synthesized and evaluated as Tdp1 inhibitors and their ability to sensitize tumors to topotecan, a topoisomerase inhibitor in clinical use. Of all the compounds tested, four hydrazinothiazole derivatives, 20c, 20d, 20h and 20i, inhibited the enzyme in the nanomolar range. The activity of the compounds was verified by affinity experiments as well as supported by molecular modelling. The most effective Tdp1 inhibitor, 20d, was ton-toxic and increased the effect of topotecan both in vitro and in vivo in the Lewis lung carcinoma model. Furthermore, 20d showed significant increase in the antitumor and antimetastatic effect of topotecan in mice. The results presented here justify compound 20d to be considered as a drug lead for antitumor therapy.
Collapse
Affiliation(s)
- A L Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - O A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - D N Sokolov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - V I Kaledin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - V P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - N A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
| | - J Patel
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - O D Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - A A Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation
| | - A Zafar
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - J Reynisson
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - E Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, The University of Auckland, New Zealand
| | - I K H Leung
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - K P Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
| | - N F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
| | - O I Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
13
|
Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3'- and 5'-phosphodiester-DNA bond cleavage. DNA Repair (Amst) 2018; 66-67:64-71. [PMID: 29747024 DOI: 10.1016/j.dnarep.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an ubiquitous DNA repair enzyme present in yeast, plants and animals. It removes a broad range of blocking lesions at the ends of DNA breaks. The catalytic core of TDP1 consists in a pair of conserved histidine-lysine-asparagine (HKN) motifs. Analysis of the human TDP1 (hTDP1) crystal structure reveals potential involvement of additional residues that shape the substrate binding site. In this biochemical study, we analyzed four such conserved residues, tyrosine 204 (Y204), phenylalanine 259 (F259), serine 400 (S400) and tryptophan 590 (W590). We show that the F259 residue of hTDP1 is critical for both 3'- and 5'-phosphodiesterase catalysis. We propose that the double π-π interactions of the F259 residue with the -2 and -3 nucleobases serve to position the nucleopeptide substrate in phase with the active site histidines of hTDP1. Mutating Y204 of hTDP1 to phenylalanine (Y204F), as in fly and yeast TDP1 enzymes, had minor impact on TDP1 activity. In constrast, we find that S400 enhances 3'-processing activity while it suppresses 5'-processing activity, thereby promoting specificity for 3'-substrates. W590 is selectively important for 5'-processing. These results reveal the impact of conserved amino acid residues that participate in defining the DNA binding groove around the dual HKN catalytic core motif of TDP1, and their differential roles in facilitating the 3'- vs 5'-end processing activities of hTDP1.
Collapse
|
14
|
Cuya SM, Comeaux EQ, Wanzeck K, Yoon KJ, van Waardenburg RCAM. Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin. Oncotarget 2018; 7:86660-86674. [PMID: 27893431 PMCID: PMC5349943 DOI: 10.18632/oncotarget.13528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3’phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Keith Wanzeck
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
15
|
A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 2017; 206:1683-1697. [PMID: 28476868 DOI: 10.1534/genetics.117.200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
Collapse
|
16
|
Zakharenko A, Luzina O, Koval O, Nilov D, Gushchina I, Dyrkheeva N, Švedas V, Salakhutdinov N, Lavrik O. Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. JOURNAL OF NATURAL PRODUCTS 2016; 79:2961-2967. [PMID: 27933897 DOI: 10.1021/acs.jnatprod.6b00979] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a repair enzyme for stalled DNA-topoisomerase 1 (Top1) cleavage complexes and other 3'-end DNA lesions. TDP1 is a perspective target for anticancer therapy based on Top1-poison-mediated DNA damage. Several novel usnic acid derivatives with an enamine moiety have been synthesized and tested as inhibitors of TDP1. The enamines of usnic acid showed IC50 values in the range of 0.16 to 2.0 μM. These compounds revealed moderate cytotoxicity against human tumor MCF-7 cells. These new compounds enhanced the cytotoxicity of the established Top1 poison camptothecin by an order of magnitude.
Collapse
Affiliation(s)
- Alexandra Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | - Olga Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | - Olga Koval
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| | | | | | - Nadezhda Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | | | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| | - Olga Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| |
Collapse
|
17
|
Duffy S, Fam HK, Wang YK, Styles EB, Kim JH, Ang JS, Singh T, Larionov V, Shah SP, Andrews B, Boerkoel CF, Hieter P. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A 2016; 113:9967-76. [PMID: 27551064 PMCID: PMC5018746 DOI: 10.1073/pnas.1611839113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors.
Collapse
Affiliation(s)
- Supipi Duffy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Hok Khim Fam
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Yi Kan Wang
- BC Cancer Agency, Vancouver, BC, Canada V5Z 4E6
| | - Erin B Styles
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Jung-Hyun Kim
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - J Sidney Ang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Tejomayee Singh
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Vladimir Larionov
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | | | - Brenda Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Cornelius F Boerkoel
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3;
| |
Collapse
|
18
|
van Waardenburg RC. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2016; 1:25-29. [PMID: 27747316 PMCID: PMC5064944 DOI: 10.29245/2572.942x/2016/5.1048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Collapse
|
19
|
DeYonker NJ, Webster CE. A Theoretical Study of Phosphoryl Transfers of Tyrosyl-DNA Phosphodiesterase I (Tdp1) and the Possibility of a "Dead-End" Phosphohistidine Intermediate. Biochemistry 2015; 54:4236-47. [PMID: 26121557 DOI: 10.1021/acs.biochem.5b00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- ‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| | - Charles Edwin Webster
- †Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States.,‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| |
Collapse
|
20
|
Comeaux EQ, Cuya SM, Kojima K, Jafari N, Wanzeck KC, Mobley JA, Bjornsti MA, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage. J Biol Chem 2015; 290:6203-14. [PMID: 25609251 DOI: 10.1074/jbc.m114.635284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.
Collapse
Affiliation(s)
- Evan Q Comeaux
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Selma M Cuya
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kyoko Kojima
- the University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nauzanene Jafari
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Keith C Wanzeck
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- the Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary-Ann Bjornsti
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Robert C A M van Waardenburg
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
21
|
Comeaux EQ, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev 2014; 46:494-507. [PMID: 25327705 DOI: 10.3109/03602532.2014.971957] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, AL , USA
| | | |
Collapse
|
22
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
23
|
Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2012; 2:89. [PMID: 22919680 PMCID: PMC3417536 DOI: 10.3389/fcimb.2012.00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 11/24/2022] Open
Abstract
The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
24
|
SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair. Nat Commun 2012; 3:733. [PMID: 22415824 PMCID: PMC3316882 DOI: 10.1038/ncomms1739] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/09/2012] [Indexed: 11/08/2022] Open
Abstract
Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress. Tyrosyl DNA phosphodiesterase 1 (TDP1) repairs DNA breaks and is mutated in the disease Spinocerebellar Ataxia with Axonal Neuropathy. Here TDP1 is shown to be post-translationally modified by sumoylation of lysine 111, and cells carrying a mutation at this residue are inefficient at single-strand DNA break repair.
Collapse
|