1
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
2
|
Liu T, Yin H, Hu Q, Dong X, Xin B, Wu Y, Hu X, Yan W, Li Z. Small Molecule Compound DHPA Screened by Computer-Aided Drug Design and Molecular Dynamics Simulation Inhibits Neuroblastoma Cell Proliferation by Targeting TrkB. ACS OMEGA 2024; 9:42227-42244. [PMID: 39431081 PMCID: PMC11483404 DOI: 10.1021/acsomega.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Neuroblastoma (NB) is a rare and malignant pediatric solid tumor. Due to its heterogeneity, it poses significant challenges for treatment, resulting in a high mortality rate. This study aimed to identify new therapeutic drugs by modeling the TrkB receptor from PDB 4AT5 and conducting virtual screening of compounds from the YaTCM database (containing 47,696 compounds derived from 6220 Traditional Chinese Medicines). The screening utilized the E-pharmacophore approach to select compounds with potential binding affinity to TrkB. The binding abilities of these compounds were tested through molecular dynamics simulations, stretch dynamics simulations, and US simulations. Among the top 11 optimized hit compounds, DHPA and 3″-demethylhexahydrocurcumin are prominent. Further simulations reveal that they form stable receptor-ligand binary complexes with TrkB. In subsequent in vitro cell experiments, 3″-demethylhexahydrocurcumin is eliminated due to its high IC50 for killing NB cells. Low concentrations of DHPA can significantly kill NB cells. Additionally, DHPA can inhibit the expression of TrkB, the activation of TrkB's downstream signaling pathways, and affect the thermal stability of TrkB protein and its response to streptase protease degradation. DHPA may be a potential TrkB inhibitor.
Collapse
Affiliation(s)
- Tianyi Liu
- Department
of Pharmacy, Dalian Women and Children’s
Medical Group, Dalian, Liaoning 116012, China
| | - Hongli Yin
- Institute
of Pediatric Research, Children’s
Hospital of Soochow University, Suzhou 215025, China
| | - Qingyang Hu
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xue Dong
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bin Xin
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yue Wu
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xuejiao Hu
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Wenxin Yan
- College
of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhong Li
- Department
of Pharmacy, Dalian Women and Children’s
Medical Group, Dalian, Liaoning 116012, China
| |
Collapse
|
3
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
4
|
Yamada T, Mihara K, Ueda T, Yamauchi D, Shimizu M, Ando A, Mayumi K, Nakata Z, Mikamiyama H. Discovery and Hit to Lead Optimization of Macrocyclic Peptides as Novel Tropomyosin Receptor Kinase A Antagonists. J Med Chem 2024; 67:11197-11208. [PMID: 38950284 DOI: 10.1021/acs.jmedchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.
Collapse
Affiliation(s)
- Toru Yamada
- Biopharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kousuke Mihara
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Taichi Ueda
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Daisuke Yamauchi
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Masaya Shimizu
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Azusa Ando
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Kei Mayumi
- Pharmaceutical Development Division, Yodoyabashi Office, Osaka , Osaka 541-0042, Japan
| | - Zenzaburo Nakata
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| | - Hidenori Mikamiyama
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, Toyonaka , Osaka 561-0825, Japan
| |
Collapse
|
5
|
Enkavi G, Girych M, Moliner R, Vattulainen I, Castrén E. TrkB transmembrane domain: bridging structural understanding with therapeutic strategy. Trends Biochem Sci 2024; 49:445-456. [PMID: 38433044 DOI: 10.1016/j.tibs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center/HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center/HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Iliev P, Jaworski C, Wängler C, Wängler B, Page BDG, Schirrmacher R, Bailey JJ. Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2024; 34:231-244. [PMID: 38785069 DOI: 10.1080/13543776.2024.2358818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
7
|
Theik NWY, Muminovic M, Alvarez-Pinzon AM, Shoreibah A, Hussein AM, Raez LE. NTRK Therapy among Different Types of Cancers, Review and Future Perspectives. Int J Mol Sci 2024; 25:2366. [PMID: 38397049 PMCID: PMC10889397 DOI: 10.3390/ijms25042366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) has been a remarkable therapeutic target for treating different malignancies, playing an essential role in oncogenic signaling pathways. Groundbreaking trials like NAVIGATE led to the approval of NTRK inhibitors by the Food and Drug Administration (FDA) to treat different malignancies, significantly impacting current oncology treatment. Accurate detection of NTRK gene fusion becomes very important for possible targeted therapy. Various methods to detect NTRK gene fusion have been applied widely based on sensitivity, specificity, and accessibility. The utility of different tests in clinical practice is discussed in this study by providing insights into their effectiveness in targeting patients who may benefit from therapy. Widespread use of NTRK inhibitors in different malignancies could remain limited due to resistance mechanisms that cause challenges to medication efficacy in addition to common side effects of the medications. This review provides a succinct overview of the application of NTRK inhibitors in various types of cancer by emphasizing the critical clinical significance of NTRK fusion gene detection. The discussion also provides a solid foundation for understanding the current challenges and potential changes for improving the efficacy of NTRK inhibitor therapy to treat different malignancies.
Collapse
Affiliation(s)
- Nyein Wint Yee Theik
- Division of Internal Medicine, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.W.Y.T.); (A.S.)
| | - Meri Muminovic
- Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL 33028, USA;
| | - Andres M. Alvarez-Pinzon
- Memorial Cancer Institute, Office of Human Research, Florida Atlantic University (FAU), Pembroke Pines, FL 33028, USA
| | - Ahmed Shoreibah
- Division of Internal Medicine, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.W.Y.T.); (A.S.)
| | - Atif M. Hussein
- Memorial Cancer Institute, Memorial Healthcare System, Florida Atlantic University (FAU), Pembroke Pines, FL 33028, USA;
| | - Luis E. Raez
- Memorial Cancer Institute, Memorial Healthcare System, Florida Atlantic University (FAU), Pembroke Pines, FL 33028, USA;
| |
Collapse
|
8
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
An B, Nie W, Hu J, Fan Y, Nie H, Wang M, Zhao Y, Yao H, Ren Y, Zhang C, Wei M, Li W, Liu J, Yang C, Zhang Y, Li X, Tian G. A novel c-Met/TRK inhibitor 1D228 efficiently inhibits tumor growth by targeting angiogenesis and tumor cell proliferation. Cell Death Dis 2023; 14:728. [PMID: 37945598 PMCID: PMC10636171 DOI: 10.1038/s41419-023-06246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Multiple tumors are synergistically promoted by c-Met and TRK, and blocking their cross-signalling pathway may give better effects. In this study, we developed a tyrosine kinase inhibitor 1D228, which exhibited excellent anti-tumor activity by targeting c-Met and TRK. Models in vitro, 1D228 showed a significant better inhibition on cancer cell proliferation and migration than the positive drug Tepotinib. Models in vivo, 1D228 showed robust anti-tumor effect on gastric and liver tumor growth with 94.8% and 93.4% of the TGI, respectively, comparing 67.61% and 63.9% of Tepotinib. Importantly, compared with the combination of Larotrectinib and Tepotinib, 1D228 monotherapy in MKN45 xenograft tumor models showed stronger antitumor activity and lower toxicity. Mechanistic studies showed that 1D228 can largely inhibit the phosphorylation of TRKB and c-Met. Interestingly, both kinases, TRKs and c-Met, have been found to be co-expressed at high levels in patients with gastric cancer through IHC. Furthermore, bioinformatics analysis has revealed that both genes are abnormally co-expressed in multiple types of cancer. Cell cycle analysis found that 1D228 induced G0/G1 arrest by inhibiting cyclin D1. Additionally, vascular endothelial cells also showed a pronounced response to 1D228 due to its expression of TRKB and c-Met. 1D228 suppressed the migration and tube formation of endothelial cells, which are the key functions of tumor angiogenesis. Taken together, compound 1D228 may be a promising candidate for the next generation of c-Met and TRK inhibitors for cancer treatment, and offers a novel potential treatment strategy for cancer patients with abnormal expressions of c-Met or NTRK, or simultaneous of them.
Collapse
Affiliation(s)
- Baijiao An
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Jinhui Hu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yangyang Fan
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yaxuan Zhao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Han Yao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yuanyuan Ren
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chuanchuan Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Mengna Wei
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Jiadai Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chunhua Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Yin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, 264003, PR China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Geng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
10
|
Turek I, Freihat L, Vyas J, Wheeler J, Muleya V, Manallack DT, Gehring C, Irving H. The discovery of hidden guanylate cyclases (GCs) in the Homo sapiens proteome. Comput Struct Biotechnol J 2023; 21:5523-5529. [PMID: 38022692 PMCID: PMC10665587 DOI: 10.1016/j.csbj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Recent discoveries have established functional guanylate cyclase (GC) catalytic centers with low activity within kinase domains in plants. These crypto GCs generate guanosine 3',5'-cyclic monophosphate (cGMP) essential for both intramolecular and downstream signaling. Here, we have set out to search for such crypto GCs moonlighting in kinases in the H. sapiens proteome and identified 18 candidates, including the neurotropic receptor tyrosine kinase 1 (NTRK1). NTRK1 shows a domain architecture much like plant receptor kinases such as the phytosulfokine receptor, where a functional GC essential for downstream signaling is embedded within a kinase domain. In vitro characterization of the NTRK1 shows that the embedded NTRK1 GC is functional with a marked preference for Mn2+ over Mg2+. This therefore points to hitherto unsuspected roles of cGMP in intramolecular and downstream signaling of NTRK1 and the role of cGMP in NTRK1-dependent growth and neoplasia.
Collapse
Affiliation(s)
- Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
| | - Lubna Freihat
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jignesh Vyas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Janet Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio building, Bundoora, VIC 3086, Australia
| | - Victor Muleya
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David T. Manallack
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chris Gehring
- Department of Chemistry, Biochemistry and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3550, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Brenner C, Sanders C, Vokuhl C. [Receptor tyrosine kinase- fusions in paediatric spindle cell tumors]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:357-365. [PMID: 37819532 DOI: 10.1007/s00292-023-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/13/2023]
Abstract
Pediatric spindle cell tumors are rare and often difficult to diagnose due to a similar morphology and a non-specific immunohistochemical profile. Genetic characterization of these lesions has been constantly improving, which has led to the identification of new subgroups that were partly included in the WHO classification. Receptor tyrosine kinase fusions play a special role in these tumors and their verification has diagnostic relevance and can be an option for target-oriented therapies. In the case of pediatric spindle cell tumors, genetic fusions form especially with NTRK1‑3, ALK, RET, and ROS1. Overall, pediatric tumors with receptor tyrosine kinase fusions are predominantly low-grade tumors, which are often subdivided into the group of intermediate-malign tumors.
Collapse
Affiliation(s)
- Christiane Brenner
- Sektion Kinderpathologie, Institut für Pathologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Christine Sanders
- Institut für Pathologie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Christian Vokuhl
- Sektion Kinderpathologie, Institut für Pathologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| |
Collapse
|
12
|
Jaworski C, Iliev P, Wängler C, Wängler B, Page B, Schirrmacher R, Bailey JJ. Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2023; 33:503-521. [PMID: 37735897 DOI: 10.1080/13543776.2023.2262136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Trk inhibitors are significant in the realm of personalized medicine as they target specific genetic alterations, such as NTRK gene fusions, leading to improved treatment outcomes for cancer patients. By tailoring the treatment to the genetic characteristics of the tumor rather than the tumor type, Trk inhibitors offer the potential for more effective and precise therapies, resulting in enhanced response rates and prolonged survival for patients with NTRK fusion-positive cancers. AREAS COVERED Patents covering type I inhibitors targeting the Trk family are discussed, building upon our prior review series on Trk inhibitors. Relevant patents were identified through the Web of Science database, Google, and Google Patents. EXPERT OPINION The field of Trk inhibitors has evolved significantly, as reflected in the current patent literature, which emphasizes the selective structural refinement of clinical champions. Efforts now concentrate on enhancing efficacy against on-target resistance mechanisms, with modifications made to improve potency, reduce toxicity, and enhance pharmacokinetics. Combination therapies show potential to address off-target resistance mechanisms and improve treatment outcomes. Challenges remain in accurately diagnosing NTRK gene alterations and integrating screening into routine clinical practice. Trk inhibitors have surpassed their conventional role of inhibition and are now seeing new applications in radiopharmaceutical development and as molecular targeting agents.
Collapse
Affiliation(s)
- Carolin Jaworski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Ralf Schirrmacher
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | | |
Collapse
|
13
|
El-Nassan HB, Al-Qadhi MA. Recent advances in the discovery of tropomyosin receptor kinases TRKs inhibitors: A mini review. Eur J Med Chem 2023; 258:115618. [PMID: 37413881 DOI: 10.1016/j.ejmech.2023.115618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The tropomyosin receptor tyrosine kinases (TRKs) control the cell proliferation mainly in the nervous system and are encoded by NTRK genes. Fusion and mutation of NTRK genes were detected in various types of cancers. Many small molecules TRK inhibitors have been discovered during the last two decades and some of them have entered clinical trials. Moreover, two of these inhibitors; larotrectinib and entrectinib; were approved by FDA for the treatment of TRK-fusion positive solid tumors. However, mutation of TRK enzymes resulted in resistance to both drugs. Therefore, next generation TRK inhibitors were discovered to overcome the acquired drug resistance. Additionally, the off-target and on-target adverse effects on the brain initiated the need for selective TRK subtype inhibitors. Indeed, some molecules were recently reported as selective TRKA or TRKC inhibitors with minimal CNS side effects. The current review highlighted the efforts done during the last three years in the design and discovery of novel TRK inhibitors.
Collapse
Affiliation(s)
- Hala B El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mustafa A Al-Qadhi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
14
|
Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, Antenucci L, Kot EF, Goncharuk SA, Kaurinkoski K, Kuutti M, Fred SM, Elsilä LV, Sakson S, Cannarozzo C, Diniz CRAF, Seiffert N, Rubiolo A, Haapaniemi H, Meshi E, Nagaeva E, Öhman T, Róg T, Kankuri E, Vilar M, Varjosalo M, Korpi ER, Permi P, Mineev KS, Saarma M, Vattulainen I, Casarotto PC, Castrén E. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci 2023; 26:1032-1041. [PMID: 37280397 PMCID: PMC10244169 DOI: 10.1038/s41593-023-01316-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.
Collapse
Affiliation(s)
- Rafael Moliner
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Vera Kovaleva
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Giray Enkavi
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Lina Antenucci
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Katja Kaurinkoski
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mirjami Kuutti
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sven Sakson
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Cassiano R A F Diniz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nina Seiffert
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Rubiolo
- Neuroscience, University of Trieste, Trieste, Italy
| | - Hele Haapaniemi
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elsa Meshi
- Biomedical Sciences, Hellenic University of Thessaloniki, Thessaloniki, Greece
| | - Elina Nagaeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Structural and Quantitative Biology Research Program, Institute of Biotechnology, Instruct-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | | | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
17
|
Wang Z, Ren J, Jia K, Zhao Y, Liang L, Cheng Z, Huang F, Zhao X, Cheng J, Song S, Sheng T, Wan W, Shu Q, Wu D, Zhang J, Lu T, Chen Y, Ran T, Lu S. Identification and structural analysis of a selective tropomyosin receptor kinase C (TRKC) inhibitor. Eur J Med Chem 2022; 241:114601. [PMID: 35872544 DOI: 10.1016/j.ejmech.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
Abstract
Tropomyosin receptor kinases (TRKs) are a family of TRKA, TRKB and TRKC isoforms. It has been widely reported that TRKs are implicated in a variety of tumors with several Pan-TRK inhibitors currently being used or evaluated in clinical treatment. However, off-target adverse events frequently occur in the clinical use of Pan-TRK inhibitors, which result in poor patient compliance, even drug discontinuation. Although a subtype-selectivity TRK inhibitor may avert the potential off-target adverse events and can act as a more powerful tool compound in the biochemical studies on TRKs, the high sequence similarities of TRKs hinder the development of subtype-selectivity TRK inhibitors. For example, no selective TRKC inhibitor has been reported. Herein, a selective TRKC inhibitor (L13) was disclosed, with potent TRKC inhibitory activity and 107.5-/34.9-fold selectivity over TRKA/B (IC50 TRKA/B/C = 1400 nM, 454 nM, 13 nM, respectively). Extensive molecular dynamics simulations illustrated that key interactions of L13 with the residues and diversely conserved water molecules in the ribose regions of different TRKs may be the structural basis of selectivity. This will provide inspiring insights into the development of subtype-selectivity TRK inhibitors. Moreover, L13 could serve as a tool compound to investigate the distinct biological functions of TRKC and a starting point for further research on drugs specifically targeting TRKC.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiwei Ren
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Kun Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Li Liang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shiyu Song
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, 210038, PR China
| | - Tiancheng Sheng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Weiqi Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qingqing Shu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Junhao Zhang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Ran
- Drug and Vaccine Research Center, Guangzhou Laboratory, Guangzhou, 510005, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
18
|
Qin H, Patel MR. The Challenge and Opportunity of NTRK Inhibitors in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:2916. [PMID: 35328336 PMCID: PMC8954929 DOI: 10.3390/ijms23062916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
With the development of targeted therapy, non-small cell lung cancer (NSCLC) patients could have more treatment choices if target mutation presents. The neurotrophic tropomyosin receptor kinase (NTRK) has a low prevalence in NSCLC, roughly around 0.5%. FDA had approved two first generation NTRK inhibitors, larotrectinib and entrectinib. Both medications have excellent CNS penetration. This manuscript will review available data on targeting NTRK fusions in NSCLC and mechanisms of drug resistance.
Collapse
Affiliation(s)
| | - Manish R. Patel
- Department of Hematology, Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
19
|
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298:101568. [PMID: 35051416 PMCID: PMC8889134 DOI: 10.1016/j.jbc.2022.101568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/27/2022] Open
Abstract
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Collapse
Affiliation(s)
- Jacinta N Conroy
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Clem Jones Centre for Ageing and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Hechtman JF. NTRK insights: best practices for pathologists. Mod Pathol 2022; 35:298-305. [PMID: 34531526 PMCID: PMC8860742 DOI: 10.1038/s41379-021-00913-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
Since the discovery of an oncogenic tropomyosin-receptor kinase (TRK) fusion protein in the early 1980s, our understanding of neurotrophic tropomyosin-receptor kinase (NTRK) fusions, their unique patterns of frequency in different tumor types, and methods to detect them have grown in scope and depth. Identification of these molecular alterations in the management of patients with cancer has become increasingly important with the emergence of histology-agnostic, US Food and Drug Administration-approved, effective TRK protein inhibitors. Herein, we review the biology of TRK in normal and malignant tissues, as well as the prevalence and enrichment patterns of these fusions across tumor types. Testing methods currently used to identify NTRK1-3 fusions will be reviewed in detail, with attention to newer assays including RNA-based next-generation sequencing. Recently proposed algorithms for NTRK fusion testing will be compared, and practical insights provided on how testing can best be implemented and communicated within the multidisciplinary healthcare team.
Collapse
Affiliation(s)
- Jaclyn F Hechtman
- Molecular Pathologist, Neogenomics 9490 NeoGenomics Way, Fort Myers, FL, 33912, USA.
| |
Collapse
|
21
|
Sun S, Lopez JA, Xie Y, Guo W, Liu D, Li L. HIT web server: a hybrid method to improve electrostatic calculations for biomolecules. Comput Struct Biotechnol J 2022; 20:1580-1583. [PMID: 35422969 PMCID: PMC8991293 DOI: 10.1016/j.csbj.2022.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022] Open
Abstract
The electrostatic features of highly charged biomolecules are crucial and challenging tasks in computational biophysics. The electrostatic calculations by traditional implicit solvent methods are efficient but have difficulties on highly charged biomolecules. We have developed a Hybridizing Ion Treatment (HIT) tool, which successfully hybridizes the explicit ions and implicit solvation model to accurately calculate the electrostatic potential for highly charged biomolecules. Here we implemented the HIT tool into a web server. In this study, a training set was prepared to optimize the number of frames for the HIT web server. The results on tubulins, DNAs, and RNAs, reveal the mechanisms for the motor proteins, DNA of HIV, and tRNA. This HIT web server can be widely used to study highly charged biomolecules, including DNAs, RNAs, molecular motors, and other highly charged biomolecules.
Collapse
|
22
|
Pan S, Zhang L, Luo X, Nan J, Yang W, Bin H, Li Y, Huang Q, Wang T, Pan Z, Mu B, Wang F, Tian C, Liu Y, Li L, Yang S. Structural Optimization and Structure-Activity Relationship Studies of 6,6-Dimethyl-4-(phenylamino)-6 H-pyrimido[5,4- b][1,4]oxazin-7(8 H)-one Derivatives as A New Class of Potent Inhibitors of Pan-Trk and Their Drug-Resistant Mutants. J Med Chem 2022; 65:2035-2058. [PMID: 35080890 DOI: 10.1021/acs.jmedchem.1c01597] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tropomyosin receptor kinases (TrkA, TrkB, and TrkC) are attractive therapeutic targets for multiple cancers. Two first-generation small-molecule Trks inhibitors, larotrectinib and entrectinib, have just been approved to use clinically. However, the drug-resistance mutations of Trks have already emerged, which calls for new-generation Trks inhibitors. Herein, we report the structural optimization and structure-activity relationship studies of 6,6-dimethyl-4-(phenylamino)-6H-pyrimido[5,4-b][1,4]oxazin-7(8H)-one derivatives as a new class of pan-Trk inhibitors. The prioritized compound 11g exhibited low nanomolar IC50 values against TrkA, TrkB, and TrkC and various drug-resistant mutants. It also showed good kinase selectivity. 11g displayed excellent in vitro antitumor activity and strongly suppressed Trk-mediated signaling pathways in intact cells. In in vivo studies, compound 11g exhibited good antitumor activity in BaF3-TEL-TrkA and BaF3-TEL-TrkCG623R allograft mouse models without exhibiting apparent toxicity. Collectively, 11g could be a promising lead compound for drug discovery targeting Trks and deserves further investigation.
Collapse
Affiliation(s)
- Shulei Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinling Luo
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huachao Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiao Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiling Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Falu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyu Tian
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
23
|
Discovery of novel TrkA allosteric inhibitors: Structure-based virtual screening, biological evaluation and preliminary SAR studies. Eur J Med Chem 2022; 228:114022. [PMID: 34871843 DOI: 10.1016/j.ejmech.2021.114022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
Tropomyosin receptor kinases A (TrkA) is a potential therapeutic target for the treatment of numerous tumor types and chronic pain. However, most of the reported TrkA inhibitors are ATP competitive pan-Trks inhibitors that lack subtype selectivity. A selective TrkA inhibitor may provide valuable therapeutic benefits. Here, we described the discovery of novel TrkA allosteric inhibitors by structure-based virtual screening. A promising hit (D5261, TrkA cell IC50 = 3.32 μM) was selected for further studies. The binding free energy between TrkA and D5261 was calculated. In addition, the preliminary structure-activity relationship (SAR) studies with D5261 were investigated. The results suggest that D5261 can be used as a starting point for development of TrkA allosteric inhibitors.
Collapse
|
24
|
Wu T, Qin Q, Liu N, Zhang C, Lv R, Yin W, Sun Y, Sun Y, Wang R, Zhao D, Cheng M. Rational drug design to explore the structure-activity relationship (SAR) of TRK inhibitors with 2,4-diaminopyrimidine scaffold. Eur J Med Chem 2022; 230:114096. [PMID: 35007864 DOI: 10.1016/j.ejmech.2021.114096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Tropomyosin receptor kinase (TRK) is an ideal target for treating cancers caused by the NTRK gene fusion. In this study, more than 60 2,4-diaminopyrimidine derivatives were prepared to understand the structure-activity relationship and confirm the rationality of the pharmacophore model reported previously. Among them, compound 19k was found to be a potent pan-TRK inhibitor that inhibits the proliferation of Km-12 cell lines. Additionally, compound 19k induced the apoptosis of Km-12 cells in a concentration-dependent manner. Western blot analysis revealed that compound 19k inhibited the phosphorylation of TRK to block downstream pathways. Compound 19k also possessed outstanding plasma stability and liver microsomal stability in vitro, with half-lives greater than 289.1 min and 145 min, respectively. Pharmacokinetic studies indicated that the oral bioavailability of compound 19k is 17.4%. These results demonstrate that compound 19k could serve as a novel lead compound for overcoming NTRK-fusion cancers.
Collapse
Affiliation(s)
- Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
25
|
Yang K, Xu YC, Hu HY, Li YZ, Li Q, Luan YY, Liu Y, Sun YQ, Feng ZK, Yan YS, Yin CH. Investigation of a Novel NTRK1 Variation Causing Congenital Insensitivity to Pain With Anhidrosis. Front Genet 2021; 12:763467. [PMID: 34938316 PMCID: PMC8686761 DOI: 10.3389/fgene.2021.763467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Congenital insensitivity to pain with anhidrosis (CIPA), a rare autosomal recessive sensory neuropathy, was caused mainly by biallelic mutations in the NTRK1 gene. The pathogenesis of CIPA still needs further elucidation. Methods: Here, we recruited a CIPA case and introduced whole-exome sequencing (WES) to identify the causative variation. Subsequently, an in silico molecular dynamic (MD) analysis was performed to explore the intramolecular impact of the novel missense variant. Meanwhile, in vitro functional study on the novel variant from a metabolomic perspective was conducted via the liquid chromatography–mass spectrometry (LC-MS) approach, of which the result was verified by quantitative real-time PCR (qRT-PCR). Results: A novel compound heterozygous variation in NTRK1 gene was detected, consisting of the c.851–33T > A and c.2242C > T (p.Arg748Trp) variants. MD result suggested that p.Arg748Trp could affect the intramolecular structure stability. The results of the LC-MS and metabolic pathway clustering indicated that the NTRK1Arg748Trp variant would significantly affect the purine metabolism in vitro. Further analysis showed that it induced the elevation of NT5C2 mRNA level. Conclusion: The findings in this study extended the variation spectrum of NTRK1, provided evidence for counseling to the affected family, and offered potential clues and biomarkers to the pathogenesis of CIPA.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yi-Cheng Xu
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Hua-Ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Ya-Zhou Li
- Department of Pediatric Orthopaedic, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhan-Ke Feng
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Wu T, Zhang C, Lv R, Qin Q, Liu N, Yin W, Wang R, Sun Y, Wang X, Sun Y, Zhao D, Cheng M. Design, synthesis, biological evaluation and pharmacophore model analysis of novel tetrahydropyrrolo[3,4-c]pyrazol derivatives as potential TRKs inhibitors. Eur J Med Chem 2021; 223:113627. [PMID: 34171657 DOI: 10.1016/j.ejmech.2021.113627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
The tropomyosin receptor kinases TRKs are responsible for different tumor types which caused by NTRK gene fusion, and have been identified as a successful target for anticancer therapeutics. Herein, we report a potent and selectivity TRKs inhibitor 19m through rational drug design strategy from a micromolar potency hit 17a. Compound 19m significantly inhibits the proliferation of TRK-dependent cell lines (Km-12), while it has no inhibitory effect on TRK-independent cell lines (A549 and THLE-2). Furthermore, kinases selectivity profiling showed that in addition to TRKs, compound 19m only displayed relatively strong inhibitory activity on ALK. These data may indicate that compound 19m has a good drug safety. Partial ADME properties were evaluated in vitro and in vivo. Compound 19m exhibited a good AUC values and volume of distribution and low clearance in the pharmacokinetics experiment of rats. Finally, a pharmacophore model guided by experimental results is proposed. We hope this theoretical model can help researchers find type I TRK inhibitors more efficiently.
Collapse
Affiliation(s)
- Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
27
|
Candalija A, Scior T, Rackwitz HR, Ruiz-Castelan JE, Martinez-Laguna Y, Aguilera J. Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin. Molecules 2021; 26:molecules26133988. [PMID: 34208805 PMCID: PMC8272241 DOI: 10.3390/molecules26133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together in vivo at neuromuscular junctions and in motor neurons.
Collapse
Affiliation(s)
- Ana Candalija
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
| | - Thomas Scior
- Faculty of Chemical Sciences, BUAP, Puebla 72000, Mexico; (J.E.R.-C.); (Y.M.-L.)
- Correspondence: or ; Tel.: +52-222-229-5500 (ext. 7529)
| | - Hans-Richard Rackwitz
- Peptide Specialities Laboratory, Im Neuenheimer Feld, Univerisity Campus, 69120 Heidelberg, Germany;
| | | | | | - José Aguilera
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
- Center for Biomedical Research Network on Neurodegenerative Diseases (CIBERNED), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
28
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 643] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Yan W, Zhang L, Lv F, Moccia M, Carlomagno F, Landry C, Santoro M, Gosselet F, Frett B, Li HY. Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation. Eur J Med Chem 2021; 216:113265. [PMID: 33652352 DOI: 10.1016/j.ejmech.2021.113265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Tropomyosin receptor kinase (TRK) represents an attractive oncology target for cancer therapy related to its critical role in cancer formation and progression. NTRK fusions are found to occur in 3.3% of lung cancers, 2.2% of colorectal cancers, 16.7% of thyroid cancers, 2.5% of glioblastomas, and 7.1% of pediatric gliomas. In this paper, we described the discovery of the type-II pan-TRK inhibitor 4c through the structure-based drug design strategy from the original hits 1b and 2b. Compound 4c exhibited excellent in vitro TRKA, TRKB, and TRKC kinase inhibitory activity and anti-proliferative activity against human colorectal carcinoma derived cell line KM12. In the NCI-60 human cancer cell lines screen, compound 4g demonstrated nearly 80% of growth inhibition for KM12, while only minimal inhibitory activity was observed for the remaining 59 cancer cell lines. Western blot analysis demonstrated that 4c and its urea cousin 4k suppressed the TPM3-TRKA autophosphorylation at the concentrations of 100 nM and 10 nM, respectively. The work presented that 2-(4-(thieno[3,2-d]pyrimidin-4-ylamino)phenyl)acetamides could serve as a novel scaffold for the discovery and development of type-II pan-TRK inhibitors for the treatment of TRK driven cancers.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Marialuisa Moccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131, Naples, Italy
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131, Naples, Italy; Istituto di Endocrinologia e Oncologia Sperimentale Del CNR, Via S Pansini 5, 80131, Naples, Italy
| | - Christophe Landry
- Blood Brain Barrier Laboratory (LBHE), University of Artois, UR2465, F-62300, Lens, France
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131, Naples, Italy
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory (LBHE), University of Artois, UR2465, F-62300, Lens, France
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
30
|
Artim SC, Kiyatkin A, Lemmon MA. Comparison of tyrosine kinase domain properties for the neurotrophin receptors TrkA and TrkB. Biochem J 2020; 477:4053-4070. [PMID: 33043964 PMCID: PMC7606831 DOI: 10.1042/bcj20200695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.
Collapse
Affiliation(s)
- Stephen C. Artim
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Present address: Merck Research Laboratories, Merck, South San Francisco, CA 94080, USA
| | - Anatoly Kiyatkin
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
31
|
Sonoyama T, Stadler LKJ, Zhu M, Keogh JM, Henning E, Hisama F, Kirwan P, Jura M, Blaszczyk BK, DeWitt DC, Brouwers B, Hyvönen M, Barroso I, Merkle FT, Appleyard SM, Wayman GA, Farooqi IS. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep 2020; 10:9028. [PMID: 32493978 PMCID: PMC7270116 DOI: 10.1038/s41598-020-65531-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.
Collapse
Affiliation(s)
- Takuhiro Sonoyama
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Mingyan Zhu
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fuki Hisama
- Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter Kirwan
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Magdalena Jura
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Beata K Blaszczyk
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Bas Brouwers
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - Inês Barroso
- MRC Epidemiology Unit, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Florian T Merkle
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Suzanne M Appleyard
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Gary A Wayman
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
32
|
Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The Exploration of Chirality for Improved Druggability within the Human Kinome. J Med Chem 2020; 63:441-469. [PMID: 31550151 PMCID: PMC10536157 DOI: 10.1021/acs.jmedchem.9b00640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
33
|
Franco ML, Nadezhdin KD, Goncharuk SA, Mineev KS, Arseniev AS, Vilar M. Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. J Biol Chem 2020; 295:275-286. [PMID: 31801826 PMCID: PMC6952603 DOI: 10.1074/jbc.ra119.011312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.
Collapse
Affiliation(s)
- María L Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain
| | - Kirill D Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation.
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain.
| |
Collapse
|
34
|
Cardona AF, Arrieta O, Ruiz-Patiño A, Sotelo C, Zamudio-Molano N, Zatarain-Barrón ZL, Ricaurte L, Raez L, Álvarez MPP, Barrón F, Rojas L, Rolfo C, Karachaliou N, Molina-Vila MA, Rosell R. Precision medicine and its implementation in patients with NTRK fusion genes: perspective from developing countries. Ther Adv Respir Dis 2020; 14:1753466620938553. [PMID: 32643553 PMCID: PMC7350048 DOI: 10.1177/1753466620938553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Precision oncology is the field that places emphasis on the diagnosis and treatment of tumors that harbor specific genomic alterations susceptible to inhibition or modulation. Although most alterations are only present in a minority of patients, a substantial effect on survival can be observed in this subgroup. Mass genome sequencing has led to the identification of a specific driver in the translocations of the tropomyosin receptor kinase family (NTRK) in a subset of rare tumors both in children and in adults, and to the development and investigation of Larotrectinib. This medication was granted approval by the US Food and Drug Administration for NTRK-positive tumors, regardless of histology or age group, as such, larotrectinib was the first in its kind to be approved under the premise that molecular pattern is more important than histology in terms of therapeutic approach. It yielded significant results in disease control with good tolerability across a wide range of diseases including rare pediatric tumors, salivary gland tumors, gliomas, soft-tissue sarcomas, and thyroid carcinomas. In addition, and by taking different approaches in clinical trial design and conducting allocation based on biomarkers, the effects of target therapies can be isolated and quantified. Moreover, and considering developing nations and resource-limited settings, precision oncology could offer a tool to reduce cancer-related disability and hospital costs. In addition, developing nations also present patients with rare tumors that lack a chance of treatment, outside of clinical trials. This, in turn, offers the possibility for international collaboration, and contributes to employment, education, and health service provisions. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Andrés F. Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Calle 116 No. 9-72, c. 318, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCaN), México city, México
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | | | | | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
- Pathology Department, Mayo Clinic, Rochester, Minnesota, Estados Unidos
| | - Luis Raez
- Thoracic Oncology Program, Memorial Cancer Institute (MCI), Florida International University (FIU), Miami, Florida
| | | | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCaN), México city, México
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Christian Rolfo
- Thoracic Medical Oncology and Early Clinical Trials Unit, University of Maryland, Baltimore, MD, USA
| | | | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, Barcelona, Catalunya, Spain
| | - Rafael Rosell
- Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Catalunya, Spain
| |
Collapse
|
35
|
An isoform-selective inhibitor of tropomyosin receptor kinase A behaves as molecular glue. Bioorg Med Chem Lett 2020; 30:126775. [PMID: 31699609 DOI: 10.1016/j.bmcl.2019.126775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The production of TrkA-selective inhibitors is considerably difficult because the kinase domains of TrkA and its isoforms TrkB/C have highly homologous amino acid sequences. Here we describe the structural basis for the acquisition of selectivity for a isoform-selective TrkA inhibitor, namely compound V1. The X-ray structure revealed that V1 acts as a molecular glue to stabilize the symmetrical dimer of the TrkA kinase domains. V1 binds to the ATP-binding site and simultaneously engages in the dimeric interface of TrkA. The region of the dimeric interface in TrkA is not conserved in TrkB/C; thus, dimer formation may be a novel mechanism for the production of selective TrkA inhibitors. The biochemical and biophysical assay results confirmed that V1 selectively inhibited TrkA and induced the dimer formation of TrkA, but not TrkB. The binding pocket at the TrkA dimer interface can be used for the production of new isoform-selective TrkA inhibitors.
Collapse
|
36
|
Wu X, Li Q, Wan S, Zhang J. Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with TrkA kinase. J Biomol Struct Dyn 2019; 39:202-208. [DOI: 10.1080/07391102.2019.1708798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyun Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Qinlan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B, Chawla SP, Bazhenova L, Krauss JC, Chae YK, Barve M, Garrido-Laguna I, Liu SV, Conkling P, John T, Fakih M, Sigal D, Loong HH, Buchschacher GL, Garrido P, Nieva J, Steuer C, Overbeck TR, Bowles DW, Fox E, Riehl T, Chow-Maneval E, Simmons B, Cui N, Johnson A, Eng S, Wilson TR, Demetri GD. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2019; 21:271-282. [PMID: 31838007 DOI: 10.1016/s1470-2045(19)30691-6] [Citation(s) in RCA: 981] [Impact Index Per Article: 196.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Entrectinib is a potent inhibitor of tropomyosin receptor kinase (TRK) A, B, and C, which has been shown to have anti-tumour activity against NTRK gene fusion-positive solid tumours, including CNS activity due to its ability to penetrate the blood-brain barrier. We present an integrated efficacy and safety analysis of patients with metastatic or locally advanced solid tumours harbouring oncogenic NTRK1, NTRK2, and NTRK3 gene fusions treated in three ongoing, early-phase trials. METHODS An integrated database comprised the pivotal datasets of three, ongoing phase 1 or 2 clinical trials (ALKA-372-001, STARTRK-1, and STARTRK-2), which enrolled patients aged 18 years or older with metastatic or locally advanced NTRK fusion-positive solid tumours who received entrectinib orally at a dose of at least 600 mg once per day in a capsule. All patients had an Eastern Cooperative Oncology Group performance status of 0-2 and could have received previous anti-cancer therapy (except previous TRK inhibitors). The primary endpoints, the proportion of patients with an objective response and median duration of response, were evaluated by blinded independent central review in the efficacy-evaluable population (ie, patients with NTRK fusion-positive solid tumours who were TRK inhibitor-naive and had received at least one dose of entrectinib). Overall safety evaluable population included patients from STARTRK-1, STARTRK-2, ALKA-372-001, and STARTRK-NG (NCT02650401; treating young adult and paediatric patients [aged ≤21 years]), who received at least one dose of entrectinib, regardless of tumour type or gene rearrangement. NTRK fusion-positive safety evaluable population comprised all patients who have received at least one dose of entrectinib regardless of dose or follow-up. These ongoing studies are registered with ClinicalTrials.gov, NCT02097810 (STARTRK-1) and NCT02568267 (STARTRK-2), and EudraCT, 2012-000148-88 (ALKA-372-001). FINDINGS Patients were enrolled in ALKA-372-001 from Oct 26, 2012, to March 27, 2018; in STARTRK-1 from Aug 7, 2014, to May 10, 2018; and in STARTRK-2 from Nov 19, 2015 (enrolment is ongoing). At the data cutoff date for this analysis (May 31, 2018) the efficacy-evaluable population comprised 54 adults with advanced or metastatic NTRK fusion-positive solid tumours comprising ten different tumour types and 19 different histologies. Median follow-up was 12.9 months (IQR 8·77-18·76). 31 (57%; 95% CI 43·2-70·8) of 54 patients had an objective response, of which four (7%) were complete responses and 27 (50%) partial reponses. Median duration of response was 10 months (95% CI 7·1 to not estimable). The most common grade 3 or 4 treatment-related adverse events in both safety populations were increased weight (seven [10%] of 68 patients in the NTRK fusion-positive safety population and in 18 [5%] of 355 patients in the overall safety-evaluable population) and anaemia (8 [12%] and 16 [5%]). The most common serious treatment-related adverse events were nervous system disorders (three [4%] of 68 patients and ten [3%] of 355 patients). No treatment-related deaths occurred. INTERPRETATION Entrectinib induced durable and clinically meaningful responses in patients with NTRK fusion-positive solid tumours, and was well tolerated with a manageable safety profile. These results show that entrectinib is a safe and active treatment option for patients with NTRK fusion-positive solid tumours. These data highlight the need to routinely test for NTRK fusions to broaden the therapeutic options available for patients with NTRK fusion-positive solid tumours. FUNDING Ignyta/F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Robert C Doebele
- Division of Medical Oncology, University of Colorado, Aurora, CO, USA
| | - Alexander Drilon
- Weill Cornell Medical College, New York, NY, USA; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, H120H120-CNIO Lung Cancer Clinical Research Unit, Universidad Complutense & Ciberonc, Madrid, Spain
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alice T Shaw
- Department of Oncology and Medical Radiotherapy, Massachusetts General Hospital, Boston, MA, USA
| | - Anna F Farago
- Department of Oncology and Medical Radiotherapy, Massachusetts General Hospital, Boston, MA, USA
| | - Collin M Blakely
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Diego Tosi
- Institut Régional Du Cancer de Montpellier, Montpellier, France
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif Cedex, Paris, France
| | | | - Lyudmila Bazhenova
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - John C Krauss
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Young Kwang Chae
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paul Conkling
- US Oncology Research, Virginia Oncology Associates, Norfolk, VA, USA
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC, Australia
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Darren Sigal
- Scripps Clinic and Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | | | | | - Pilar Garrido
- Department of Medical Oncology, Universidad de Alcalá and Ciberonc, Madrid, Spain; Ramón y Cajal Health Research Institute, Madrid, Spain; Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jorge Nieva
- Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Conor Steuer
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tobias R Overbeck
- Department of Hematology and Oncology, University of Göttingen, Göttingen, Germany
| | | | - Elizabeth Fox
- Department of Developmental Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | - Na Cui
- Genentech, South San Francisco, CA, USA
| | | | - Susan Eng
- Genentech, South San Francisco, CA, USA
| | | | - George D Demetri
- Dana-Farber Cancer Institute and Ludwig Center, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
38
|
Amodeo R, Nifosì R, Giacomelli C, Ravelli C, La Rosa L, Callegari A, Trincavelli ML, Mitola S, Luin S, Marchetti L. Molecular insight on the altered membrane trafficking of TrkA kinase dead mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118614. [PMID: 31760089 DOI: 10.1016/j.bbamcr.2019.118614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking.
Collapse
Affiliation(s)
- Rosy Amodeo
- NEST, Scuola Normale Superiore, Pisa, Italy; Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore, Pisa, Italy; NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | | | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Luin
- NEST, Scuola Normale Superiore, Pisa, Italy; NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy; Department of Pharmacy, University of Pisa, Pisa, Italy.
| |
Collapse
|
39
|
Shen J, Sun D, Shao J, Chen Y, Pang K, Guo W, Lu B. Extracellular Juxtamembrane Motif Critical for TrkB Preformed Dimer and Activation. Cells 2019; 8:cells8080932. [PMID: 31430955 PMCID: PMC6721692 DOI: 10.3390/cells8080932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023] Open
Abstract
Receptor tyrosine kinases are believed to be activated through ligand-induced dimerization. We now demonstrate that in cultured neurons, a substantial amount of endogenous TrkB, the receptor for brain-derived neurotrophic factor (BDNF), exists as an inactive preformed dimer, and the application of BDNF activates the pre-existing dimer. Deletion of the extracellular juxtamembrane motif (EJM) of TrkB increased the amount of preformed dimer, suggesting an inhibitory role of EJM on dimer formation. Further, binding of an agonistic antibody (MM12) specific to human TrkB-EJM activated the full-length TrkB and unexpectedly also truncated TrkB lacking ECD (TrkBdelECD365), suggesting that TrkB is activated by attenuating the inhibitory effect of EJM through MM12 binding-induced conformational changes. Finally, in cells co-expressing rat and human TrkB, MM12 could only activate TrkB human-human dimer but not TrkB human-rat TrkB dimer, indicating that MM12 binding to two TrkB monomers is required for activation. Our results support a model that TrkB preforms as an inactive dimer and BDNF induces TrkB conformation changes leading to its activation.
Collapse
Affiliation(s)
- Jianying Shen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100084, China
| | - Dang Sun
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingyu Shao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yanbo Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- R & D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
- R & D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
40
|
Subramanian G, Johnson PD, Zachary T, Roush N, Zhu Y, Bowen SJ, Janssen A, Duclos BA, Williams T, Javens C, Shalaly ND, Molina DM, Wittwer AJ, Hirsch JL. Deciphering the Allosteric Binding Mechanism of the Human Tropomyosin Receptor Kinase A ( hTrkA) Inhibitors. ACS Chem Biol 2019; 14:1205-1216. [PMID: 31059222 DOI: 10.1021/acschembio.9b00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Access to cryptic binding pockets or allosteric sites on a kinase that present themselves when the enzyme is in a specific conformational state offers a paradigm shift in designing the next generation small molecule kinase inhibitors. The current work showcases an extensive and exhaustive array of in vitro biochemical and biophysical tools and techniques deployed along with structural biology efforts of inhibitor-bound kinase complexes to characterize and confirm the cryptic allosteric binding pocket and docking mode of the small molecule actives identified for hTrkA. Specifically, assays were designed and implemented to lock the kinase in a predominantly active or inactive conformation and the effect of the kinase inhibitor probed to understand the hTrkA binding and hTrkB selectivity. The current outcome suggests that inhibitors with a fast association rate take advantage of the inactive protein conformation and lock the kinase state by also exhibiting a slow off-rate. This in turn shifts the inactive/active state protein conformational equilibrium cycle, affecting the subsequent downstream signaling.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Nicole Roush
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Ann Janssen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Brian A. Duclos
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | | | | | - Arthur J. Wittwer
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| | - Jeffrey L. Hirsch
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| |
Collapse
|
41
|
Shirahashi H, Toriihara E, Suenaga Y, Yoshida H, Akaogi K, Endou Y, Wakabayashi M, Takashima M. The discovery of novel 3-aryl-indazole derivatives as peripherally restricted pan-Trk inhibitors for the treatment of pain. Bioorg Med Chem Lett 2019; 29:2320-2326. [PMID: 31235262 DOI: 10.1016/j.bmcl.2019.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
The design, synthesis, and biological evaluation of novel 3-aryl-indazole derivatives as peripherally selective pan-Trk inhibitors are described. Three strategies were used to obtain a potent compound exhibiting low central nervous system (CNS) penetration and high plasma exposure: 1) a structure-based drug design (SBDD) approach was used to improve potency; 2) a substrate for an efflux transporter for lowering brain penetration was explored; and 3) the most basic pKa (pKa-MB) value was used as an indicator to identify compounds with good membrane permeability. This enabled the identification of the peripherally targeted 17c with the potency, kinase-selectivity, and plasma exposure required to demonstrate in vivo efficacy in a Complete Freund's adjuvant (CFA)-induced thermal hypersensitivity model.
Collapse
Affiliation(s)
- Hiromitsu Shirahashi
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan.
| | - Eisuke Toriihara
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Yoshihito Suenaga
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Hideyuki Yoshida
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Kensuke Akaogi
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Yukiko Endou
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Makoto Wakabayashi
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Misato Takashima
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan.
| |
Collapse
|
42
|
Targeting tropomyosin receptor kinase for cancer therapy. Eur J Med Chem 2019; 175:129-148. [PMID: 31077998 DOI: 10.1016/j.ejmech.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
NTRKs and their expression product tropomyosin receptor kinases (Trks) are widely distributed in mammals. While neural growth factor (NGF)-induced normal Trk activation plays a key role in nerve growth, NTRK alternations occurring in tumor cells were highly correlated to tumor progression and invasion. Recent clinical data from several pan-Trk inhibitors have demonstrated potential and broad applications in various cancers. This intrigues us to summarize the development of inhibitors targeting Trks with different mechanisms of action and their applications in cancer therapy. We believe that this perspective would be of great help in investigating novel anticancer drugs with better therapeutic index.
Collapse
|
43
|
Lodovichi S, Mercatanti A, Cervelli T, Galli A. Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets. Oncotarget 2019; 10:2722-2737. [PMID: 31105872 PMCID: PMC6505629 DOI: 10.18632/oncotarget.26812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy.,PhD Student in Clinical and Translational Science Program, University of Pisa, Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| |
Collapse
|
44
|
Iacobucci I, Wen J, Meggendorfer M, Choi JK, Shi L, Pounds SB, Carmichael CL, Masih KE, Morris SM, Lindsley RC, Janke LJ, Alexander TB, Song G, Qu C, Li Y, Payne-Turner D, Tomizawa D, Kiyokawa N, Valentine M, Valentine V, Basso G, Locatelli F, Enemark EJ, Kham SKY, Yeoh AEJ, Ma X, Zhou X, Sioson E, Rusch M, Ries RE, Stieglitz E, Hunger SP, Wei AH, To LB, Lewis ID, D'Andrea RJ, Kile BT, Brown AL, Scott HS, Hahn CN, Marlton P, Pei D, Cheng C, Loh ML, Ebert BL, Meshinchi S, Haferlach T, Mullighan CG. Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nat Genet 2019; 51:694-704. [PMID: 30926971 PMCID: PMC6828160 DOI: 10.1038/s41588-019-0375-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders and defined five age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1 mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; and pediatric, NUP98 rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 overexpression being associated with a favorable prognosis and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases and included recurrent mutations of ALK and NTRK1, the latter of which drives erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - John K Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Catherine L Carmichael
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Katherine E Masih
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah M Morris
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Thomas B Alexander
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuseppe Basso
- Clinic of Paediatric Haematology and Oncology, Department for Children's and Women's Health, University of Padua, Padua, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Franco Locatelli
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University of Rome, Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Eric J Enemark
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shirley K Y Kham
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Allen E J Yeoh
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Wei
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - L Bik To
- Departments of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ian D Lewis
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Richard J D'Andrea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Benjamin T Kile
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anna L Brown
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Paula Marlton
- Princess Alexandra Hospital and University of Queensland School of Clinical Medicine, Brisbane, Queensland, Australia
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light. Nat Commun 2019; 10:1129. [PMID: 30850602 PMCID: PMC6408446 DOI: 10.1038/s41467-019-08988-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | | | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
46
|
Meng L, Liu B, Ji R, Jiang X, Yan X, Xin Y. Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett 2018; 17:2031-2039. [PMID: 30675270 DOI: 10.3892/ol.2018.9854] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are a family of growth factors that regulate neural survival, development, function and plasticity in the central and the peripheral nervous system. There are four neurotrophins: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4. Among them, BDNF is the most studied due to its high expression in the brain. Over the past two decades, BDNF and its receptor tropomyosin receptor kinase B (TrkB) have been reported to be upregulated in a wide range of tumors. This activated signal stimulates a series of downstream pathways, including phosphoinositide 3-kinase/protein kinase B, Ras-Raf-mitogen activated protein kinase kinase-extracellular signal-regulated kinases, the phospholipase-C-γ pathway and the transactivation of epidermal growth factor receptor. Activation of these signaling pathways induces oncogenic effects by increasing cancer cell growth, proliferation, survival, migration and epithelial to mesenchymal transition, and decreasing anoikis, relapse and chemotherapeutic sensitivity. The present review summarizes recent findings to discuss the role of BDNF in tumors, the underlying molecular mechanism, targeting Trk receptors for treatment of cancers and its potential risk.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Baoqiong Liu
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Rui Ji
- Department of Biology, Valencia College, Orlando, FL 32825, USA
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuebo Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
47
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
48
|
Singh R, Karri D, Shen H, Shao J, Dasgupta S, Huang S, Edwards DP, Ittmann MM, O'Malley BW, Yi P. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J Clin Invest 2018; 128:3129-3143. [PMID: 29715200 DOI: 10.1172/jci96060] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/27/2018] [Indexed: 12/29/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are important drivers of cancers. In addition to genomic alterations, aberrant activation of WT RTKs plays an important role in driving cancer progression. However, the mechanisms underlying how RTKs drive prostate cancer remain incompletely characterized. Here we show that non-proteolytic ubiquitination of RTK regulates its kinase activity and contributes to RTK-mediated prostate cancer metastasis. TRAF4, an E3 ubiquitin ligase, is highly expressed in metastatic prostate cancer. We demonstrated here that it is a key player in regulating RTK-mediated prostate cancer metastasis. We further identified TrkA, a neurotrophin RTK, as a TRAF4-targeted ubiquitination substrate that promotes cancer cell invasion and found that inhibition of TrkA activity abolished TRAF4-dependent cell invasion. TRAF4 promoted K27- and K29-linked ubiquitination at the TrkA kinase domain and increased its kinase activity. Mutation of TRAF4-targeted ubiquitination sites abolished TrkA tyrosine autophosphorylation and its interaction with downstream proteins. TRAF4 knockdown also suppressed nerve growth factor (NGF) stimulated TrkA downstream p38 MAPK activation and invasion-associated gene expression. Furthermore, elevated TRAF4 levels significantly correlated with increased NGF-stimulated invasion-associated gene expression in prostate cancer patients, indicating that this signaling axis is significantly activated during oncogenesis. Our results revealed a posttranslational modification mechanism contributing to aberrant non-mutated RTK activation in cancer cells.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dileep Karri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jiangyong Shao
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Dan L. Duncan Comprehensive Cancer Center and
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Different roles of circular RNAs with protein coding potentials. Biochem Biophys Res Commun 2018; 500:907-909. [DOI: 10.1016/j.bbrc.2018.04.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
|
50
|
Liu Z, Liu J, Liu G, Cao W, Liu S, Chen Y, Zuo Y, Chen W, Chen J, Zhang Y, Huang S, Qiu G, Giampietro PF, Zhang F, Wu Z, Wu N. Phenotypic heterogeneity of intellectual disability in patients with congenital insensitivity to pain with anhidrosis: A case report and literature review. J Int Med Res 2018; 46:2445-2457. [PMID: 29619836 PMCID: PMC6023048 DOI: 10.1177/0300060517747164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive heterogeneous disorder mainly caused by mutations in the neurotrophic tyrosine receptor kinase 1 gene (NTRK1) and characterized by insensitivity to noxious stimuli, anhidrosis, and intellectual disability. We herein report the first north Han Chinese patient with CIPA who exhibited classic phenotypic features and severe intellectual disability caused by a homozygous c.851-33T>A mutation of NTRK1, resulting in aberrant splicing and an open reading frame shift. We reviewed the literature and performed in silico analysis to determine the association between mutations and intellectual disability in patients with CIPA. We found that intellectual disability was correlated with the specific Ntrk1 protein domain that a mutation jeopardized. Mutations located peripheral to the Ntrk1 protein do not influence important functional domains and tend to cause milder symptoms without intellectual disability. Mutations that involve critical amino acids in the protein are prone to cause severe symptoms, including intellectual disability.
Collapse
Affiliation(s)
- Zhenlei Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,2 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China.,*These authors contributed equally to this work
| | - Jiaqi Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,3 Breast Surgical Oncology, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, PR China.,*These authors contributed equally to this work
| | - Gang Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,*These authors contributed equally to this work
| | - Wenjian Cao
- 5 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Sen Liu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Yixin Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yuzhi Zuo
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Weisheng Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jun Chen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yu Zhang
- 6 Berry Genomics Co., Ltd., Beijing, PR China
| | - Shishu Huang
- 7 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guixing Qiu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| | - Philip F Giampietro
- 8 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Feng Zhang
- 4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,5 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhihong Wu
- 4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China.,9 Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Nan Wu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.,4 Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, PR China
| |
Collapse
|