1
|
Kuru E, Rittichier J, de Puig H, Flores A, Rout S, Han I, Reese AE, Bartlett TM, De Moliner F, Bernier SG, Galpin JD, Marchand J, Bedell W, Robinson-McCarthy L, Ahern CA, Bernhardt TG, Rudner DZ, Collins JJ, Vendrell M, Church GM. Rapid discovery and evolution of nanosensors containing fluorogenic amino acids. Nat Commun 2024; 15:7531. [PMID: 39237489 PMCID: PMC11377706 DOI: 10.1038/s41467-024-50956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Binding-activated optical sensors are powerful tools for imaging, diagnostics, and biomolecular sensing. However, biosensor discovery is slow and requires tedious steps in rational design, screening, and characterization. Here we report on a platform that streamlines biosensor discovery and unlocks directed nanosensor evolution through genetically encodable fluorogenic amino acids (FgAAs). Building on the classical knowledge-based semisynthetic approach, we engineer ~15 kDa nanosensors that recognize specific proteins, peptides, and small molecules with up to 100-fold fluorescence increases and subsecond kinetics, allowing real-time and wash-free target sensing and live-cell bioimaging. An optimized genetic code expansion chemistry with FgAAs further enables rapid (~3 h) ribosomal nanosensor discovery via the cell-free translation of hundreds of candidates in parallel and directed nanosensor evolution with improved variant-specific sensitivities (up to ~250-fold) for SARS-CoV-2 antigens. Altogether, this platform could accelerate the discovery of fluorogenic nanosensors and pave the way to modify proteins with other non-standard functionalities for diverse applications.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Helena de Puig
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Flores
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Subhrajit Rout
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Isaac Han
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Abigail E Reese
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Thomas M Bartlett
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fabio De Moliner
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sylvie G Bernier
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Jorge Marchand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - William Bedell
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Prentice JA, Kasivisweswaran S, van de Weerd R, Bridges AA. Biofilm dispersal patterns revealed using far-red fluorogenic probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603607. [PMID: 39071379 PMCID: PMC11275749 DOI: 10.1101/2024.07.15.603607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious. Here, we characterize dispersal at unprecedented resolution for the global pathogen Vibrio cholerae. To do so, we first developed a far-red cell-labeling strategy that overcomes pitfalls of fluorescent protein-based approaches. We reveal that dispersal initiates at the biofilm periphery and ~25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression and the formation of dynamic channels. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate.
Collapse
Affiliation(s)
- Jojo A. Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| | | | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh PA, USA
| | - Andrew A. Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA
| |
Collapse
|
4
|
Adam K, Lipatova Z, Raja MAG, Mishra AK, Mariuzza RA, Workman CJ, Vignali DA. Cutting Edge: LAG3 Dimerization Is Required for TCR/CD3 Interaction and Inhibition of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:7-13. [PMID: 38775415 PMCID: PMC11182711 DOI: 10.4049/jimmunol.2300673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/28/2024] [Indexed: 05/30/2024]
Abstract
Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.
Collapse
MESH Headings
- Lymphocyte Activation Gene 3 Protein
- Animals
- Mice
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Protein Multimerization
- CD8-Positive T-Lymphocytes/immunology
- Melanoma, Experimental/immunology
- Mice, Inbred C57BL
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- CD3 Complex/immunology
- Humans
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Lymphocyte Activation/immunology
- Protein Binding
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhanna Lipatova
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Maria Abdul Ghafoor Raja
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arjun K. Mishra
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Biosciences and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Biosciences and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
5
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
6
|
Li L, Han J, Lo HYG, Tam W, Jia H, Tse E, Taliaferro J, Li Y. Symmetry-breaking malachite green as a near-infrared light-activated fluorogenic photosensitizer for RNA proximity labeling. Nucleic Acids Res 2024; 52:e36. [PMID: 38407347 PMCID: PMC11040151 DOI: 10.1093/nar/gkae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cellular RNA is asymmetrically distributed in cells and the regulation of RNA localization is crucial for proper cellular functions. However, limited chemical tools are available to capture dynamic RNA localization in complex biological systems with high spatiotemporal resolution. Here, we developed a new method for RNA proximity labeling activated by near-infrared (NIR) light, which holds the potential for deep penetration. Our method, termed FAP-seq, utilizes a genetically encoded fluorogen activating protein (FAP) that selectively binds to a set of substrates known as malachite green (MG). FAP binding restricts the rotation of MG and rapidly activates its fluorescence in a wash-free manner. By introducing a monoiodo modification to MG, we created a photosensitizer (MG-HI) with the highest singlet oxygen generation ability among various MG derivatives, enabling both protein and RNA proximity labeling in live cells. New insights are provided in the transcriptome analysis with FAP-seq, while a deeper understanding of the symmetry-breaking structural arrangement of FAP-MG-HI was obtained through molecular dynamics simulations. Overall, our wash-free and NIR light-inducible RNA proximity labeling method (FAP-seq) offers a powerful and versatile approach for investigating complex mechanisms underlying RNA-related biological processes.
Collapse
Affiliation(s)
- Lan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Winnie Wai Ling Tam
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| | - Han Jia
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
- CAS–HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong 999077, China
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| |
Collapse
|
7
|
Prentice JA, van de Weerd R, Bridges AA. Cell-lysis sensing drives biofilm formation in Vibrio cholerae. Nat Commun 2024; 15:2018. [PMID: 38443393 PMCID: PMC10914755 DOI: 10.1038/s41467-024-46399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Matrix-encapsulated communities of bacteria, called biofilms, are ubiquitous in the environment and are notoriously difficult to eliminate in clinical and industrial settings. Biofilm formation likely evolved as a mechanism to protect resident cells from environmental challenges, yet how bacteria undergo threat assessment to inform biofilm development remains unclear. Here we find that population-level cell lysis events induce the formation of biofilms by surviving Vibrio cholerae cells. Survivors detect threats by sensing a cellular component released through cell lysis, which we identify as norspermidine. Lysis sensing occurs via the MbaA receptor with genus-level specificity, and responsive biofilm cells are shielded from phage infection and attacks from other bacteria. Thus, our work uncovers a connection between bacterial lysis and biofilm formation that may be broadly conserved among microorganisms.
Collapse
Affiliation(s)
- Jojo A Prentice
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robert van de Weerd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew A Bridges
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hickman SJ, Miller HL, Bukys A, Kapanidis AN, Berks BC. Aberrant Topologies of Bacterial Membrane Proteins Revealed by High Sensitivity Fluorescence Labelling. J Mol Biol 2024; 436:168368. [PMID: 37977298 DOI: 10.1016/j.jmb.2023.168368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.
Collapse
Affiliation(s)
- Samuel J Hickman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Alfredas Bukys
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Road, Oxford OX1 3QU, United Kingdom.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
9
|
Deng Z, Li L, Jia H, Li NF, He J, Li MD, Phillips DL, Li Y. Insights into the Photodynamics of Fluorescence Emission and Singlet Oxygen Generation of Fluorogen Activating Protein-Malachite Green Systems. Chemistry 2023; 29:e202203684. [PMID: 36453719 DOI: 10.1002/chem.202203684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The self-assembled fluorogen activating protein (FAP)-malachite green (MG) complex is a well-established protein-ligand system, which can realize binding-caused fluorescence turn-on of MG and singlet oxygen (1 O2 ) generation by MG iodination. To clarify the mechanism of fluorescence activation and 1 O2 generation, the photodynamics of different halogen-substituted MG derivatives and their corresponding FAP-MG complexes were studied by femtosecond transient absorption spectroscopy and theoretical computations. The results show that the rotation of MG is restricted by FAP binding, which prevents a rapid internal conversion to allow a longer lifetime for the excited MG to undergo fluorescence emission and intersystem crossing. Moreover, these FAP-MG complexes exhibit notably varied fluorescence quantum yields (ΦFL ) and 1 O2 yields. The study on the decay pathways indicates that such an anti-heavy atom effect predominately stems from the lifetimes of the excited-state species. The photodynamic mechanism study here will lead to more advanced FAP-MG systems with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Han Jia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nga-Fong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and, Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou, 515063, Guangdong, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and, Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou, 515063, Guangdong, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Szent-Gyorgyi C, Perkins LA, Schmidt BF, Liu Z, Bruchez MP, van de Weerd R. Bottom-Up Design: A Modular Golden Gate Assembly Platform of Yeast Plasmids for Simultaneous Secretion and Surface Display of Distinct FAP Fusion Proteins. ACS Synth Biol 2022; 11:3681-3698. [PMID: 36260923 DOI: 10.1021/acssynbio.2c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A need in synthetic biology is the ability to precisely and efficiently make flexible fully designed vectors that addresses challenging cloning strategies of single plasmids that rely on combinatorial co-expression of a multitude of target and bait fusion reporters useful in projects like library screens. For these strategies, the regulatory elements and functional components need to correspond perfectly to project specific sequence elements that facilitate easy exchange of these elements. This requires systematic implementation and building on recent improvements in Golden Gate (GG) that ensures high cloning efficiency for such complex vectors. Currently, this is not addressed in the variety of molecular GG cloning techniques in synthetic biology. Here, we present the bottom-up design and plasmid synthesis to prepare 10 kb functional yeast secrete and display plasmids that uses an optimized version of GG in combination with fluorogen-activating protein reporter technology. This allowed us to demonstrate nanobody/target protein interactions in a single cell, as detected by cell surface retention of secreted target proteins by cognate nanobodies. This validates the GG constructional approach and suggests a new approach for discovering protein interactions. Our GG assembly platform paves the way for vector-based library screening and can be used for other recombinant GG platforms.
Collapse
Affiliation(s)
- Christopher Szent-Gyorgyi
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhen Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert van de Weerd
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Guo Y, Song M, Liu X, Chen Y, Xun Z, Sun Y, Tan W, He J, Zheng JH. Photodynamic therapy-improved oncolytic bacterial immunotherapy with FAP-encoding S. typhimurium. J Control Release 2022; 351:860-871. [PMID: 36181917 DOI: 10.1016/j.jconrel.2022.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
Abstract
Genetically engineered bacterial cancer therapy presents several advantages over conventional therapies. However, the anticancer effects of bacterium-based therapies remain insufficient, and serious side effects may be incurred with the increase in therapeutic dosages. Photodynamic therapy (PDT) suppresses tumor growth by producing reactive oxygen species (ROS) through specific laser-activated photosensitizers (PSs). Tumor-specific PS delivery and activatable ROS generation are two critical aspects for PDT advancement. Here, we propose PDT-enhanced oncolytic bacterial immunotherapy (OBI) by using genetically engineered avirulent Salmonella expressing a fluorogen-activating protein (FAP). Upon binding to a fluorogen, FAP could be activated and generate fluorescence and ROS. The instant activation of persistent fluorescence was detected in tumors through bacterium-based imaging. In a colon cancer model, PDT-OBI showed an enhanced tumor inhibition effect and prolonged animal survival. Mechanically, PDT generated ROS, resulting in the killing of cancer cells and over-accumulated bacteria. The pathogen-associated molecular patterns and damage-associated molecular patterns released from the destroyed bacteria and cancer cells recruited and activated immune cells (macrophages, neutrophils, and dendritic cells), which released additional proinflammatory cytokines (TNF-α and IL-1β); reduced anti-inflammatory cytokines (IL-10); and further enhanced immune cell infiltration in a positive-feedback manner, thus reducing bacterium-induced side effects and improving anticancer activities. This synergistic therapy has promising potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Mingxia Song
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoqing Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yu Chen
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhen Xun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yujie Sun
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jianjun He
- School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
12
|
Tomares DT, Whitlock S, Mann M, DiBernardo E, Childers WS. Repurposing Peptide Nanomaterials as Synthetic Biomolecular Condensates in Bacteria. ACS Synth Biol 2022; 11:2154-2162. [PMID: 35658421 DOI: 10.1021/acssynbio.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nanomaterials exhibit diverse applications in vitro, such as drug delivery. Here, we consider the utility of de novo peptide nanomaterials to organize biochemistry within the bacterial cytoplasm. Toward this goal, we discovered that ABC coiled-coil triblock peptides form gel-like biomolecular condensates with a csat of 10 μM in addition to their well-known hydrogel-forming capabilities. Expression of the coiled-coil triblock peptides in bacteria leads to cell pole accumulation via a nucleoid occlusion mechanism. We then provide a proof of principle that these synthetic biomolecular condensates could sequester clients at the cell pole. Finally, we demonstrate that triblock peptides and another biomolecular condensate, RNase E, phase-separate as distinct protein-rich assemblies in vitro and in vivo. These results reveal the potential of using peptide nanomaterials to divide the bacterial cytoplasm into distinct subcellular zones with future metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Whitlock
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew Mann
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emma DiBernardo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Chen G, Li Q, Yan J. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions. J Biol Chem 2022; 298:101664. [PMID: 35104503 PMCID: PMC8892010 DOI: 10.1016/j.jbc.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain-containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1-3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1-3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate Programs of Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
14
|
He J, Zhou Y, Liu Y, Guo R, Jiang J, Bruchez MP. Fluorogen-Activating-Protein-Loaded Tantalum Oxide Nanoshells for in Vivo On-Demand Fluorescence/Photoacoustic Imaging. ACS APPLIED BIO MATERIALS 2022; 5:1057-1063. [PMID: 35191667 DOI: 10.1021/acsabm.1c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical imaging of targeted compartments within living animals has been widely adopted in many research areas. In particular, various fluorescence-based probes and emerged photoacoustic molecules that enable sensitive and specific imaging through tissue have greatly advanced clinically relevant studies. However, delivery and signal penetration have placed requirements on the performance of conventional optical probes. Here, we use hallow tantalum oxide (TaOx) nanoparticles to enclose fluorogen-activating protein (FAP) for the in vivo fluorescence and photoacoustic imaging of cancer cells. We found that the TaOx shell can provide a natural cover for the enclosed fluorogen/FAP complexes, protecting them from photobleaching and common biodegradation. Moreover, we have developed a near-infrared excitable tetrafluorinated photoacoustic fluorogen for the specific and persistent photoacoustic imaging of tumors. We believe that this enclosing and delivery strategy of optical biomolecules will be an attractive alternative for bioimaging.
Collapse
Affiliation(s)
- Jianjun He
- College of Biology, Hunan University, Changsha 410082, China
| | - Yancen Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Yinxia Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Department of Biological Sciences, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
| |
Collapse
|
15
|
Computerized fluorescence microscopy of microbial cells. World J Microbiol Biotechnol 2021; 37:189. [PMID: 34617135 DOI: 10.1007/s11274-021-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
The upgrading of fluorescence microscopy by the introduction of computer technologies has led to the creation of a new methodology, computerized fluorescence microscopy (CFM). CFM improves subjective visualization and combines it with objective quantitative analysis of the microscopic data. CFM has opened up two fundamentally new opportunities for studying microorganisms. The first is the quantitative measurement of the fluorescence parameters of the targeted fluorophores in association with certain structures of individual cells. The second is the expansion of the boundaries of visualization/resolution of intracellular components beyond the "diffraction limit" of light microscopy into the nanometer range. This enables to obtain unique information about the localization and dynamics of intracellular processes at the molecular level. The purpose of this review is to demonstrate the potential of CFM in the study of fundamental aspects of the structural and functional organization of microbial cells. The basics of computer processing and analysis of digital images are briefly described. The fluorescent molecules used in CFM with an emphasis on fluorescent proteins are characterized. The main methods of super-resolution microscopy (nanoscopy) are presented. The capabilities of various CFM methods for exploring microbial cells at the subcellular level are illustrated by the examples of various studies on yeast and bacteria.
Collapse
|
16
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Lombardi JP, Kinzlmaier DA, Jacob TC. Visualizing GABA A Receptor Trafficking Dynamics with Fluorogenic Protein Labeling. ACTA ACUST UNITED AC 2021; 92:e97. [PMID: 32364672 DOI: 10.1002/cpns.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAARs), exhibit highly dynamic trafficking and cell surface mobility. Regulated trafficking to and from the surface is a critical determinant of GABAAR neurotransmission. Receptors delivered by exocytosis diffuse laterally in the plasma membrane, with tethering and reduced movement at synapses occurring through receptor interactions with the subsynaptic scaffold. After diffusion away from synapses, receptors are internalized by clathrin-dependent endocytosis at extrasynaptic sites and can be either recycled back to the cell membrane or degraded in lysosomes. To study the dynamics of these key trafficking events in neurons, we have developed novel optical methods based around receptors containing a dual-tagged γ2 subunit (γ2pHFAP) in combination with fluorogen dyes. Specifically, the GABAAR γ2 subunit is tagged with a pH-sensitive green fluorescent protein and a fluorogen-activating peptide (FAP). The FAP allows receptor labeling with fluorogen dyes that are optically silent until bound to the FAP. Combining FAP and fluorescent imaging with organelle labeling allows novel and accurate measurement of receptor turnover and accumulation into intracellular compartments under basal conditions in scenarios ranging from in vitro seizure models to drug exposure paradigms. Here we provide a protocol to track and quantify receptors in transit from the neuronal surface to endosomes and lysosomes. This protocol is readily applicable to cell lines and primary cells, allowing rapid quantitative measurements of receptor surface levels and postendocytic trafficking decisions. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of cortical neuronal cultures for imaging assays Basic Protocol 2: Surface receptor internalization and trafficking to early endosomes Basic Protocol 3: Measurement of receptor steady state surface level, synaptic level, and lysosomal targeting.
Collapse
Affiliation(s)
- Jacob P Lombardi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Kinzlmaier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Temporally and spatially partitioned neuropeptide release from individual clock neurons. Proc Natl Acad Sci U S A 2021; 118:2101818118. [PMID: 33875606 DOI: 10.1073/pnas.2101818118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides control rhythmic behaviors, but the timing and location of their release within circuits is unknown. Here, imaging in the brain shows that synaptic neuropeptide release by Drosophila clock neurons is diurnal, peaking at times of day that were not anticipated by prior electrical and Ca2+ data. Furthermore, hours before peak synaptic neuropeptide release, neuropeptide release occurs at the soma, a neuronal compartment that has not been implicated in peptidergic transmission. The timing disparity between release at the soma and terminals results from independent and compartmentalized mechanisms for daily rhythmic release: consistent with conventional electrical activity-triggered synaptic transmission, terminals require Ca2+ influx, while somatic neuropeptide release is triggered by the biochemical signal IP3 Upon disrupting the somatic mechanism, the rhythm of terminal release and locomotor activity period are unaffected, but the number of flies with rhythmic behavior and sleep-wake balance are reduced. These results support the conclusion that somatic neuropeptide release controls specific features of clock neuron-dependent behaviors. Thus, compartment-specific mechanisms within individual clock neurons produce temporally and spatially partitioned neuropeptide release to expand the peptidergic connectome underlying daily rhythmic behaviors.
Collapse
|
19
|
Dichmann L, Bregnhøj M, Liu H, Westberg M, Poulsen TB, Etzerodt M, Ogilby PR. Photophysics of a protein-bound derivative of malachite green that sensitizes the production of singlet oxygen. Photochem Photobiol Sci 2021; 20:435-449. [DOI: 10.1007/s43630-021-00032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
|
20
|
Casey GR, Zhou X, Lesiak L, Xu B, Fang Y, Becker DF, Stains CI. An Evolutionary Strategy for Identification of Higher Order, Green Fluorescent Host-Guest Pairs Compatible with Living Systems. Chemistry 2020; 26:16721-16726. [PMID: 32725914 DOI: 10.1002/chem.202002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Indexed: 11/09/2022]
Abstract
Engineered miniprotein host-small-molecule guest pairs could be utilized to design new processes within cells as well as investigate fundamental aspects of cell signaling mechanisms. However, the development of host-guest pairs capable of functioning in living systems has proven challenging. Moreover, few examples of host-guest pairs with stoichiometries other than 2:1 exist, significantly hindering the ability to study the influence of oligomerization state on signaling fidelity. Herein, we present an approach to identify host-guest systems for relatively small green fluorescent guests by incorporation into cyclic peptides. The optimal host-guest pair produced a 10-fold increase in green fluorescence signal upon binding. Biophysical characterization clearly demonstrated higher order supramolecular assembly, which could be visualized on the surface of living yeast cells using a turn-on fluorescence readout. This work further defines evolutionary design principles to afford host-guest pairs with stoichiometries other than 2:1 and enables the identification of spectrally orthogonal host-guest pairs.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, 63701, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bi Xu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
21
|
Gu B, Comerci CJ, McCarthy DG, Saurabh S, Moerner WE, Wysocka J. Opposing Effects of Cohesin and Transcription on CTCF Organization Revealed by Super-resolution Imaging. Mol Cell 2020; 80:699-711.e7. [PMID: 33091336 PMCID: PMC7725164 DOI: 10.1016/j.molcel.2020.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
CCCTC-binding factor (CTCF) and cohesin play critical roles in organizing mammalian genomes into topologically associating domains (TADs). Here, by combining genetic engineering with quantitative super-resolution stimulated emission depletion (STED) microscopy, we demonstrate that in living cells, CTCF forms clusters typically containing 2-8 molecules. A fraction of CTCF clusters, enriched for those with ≥3 molecules, are coupled with cohesin complexes with a characteristic physical distance suggestive of a defined molecular interaction. Acute degradation of the cohesin unloader WAPL or transcriptional inhibition (TI) result in increased CTCF clustering. Furthermore, the effect of TI on CTCF clusters is alleviated by the acute loss of the cohesin subunit SMC3. Our study provides quantitative characterization of CTCF clusters in living cells, uncovers the opposing effects of cohesin and transcription on CTCF clustering, and highlights the power of quantitative super-resolution microscopy as a tool to bridge the gap between biochemical and genomic methodologies in chromatin research.
Collapse
Affiliation(s)
- Bo Gu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Colin J Comerci
- Department of Chemistry, Stanford University, Stanford, CA, USA; Biophysics Program, Stanford University, Stanford, CA, USA
| | | | - Saumya Saurabh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA; Biophysics Program, Stanford University, Stanford, CA, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Carpenter MA, Wang Y, Telmer CA, Schmidt BF, Yang Z, Bruchez MP. Protein Proximity Observed Using Fluorogen Activating Protein and Dye Activated by Proximal Anchoring (FAP-DAPA) System. ACS Chem Biol 2020; 15:2433-2443. [PMID: 32786268 DOI: 10.1021/acschembio.0c00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development and function of tissues, blood, and the immune system is dependent upon proximity for cellular recognition and communication. However, the detection of cell-to-cell contacts is limited due to a lack of reversible, quantitative probes that can function at these dynamic sites of irregular geometry. Described here is a novel chemo-genetic tool developed for fluorescent detection of protein-protein proximity and cell apposition that utilizes the Fluorogen Activating Protein (FAP) in combination with a Dye Activated by Proximal Anchoring (DAPA). The FAP-DAPA system has two protein components, the HaloTag and FAP, expressed on separate protein targets or in separate cells. The proteins function to bind and activate a compound that has the hexyl chloride (HexCl) ligand connected to malachite green (MG), the FAP fluorogen, via a poly(ethylene glycol) spacer spanning up to 28 nm. The dehalogenase protein, HaloTag, covalently binds the HexCl ligand, locally concentrating the attached MG. If the FAP is within range of the anchored fluorogen, it will bind and activate MG specifically when the bath concentration is too low to saturate the FAP receptor. A new FAP variant was isolated with a 1000-fold reduced KD of ∼10-100 nM so that the fluorogen activation reports proximity without artificially enhancing it. The system was characterized using purified FRB and FKBP fusion proteins and showed a doubling of fluorescence upon rapamycin induced complex formation. In cocultured HEK293 cells (HaloTag and FAP-expressing) fluorescence increased at contact sites across a broad range of labeling conditions, more reliably providing contact-specific fluorescence activation with the lower-affinity FAP variant. When combined with suitable targeting and expression constructs, this labeling system may offer significant improvements in on-demand detection of intercellular contacts, potentially applicable in neurological and immunological synapse measurements and other transient, dynamic biological appositions that can be perturbed using other labeling methods that stabilize these interactions.
Collapse
Affiliation(s)
- M. Alexandra Carpenter
- Carnegie Mellon University, Department of Chemistry, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Cheryl A. Telmer
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F. Schmidt
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhipeng Yang
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P. Bruchez
- Carnegie Mellon University, Department of Chemistry, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Carnegie Mellon University, Molecular Biosensor and Imaging Center, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
24
|
Pletneva NV, Goryacheva EA, Artemyev IV, Arkhipova SF, Pletnev VZ. Fluorescent Tags in Biology: Three-Dimensional Structure. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Bailly C, Vergoten G. Protein homodimer sequestration with small molecules: Focus on PD-L1. Biochem Pharmacol 2020; 174:113821. [DOI: 10.1016/j.bcp.2020.113821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
|
26
|
Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE, Kolodieznyi D, Calderon MJ, Stolz DB, Opresko PL, St Croix CM, Watkins S, Van Houten B, Bruchez MP, Burton EA. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. eLife 2020; 9:e51845. [PMID: 32180546 PMCID: PMC7077989 DOI: 10.7554/elife.51845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of multiple neurological diseases, but elucidation of underlying mechanisms is limited experimentally by the inability to damage specific mitochondria in defined neuronal groups. We developed a precision chemoptogenetic approach to target neuronal mitochondria in the intact nervous system in vivo. MG2I, a chemical fluorogen, produces singlet oxygen when bound to the fluorogen-activating protein dL5** and exposed to far-red light. Transgenic zebrafish expressing dL5** within neuronal mitochondria showed dramatic MG2I- and light-dependent neurobehavioral deficits, caused by neuronal bioenergetic crisis and acute neuronal depolarization. These abnormalities resulted from loss of neuronal respiration, associated with mitochondrial fragmentation, swelling and elimination of cristae. Remaining cellular ultrastructure was preserved initially, but cellular pathology downstream of mitochondrial damage eventually culminated in neuronal death. Our work provides powerful new chemoptogenetic tools for investigating mitochondrial homeostasis and pathophysiology and shows a direct relationship between mitochondrial function, neuronal biogenetics and whole-animal behavior.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Binxuan Jiao
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Vladimir A Ilin
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Ming Sun
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
| | | | - Dmytro Kolodieznyi
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
| | - Michael J Calderon
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Donna B Stolz
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
| | - Claudette M St Croix
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Simon Watkins
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Bennett Van Houten
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
- Department of Pharmacology and Chemical Biology, University of PittsburghPittsburghUnited States
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
- Molecular Biosensors and Imaging Center, Carnegie Mellon UniversityPittsburghUnited States
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| |
Collapse
|
27
|
Gallo E. Fluorogen-Activating Proteins: Next-Generation Fluorescence Probes for Biological Research. Bioconjug Chem 2019; 31:16-27. [DOI: 10.1021/acs.bioconjchem.9b00710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Charles Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
28
|
Fluorescence-Based Quantitative Synapse Analysis for Cell Type-Specific Connectomics. eNeuro 2019; 6:ENEURO.0193-19.2019. [PMID: 31548370 PMCID: PMC6873163 DOI: 10.1523/eneuro.0193-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Anatomical methods for determining cell type-specific connectivity are essential to inspire and constrain our understanding of neural circuit function. We developed genetically-encoded reagents for fluorescence-synapse labeling and connectivity analysis in brain tissue, using a fluorogen-activating protein (FAP)-coupled or YFP-coupled, postsynaptically-localized neuroligin-1 (NL-1) targeting sequence (FAP/YFPpost). FAPpost expression did not alter mEPSC or mIPSC properties. Sparse AAV-mediated expression of FAP/YFPpost with the cell-filling, red fluorophore dTomato (dTom) enabled high-throughput, compartment-specific detection of putative synapses across diverse neuron types in mouse somatosensory cortex. We took advantage of the bright, far-red emission of FAPpost puncta for multichannel fluorescence alignment of dendrites, FAPpost puncta, and presynaptic neurites in transgenic mice with saturated labeling of parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP)-expressing neurons using Cre-reporter driven expression of YFP. Subtype-specific inhibitory connectivity onto layer 2/3 (L2/3) neocortical pyramidal (Pyr) neurons was assessed using automated puncta detection and neurite apposition. Quantitative and compartment-specific comparisons show that PV inputs are the predominant source of inhibition at both the soma and the dendrites and were particularly concentrated at the primary apical dendrite. SST inputs were interleaved with PV inputs at all secondary-order and higher-order dendritic branches. These fluorescence-based synapse labeling reagents can facilitate large-scale and cell-type specific quantitation of changes in synaptic connectivity across development, learning, and disease states.
Collapse
|
29
|
Whinn KS, Kaur G, Lewis JS, Schauer GD, Mueller SH, Jergic S, Maynard H, Gan ZY, Naganbabu M, Bruchez MP, O'Donnell ME, Dixon NE, van Oijen AM, Ghodke H. Nuclease dead Cas9 is a programmable roadblock for DNA replication. Sci Rep 2019; 9:13292. [PMID: 31527759 PMCID: PMC6746809 DOI: 10.1038/s41598-019-49837-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.
Collapse
Affiliation(s)
- Kelsey S Whinn
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Gurleen Kaur
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Jacob S Lewis
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Grant D Schauer
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Stefan H Mueller
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Hamish Maynard
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Zhong Yan Gan
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Matharishwan Naganbabu
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Marcel P Bruchez
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Harshad Ghodke
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
30
|
Abstract
Synaptic release of neuropeptides packaged in dense-core vesicles (DCVs) regulates synapses, circuits, and behaviors including feeding, sleeping, and pain perception. Here, synaptic DCV fusion pore openings are imaged without interference from cotransmitting small synaptic vesicles (SSVs) with the use of a fluorogen-activating protein (FAP). Activity-evoked kiss and run exocytosis opens synaptic DCV fusion pores away from active zones that readily conduct molecules larger than most native neuropeptides (i.e., molecular weight [MW] up to, at least, 4.5 kDa). Remarkably, these synaptic fusion pores also open spontaneously in the absence of stimulation and extracellular Ca2+ SNARE perturbations demonstrate different mechanisms for activity-evoked and spontaneous fusion pore openings with the latter sharing features of spontaneous small molecule transmitter release by active zone-associated SSVs. Fusion pore opening at resting synapses provides a mechanism for activity-independent peptidergic transmission.
Collapse
|
31
|
Larsen MB, Perez Verdaguer M, Schmidt BF, Bruchez MP, Watkins SC, Sorkin A. Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis. eLife 2019; 8:46135. [PMID: 31066673 PMCID: PMC6533059 DOI: 10.7554/elife.46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Previously we used gene-editing to label endogenous EGF receptor (EGFR) with GFP and demonstrate that picomolar concentrations of EGFR ligand drive signaling and endocytosis of EGFR in tumors in vivo (Pinilla-Macua et al., 2017). We now use gene-editing to insert a fluorogen activating protein (FAP) in the EGFR extracellular domain. Binding of the tandem dye pair MG-Bis-SA to FAP-EGFR provides a ratiometric pH-sensitive model with dual fluorescence excitation and a single far-red emission. The excitation ratio of fluorescence intensities was demonstrated to faithfully report the fraction of FAP-EGFR located in acidic endosomal/lysosomal compartments. Coupling native FAP-EGFR expression with the high method sensitivity has allowed development of a high-throughput assay to measure the rates of clathrin-mediated FAP-EGFR endocytosis stimulated with physiological EGF concentrations. The assay was utilized to screen a phosphatase siRNA library. These studies highlight the utility of endogenous pH-sensitive FAP-receptor chimeras in high-throughput analysis of endocytosis.
Collapse
Affiliation(s)
- Mads Breum Larsen
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Mireia Perez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, United States.,Sharp Edge Laboratories, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
32
|
Lorenz-Guertin JM, Bambino MJ, Das S, Weintraub ST, Jacob TC. Diazepam Accelerates GABA AR Synaptic Exchange and Alters Intracellular Trafficking. Front Cell Neurosci 2019; 13:163. [PMID: 31080408 PMCID: PMC6497791 DOI: 10.3389/fncel.2019.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.
Collapse
Affiliation(s)
- Joshua M. Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J. Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Ackerman DS, Altun B, Kolodieznyi D, Bruchez MP, Tsourkas A, Jarvik JW. Antibody-Linked Fluorogen-Activating Proteins for Antigen Detection and Cell Ablation. Bioconjug Chem 2018; 30:63-69. [PMID: 30543409 DOI: 10.1021/acs.bioconjchem.8b00720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate selective labeling of cell surface proteins using fluorogen-activating proteins (FAPs) conjugated to standard immunoglobulins (IgGs). Conjugation was achieved with a polypeptide reagent comprised of an N-terminal photoactivatable Fc-binding domain and a C-terminal FAP domain. The resulting FAP-antibody conjugates were effective agents for protein detection and cell ablation in cultured mammalian cells and for visualizing cell-cell contacts using a tethered fluorogen assay. Because our approach allows FAP-antibody conjugates to be generated for most currently available IgGs, it should have broad utility for experimental and therapeutic applications.
Collapse
Affiliation(s)
| | - Burcin Altun
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | | | | - Andrew Tsourkas
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
34
|
Gautier A, Tebo AG. Fluorogenic Protein‐Based Strategies for Detection, Actuation, and Sensing. Bioessays 2018; 40:e1800118. [DOI: 10.1002/bies.201800118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale SupérieurePSL University, Sorbonne Université, CNRS75005 ParisFrance
| | - Alison G. Tebo
- PASTEUR, Département de Chimie, École Normale SupérieurePSL University, Sorbonne Université, CNRS75005 ParisFrance
| |
Collapse
|
35
|
Zeng G, Wang Y, Bruchez MP, Liang FS. Self-Reporting Chemically Induced Protein Proximity System Based on a Malachite Green Derivative and the L5** Fluorogen Activating Protein. Bioconjug Chem 2018; 29:3010-3015. [PMID: 30016083 DOI: 10.1021/acs.bioconjchem.8b00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A unique chemically induced proximity method is engineered based on mutant antibody VL domain using a fluorogenic malachite green derivative as the inducer, which gives fluorescent signals upon VL domain dimerization while simultaneously inducing downstream biological effects.
Collapse
Affiliation(s)
- Guihua Zeng
- Department of Chemistry and Chemical Biology , University of New Mexico , 300 Terrace Street NE , Albuquerque , New Mexico 87131 , United States
| | - Yi Wang
- Department of Chemistry, Department of Biological Sciences, and Molecular Biosensor and Imaging Center , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Marcel P Bruchez
- Department of Chemistry, Department of Biological Sciences, and Molecular Biosensor and Imaging Center , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Fu-Sen Liang
- Department of Chemistry and Chemical Biology , University of New Mexico , 300 Terrace Street NE , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
36
|
Hager NA, Krasowski CJ, Mackie TD, Kolb AR, Needham PG, Augustine AA, Dempsey A, Szent-Gyorgyi C, Bruchez MP, Bain DJ, Kwiatkowski AV, O'Donnell AF, Brodsky JL. Select α-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model. J Biol Chem 2018; 293:11006-11021. [PMID: 29784874 DOI: 10.1074/jbc.ra117.001293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inward rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorogen-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast.
Collapse
Affiliation(s)
- Natalie A Hager
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Collin J Krasowski
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Timothy D Mackie
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Alexander R Kolb
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Patrick G Needham
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew A Augustine
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Alison Dempsey
- the Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Christopher Szent-Gyorgyi
- the Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Marcel P Bruchez
- the Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Daniel J Bain
- the Department of Geology and Environmental Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and
| | - Adam V Kwiatkowski
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Allyson F O'Donnell
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282,
| | - Jeffrey L Brodsky
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
37
|
Xu S, Hu HY. Fluorogen-activating proteins: beyond classical fluorescent proteins. Acta Pharm Sin B 2018; 8:339-348. [PMID: 29881673 PMCID: PMC5989828 DOI: 10.1016/j.apsb.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 01/09/2023] Open
Abstract
Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs)/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
38
|
Perkins LA, Fisher GW, Naganbabu M, Schmidt BF, Mun F, Bruchez MP. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue. Mol Pharm 2018; 15:759-767. [PMID: 29384380 PMCID: PMC5844356 DOI: 10.1021/acs.molpharmaceut.7b00928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The most promising
F508del-CFTR corrector, VX-809, has been unsuccessful
as an effective, stand-alone treatment for CF patients, but the rescue
effect in combination with other drugs may confer an acceptable level
of therapeutic benefit. Targeting cellular factors that modify trafficking
may act to enhance the cell surface density of F508-CFTR with VX-809
correction. Our goal is to identify druggable kinases that enhance
F508del-CFTR rescue and stabilization at the cell surface beyond that
achievable with the VX-809 corrector alone. To achieve this goal,
we implemented a new high-throughput screening paradigm that quickly
and quantitatively measures surface density and total protein in the
same cells. This allowed for rapid screening for increased surface
targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein
(FAP) technology with cell excluded and cell permeant fluorogenic
dyes in a quick, wash-free fluorescent plate reader format on live
cells to first measure F508del-CFTR expressed on the surface and then
the total amount of F508del-CFTR protein present. To screen for kinase
targets, we used Dharmacon’s ON-TARGETplus SMARTpool siRNA Kinase library (715 target kinases) with and without
10 μM VX-809 treatment in triplicate at 37 °C. We identified
several targets that had a significant interaction with VX-809 treatment
in enhancing surface density with siRNA knockdown. Select small-molecule
inhibitors of the kinase targets demonstrated augmented surface expression
with VX-809 treatment.
Collapse
Affiliation(s)
| | | | - Matharishwan Naganbabu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | | | | | | |
Collapse
|
39
|
Warner KD, Sjekloća L, Song W, Filonov GS, Jaffrey SR, Ferré-D’Amaré AR. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol 2017; 13:1195-1201. [PMID: 28945234 PMCID: PMC5663454 DOI: 10.1038/nchembio.2475] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/03/2017] [Indexed: 11/09/2022]
Abstract
Corn, a 28-nucleotide RNA, increases yellow fluorescence of its cognate ligand 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO) by >400-fold. Corn was selected in vitro to overcome limitations of other fluorogenic RNAs, particularly rapid photobleaching. We now report the Corn-DFHO co-crystal structure, discovering that the functional species is a quasisymmetric homodimer. Unusually, the dimer interface, in which six unpaired adenosines break overall two-fold symmetry, lacks any intermolecular base pairs. The homodimer encapsulates one DFHO at its interprotomer interface, sandwiching it with a G-quadruplex from each protomer. Corn and the green-fluorescent Spinach RNA are structurally unrelated. Their convergent use of G-quadruplexes underscores the usefulness of this motif for RNA-induced small-molecule fluorescence. The asymmetric dimer interface of Corn could provide a basis for the development of mutants that only fluoresce as heterodimers. Such variants would be analogous to Split GFP, and may be useful for analyzing RNA co-expression or association, or for designing self-assembling RNA nanostructures.
Collapse
Affiliation(s)
- Katherine Deigan Warner
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| | - Ljiljana Sjekloća
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| | - Wenjiao Song
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Grigory S. Filonov
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell
University, New York, New York, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood
Institute, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Pratt CP, Kuljis DA, Homanics GE, He J, Kolodieznyi D, Dudem S, Hollywood MA, Barth AL, Bruchez MP. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum. Front Cell Neurosci 2017; 11:337. [PMID: 29163049 PMCID: PMC5671578 DOI: 10.3389/fncel.2017.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianjun He
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Lorenz-Guertin JM, Wilcox MR, Zhang M, Larsen MB, Pilli J, Schmidt BF, Bruchez MP, Johnson JW, Waggoner AS, Watkins SC, Jacob TC. A versatile optical tool for studying synaptic GABA A receptor trafficking. J Cell Sci 2017; 130:3933-3945. [PMID: 29025969 DOI: 10.1242/jcs.205286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABAAR) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABAAR γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2pHFAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2pHFAP GABAARs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2pHFAP GABAARs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2pHFAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2pHFAP-MG dye approach reveals enhanced GABAAR turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABAAR trafficking.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Madeleine R Wilcox
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ming Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mads B Larsen
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alan S Waggoner
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Zhang Q, Wang Q, Sun Y, Zuo L, Fetz V, Hu HY. Superior Fluorogen-Activating Protein Probes Based on 3-Indole–Malachite Green. Org Lett 2017; 19:4496-4499. [DOI: 10.1021/acs.orglett.7b02055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Verena Fetz
- Department
of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | |
Collapse
|
43
|
Trachman RJ, Truong L, Ferré-D'Amaré AR. Structural Principles of Fluorescent RNA Aptamers. Trends Pharmacol Sci 2017; 38:928-939. [PMID: 28728963 DOI: 10.1016/j.tips.2017.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 11/26/2022]
Abstract
Several aptamer RNAs have been selected in vitro that bind to otherwise weakly fluorescent small molecules and enhance their fluorescence several thousand-fold. By genetically tagging cellular RNAs of interest with these aptamers and soaking cells in their cell-permeable cognate small-molecule fluorophores, it is possible to use them to study RNA localization and trafficking. These aptamers have also been fused to metabolite-binding RNAs to generate fluorescent biosensors. The 3D structures of three unrelated fluorogenic RNAs have been determined, and reveal a shared reliance on base quadruples (tetrads) to constrain the photo-excited chromophore. The structural diversity of fluorogenic RNAs and the chemical diversity of potential fluorophores to be activated are likely to yield a variety of future fluorogenic RNA tags that are optimized for different applications in RNA imaging and in the design of fluorescent RNA biosensors.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
44
|
Gallo E, Jarvik JW. Breaking the color barrier - a multi-selective antibody reporter offers innovative strategies of fluorescence detection. J Cell Sci 2017; 130:2644-2653. [PMID: 28615413 DOI: 10.1242/jcs.202952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/08/2017] [Indexed: 01/14/2023] Open
Abstract
A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities. Most importantly, as a protein fusion tag to G-protein-coupled receptors, the antibody biosensor retained full activity - displaying bright fluorogen signals with minimal background on live cells. Because fluorogen-activating antibodies interact with their target ligands via non-covalent interactions, we were able to perform advanced multi-color detection strategies on live cells, previously difficult or impossible with conventional reporters. We found that by fine-tuning the concentrations of the different color fluorogen molecules in solution, a user may interchange the fluorescence signal (onset versus offset), execute real-time signal exchange via fluorogen competition, measure multi-channel fluorescence via co-labeling, and assess real-time cell surface receptor traffic via pulse-chase experiments. Thus, here we inform of an innovative reporter technology based on tri-color signal that allows user-defined fluorescence tuning in live-cell applications.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan W Jarvik
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Shiwarski DJ, Darr M, Telmer CA, Bruchez MP, Puthenveedu MA. PI3K class II α regulates δ-opioid receptor export from the trans-Golgi network. Mol Biol Cell 2017; 28:2202-2219. [PMID: 28566554 PMCID: PMC5531736 DOI: 10.1091/mbc.e17-01-0030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
The interplay between signaling and trafficking by G protein-coupled receptors (GPCRs) has focused mainly on endocytic trafficking. Whether and how surface delivery of newly synthesized GPCRs is regulated by extracellular signals is less understood. Here we define a signaling-regulated checkpoint at the trans-Golgi network (TGN) that controls the surface delivery of the delta opioid receptor (δR). In PC12 cells, inhibition of phosphoinositide-3 kinase (PI3K) activity blocked export of newly synthesized δR from the Golgi and delivery to the cell surface, similar to treatment with nerve growth factor (NGF). Depletion of class II phosphoinositide-3 kinase α (PI3K C2A), but not inhibition of class I PI3K, blocked δR export to comparable levels and attenuated δR-mediated cAMP inhibition. NGF treatment displaced PI3K C2A from the Golgi and optogenetic recruitment of the PI3K C2A kinase domain to the TGN-induced δR export downstream of NGF. Of importance, PI3K C2A expression promotes export of endogenous δR in primary trigeminal ganglion neurons. Taken together, our results identify PI3K C2A as being required and sufficient for δR export and surface delivery in neuronal cells and suggest that it could be a key modulator of a novel Golgi export checkpoint that coordinates GPCR delivery to the surface.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marlena Darr
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 .,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
46
|
Ackerman DS, Vasilev KV, Schmidt BF, Cohen LB, Jarvik JW. Tethered Fluorogen Assay to Visualize Membrane Apposition in Living Cells. Bioconjug Chem 2017; 28:1356-1362. [DOI: 10.1021/acs.bioconjchem.7b00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniel S. Ackerman
- Department of Biological Sciences, ‡Department of Chemistry, and §Molecular Biosensor
and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kalin V. Vasilev
- Department of Biological Sciences, ‡Department of Chemistry, and §Molecular Biosensor
and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F. Schmidt
- Department of Biological Sciences, ‡Department of Chemistry, and §Molecular Biosensor
and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Lianne B. Cohen
- Department of Biological Sciences, ‡Department of Chemistry, and §Molecular Biosensor
and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan W. Jarvik
- Department of Biological Sciences, ‡Department of Chemistry, and §Molecular Biosensor
and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Westberg M, Bregnhøj M, Banerjee C, Blázquez-Castro A, Breitenbach T, Ogilby PR. Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 2016; 109:81-91. [DOI: 10.1016/j.ymeth.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022] Open
|
48
|
Saurabh S, Perez AM, Comerci CJ, Shapiro L, Moerner WE. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule. J Am Chem Soc 2016; 138:10398-401. [PMID: 27479076 DOI: 10.1021/jacs.6b05943] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rapid development in fluorescence microscopy and imaging techniques has greatly benefited our understanding of the mechanisms governing cellular processes at the molecular level. In particular, super-resolution microscopy methods overcome the diffraction limit to observe nanoscale cellular structures with unprecedented detail, and single-molecule tracking provides precise dynamic information about the motions of labeled proteins and oligonucleotides. Enhanced photostability of fluorescent labels (i.e., maximum emitted photons before photobleaching) is a critical requirement for achieving the ultimate spatio-temporal resolution with either method. While super-resolution imaging has greatly benefited from highly photostable fluorophores, a shortage of photostable fluorescent labels for bacteria has limited its use in these small but relevant organisms. In this study, we report the use of a highly photostable fluoromodule, dL5, to genetically label proteins in the Gram-negative bacterium Caulobacter crescentus, enabling long-time-scale protein tracking and super-resolution microscopy. dL5 imaging relies on the activation of the fluorogen Malachite Green (MG) and can be used to label proteins sparsely, enabling single-protein detection in live bacteria without initial bleaching steps. dL5-MG complexes emit 2-fold more photons before photobleaching compared to organic dyes such as Cy5 and Alexa 647 in vitro, and 5-fold more photons compared to eYFP in vivo. We imaged fusions of dL5 to three different proteins in live Caulobacter cells using stimulated emission depletion microscopy, yielding a 4-fold resolution enhancement compared to diffraction-limited imaging. Importantly, dL5 fusions to an intermediate filament protein CreS are significantly less perturbative compared to traditional fluorescent protein fusions. To the best of our knowledge, this is the first demonstration of the use of fluorogen activating proteins for super-resolution imaging in live bacterial cells.
Collapse
Affiliation(s)
- Saumya Saurabh
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Adam M Perez
- Department of Developmental Biology, Stanford University School of Medicine , Stanford, California 94305, United States.,Department of Biology, Stanford University , Stanford, California 94305, United States
| | - Colin J Comerci
- Biophysics Program, Stanford University , Stanford, California 94305, United States
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine , Stanford, California 94305, United States
| | - W E Moerner
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
49
|
Naganbabu M, Perkins LA, Wang Y, Kurish J, Schmidt BF, Bruchez MP. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells. Bioconjug Chem 2016; 27:1525-31. [PMID: 27159569 PMCID: PMC4911959 DOI: 10.1021/acs.bioconjchem.6b00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Malachite
green (MG) is a fluorogenic dye that shows fluorescence enhancement
upon binding to its engineered cognate protein, a fluorogen activating
protein (FAP). Energy transfer donors such as cyanine and rhodamine
dyes have been conjugated with MG to modify the spectral properties
of the fluorescent complexes, where the donor dyes transfer energy
through Förster resonance energy transfer to the MG complex
resulting in binding-conditional fluorescence emission in the far-red
region. In this article, we use a violet-excitable dye as a donor
to sensitize the far-red emission of the MG-FAP complex. Two blue
emitting fluorescent coumarin dyes were coupled to MG and evaluated
for energy transfer to the MG-FAP complex via its secondary excitation
band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue,
PB) showed the most efficient energy transfer and maximum brightness
in the far-red region upon violet (405 nm) excitation. These blue-red
(BluR) tandem dyes are spectrally varied from other tandem dyes and
are able to produce fluorescence images of the MG-FAP complex with
a large Stokes shift (>250 nm). These dyes are cell-permeable and
are used to label intracellular proteins. Used together with a cell-impermeable
hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able
to visualize extracellular, intracellular, and total pools of cellular
protein using one fluorogenic tag that combines with distinct dyes
to effect different spectral characteristics.
Collapse
Affiliation(s)
- Matharishwan Naganbabu
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| | - Lydia A Perkins
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| | - Yi Wang
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| | - Jeffery Kurish
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| | - Brigitte F Schmidt
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| | - Marcel P Bruchez
- Department of Chemistry, ‡Department of Biological Sciences, and §Molecular Biosensors and Imaging Center, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania, United States
| |
Collapse
|
50
|
Liu W, Saunders MJ, Bagia C, Freeman EC, Fan Y, Gawalt ES, Waggoner AS, Meng WS. Local retention of antibodies in vivo with an injectable film embedded with a fluorogen-activating protein. J Control Release 2016; 230:1-12. [PMID: 27038493 DOI: 10.1016/j.jconrel.2016.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
Abstract
Herein we report an injectable film by which antibodies can be localized in vivo. The system builds upon a bifunctional polypeptide consisting of a fluorogen-activating protein (FAP) and a β-fibrillizing peptide (βFP). The FAP domain generates fluorescence that reflects IgG binding sites conferred by Protein A/G (pAG) conjugated with the fluorogen malachite green (MG). A film is generated by mixing these proteins with molar excess of EAK16-II, a βFP that forms β-sheet fibrils at high salt concentrations. The IgG-binding, fluorogenic film can be injected in vivo through conventional needled syringes. Confocal microscopic images and dose-response titration experiments showed that loading of IgG into the film was mediated by pAG(MG) bound to the FAP. Release of IgG in vitro was significantly delayed by the bioaffinity mechanism; 26% of the IgG were released from films embedded with pAG(MG) after five days, compared to close to 90% in films without pAG(MG). Computational simulations indicated that the release rate of IgG is governed by positive cooperativity due to pAG(MG). When injected into the subcutaneous space of mouse footpads, film-embedded IgG were retained locally, with distribution through the lymphatics impeded. The ability to track IgG binding sites and distribution simultaneously will aid the optimization of local antibody delivery systems.
Collapse
Affiliation(s)
- Wen Liu
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Matthew J Saunders
- Molecular Biosensor and Imaging Center and Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Christina Bagia
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Eric C Freeman
- College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, United States
| | - Alan S Waggoner
- Molecular Biosensor and Imaging Center and Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|