1
|
Nejamkin A, Del Castello F, Lamattina L, Foresi N, Correa Aragunde N. Redox regulation in primary nitrate response: Nitric oxide in the spotlight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108625. [PMID: 38643539 DOI: 10.1016/j.plaphy.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Nitrogen (N) is the main macronutrient of plants that determines growth and productivity. Nitrate is the major source form of N in soils and its uptake and assimilatory pathway has been extensively studied. The early events that occur after the perception of nitrate is known as primary nitrate response (PNR). In this review, new findings on the redox signal that impacts PNR are discussed. We will focus on the novel role of Nitric Oxide (NO) as a signal molecule and the mechanisms that are involved to control NO homeostasis during PNR. Moreover, the role of Reactive Oxygen Species (ROS) and the possible interplay with NO in the PNR are discussed. The sources of NO during PNR will be analyzed as well as the regulation of its intracellular levels. Furthermore, we explored the relevance of the direct action of NO through the S-nitrosation of the transcription factor NLP7, one of the master regulators in the nitrate signaling cascade. This review gives rise to an interesting field with new actors to mark future research directions. This allows us to increase the knowledge of the physiological and molecular fine-tuned modulation during nitrate signaling processes in plants. The discussion of new experimental data will stimulate efforts to further refine our understanding of the redox regulation of nitrate signaling.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Natalia Correa Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina.
| |
Collapse
|
2
|
Shanks CM, Rothkegel K, Brooks MD, Cheng CY, Alvarez JM, Ruffel S, Krouk G, Gutiérrez RA, Coruzzi GM. Nitrogen sensing and regulatory networks: it's about time and space. THE PLANT CELL 2024; 36:1482-1503. [PMID: 38366121 PMCID: PMC11062454 DOI: 10.1093/plcell/koae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Rothkegel
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Chia-Yi Cheng
- Department of Life Science, National Taiwan University, Taipei 10663, Taiwan
| | - José M Alvarez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Rodrigo A Gutiérrez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
4
|
Klein R, Brehm J, Wissig J, Heermann R, Unden G. A signaling complex of adenylate cyclase CyaC of Sinorhizobium meliloti with cAMP and the transcriptional regulators Clr and CycR. BMC Microbiol 2023; 23:236. [PMID: 37633907 PMCID: PMC10463352 DOI: 10.1186/s12866-023-02989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Adenylate cyclases (ACs) generate the second messenger cyclic AMP (cAMP), which is found in all domains of life and is involved in the regulation of various cell physiological and metabolic processes. In the plant symbiotic bacterium Sinorhizobium meliloti, synthesis of cAMP by the membrane-bound AC CyaC responds to the redox state of the respiratory chain and the respiratory quinones. However, nothing is known about the signaling cascade that is initiated by cAMP produced by CyaC. RESULTS Here, the CRP-like transcriptional regulator Clr and the TetR-like regulator CycR (TR01819 protein) were identified to interact with CyaC using the bacterial two-hybrid system (BACTH), co-sedimentation assays, and surface plasmon resonance spectroscopy. Interaction of CycR with Clr, and of CyaC with Clr requires the presence of cAMP and of ATP, respectively, whereas that of CyaC with CycR was independent of the nucleotides. CONCLUSION The data implicate a ternary CyaC×CycR×cAMP-Clr complex, functioning as a specific signaling cascade which is formed after activation of CyaC and synthesis of cAMP. cAMP-Clr is thought to work in complex with CycR to regulate a subset of genes of the cAMP-Clr regulon in S. meliloti.
Collapse
Affiliation(s)
- Robin Klein
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Jannis Brehm
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Juliane Wissig
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| | - Gottfried Unden
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Oliveira AS, Saraiva LM, Carvalho SM. Staphylococcus epidermidis biofilms undergo metabolic and matrix remodeling under nitrosative stress. Front Cell Infect Microbiol 2023; 13:1200923. [PMID: 37469594 PMCID: PMC10352803 DOI: 10.3389/fcimb.2023.1200923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Staphylococcus epidermidis is a commensal skin bacterium that forms host- and antibiotic-resistant biofilms that are a major cause of implant-associated infections. Most research has focused on studying the responses to host-imposed stresses on planktonic bacteria. In this work, we addressed the open question of how S. epidermidis thrives on toxic concentrations of nitric oxide (NO) produced by host innate immune cells during biofilm assembly. We analyzed alterations of gene expression, metabolism, and matrix structure of biofilms of two clinical isolates of S. epidermidis, namely, 1457 and RP62A, formed under NO stress conditions. In both strains, NO lowers the amount of biofilm mass and causes increased production of lactate and decreased acetate excretion from biofilm glucose metabolism. Transcriptional analysis revealed that NO induces icaA, which is directly involved in polysaccharide intercellular adhesion (PIA) production, and genes encoding proteins of the amino sugar pathway (glmM and glmU) that link glycolysis to PIA synthesis. However, the strains seem to have distinct regulatory mechanisms to boost lactate production, as NO causes a substantial upregulation of ldh gene in strain RP62A but not in strain 1457. The analysis of the matrix components of the staphylococcal biofilms, assessed by confocal laser scanning microscopy (CLSM), showed that NO stimulates PIA and protein production and interferes with biofilm structure in a strain-dependent manner, but independently of the Ldh level. Thus, NO resistance is attained by remodeling the staphylococcal matrix architecture and adaptation of main metabolic processes, likely providing in vivo fitness of S. epidermidis biofilms contacting NO-proficient macrophages.
Collapse
|
6
|
Zhang Q, Li J, Wen X, Deng C, Yang X, Dai S. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. BMC PLANT BIOLOGY 2023; 23:197. [PMID: 37061708 PMCID: PMC10105424 DOI: 10.1186/s12870-023-04201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RWP-RKs are plant specific transcription factors, which are widely distributed in plants in the form of polygenic families and play key role in nitrogen absorption and utilization, and are crucial to plant growth and development. However, the genome-wide identification and function of RWP-RK in Compositae plants are widely unknown. RESULTS In this study, 101 RWP-RKs in Chrysanthemum lavandulifolium were identified and tandem repeat was an important way for the expansion of RWP-RKs in Compositae species. 101 RWP-RKs contain 38 NIN-like proteins (NLPs) and 31 RWP- RK domain proteins (RKDs), as well as 32 specific expansion members. qRT-PCR results showed that 7 ClNLPs in leaves were up-regulated at the floral transition stage, 10 ClNLPs were negatively regulated by low nitrate conditions, and 3 of them were up-regulated by optimal nitrate conditions. In addition, the flowering time of Chrysanthemum lavandulifolium was advanced under optimal nitrate conditions, the expression level of Cryptochromes (ClCRYs), phytochrome C (ClPHYC) and the floral integration genes GIGANTEA (ClGI), CONSTANS-LIKE (ClCOL1, ClCOL4, ClCOL5), FLOWERING LOCUS T (ClFT), FLOWERING LOCUS C (ClFLC), SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 (ClSOC1) also were up-regulated. The expression level of ClCRY1a, ClCRY1c, ClCRY2a and ClCRY2c in the vegetative growth stage induced by optimal nitrate reached the expression level induced by short-day in the reproductive growth stage, which supplemented the induction effect of short-day on the transcription level of floral-related genes in advance. CONCLUSIONS It was speculated that ClNLPs may act on the photoperiodic pathway under optimal nitrate environment, and ultimately regulate the flowering time by up-regulating the transcription level of ClCRYs. These results provide new perspective for exploring the mechanism of nitrate/nitrogen affecting flowering in higher plants.
Collapse
Affiliation(s)
- Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohui Wen
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | - Xiuzhen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Tang C, Li J, Shen Y, Liu M, Liu H, Liu H, Xun L, Xia Y. A sulfide-sensor and a sulfane sulfur-sensor collectively regulate sulfur-oxidation for feather degradation by Bacillus licheniformis. Commun Biol 2023; 6:167. [PMID: 36765168 PMCID: PMC9918477 DOI: 10.1038/s42003-023-04538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Bacillus licheniformis MW3 degrades bird feathers. Feather keratin is rich in cysteine, which is metabolized to produce hazardous sulfide and sulfane sulfur. A challenge to B. licheniformis MW3 growing on feathers is to detoxify them. Here we identified a gene cluster in B. licheniformis MW3 to deal with these toxicity. The cluster contains 11 genes: the first gene yrkD encodes a repressor, the 8th and 9th genes nreB and nreC encode a two-component regulatory system, and the 10th and 11th genes encode sulfide: quinone reductase (SQR) and persulfide oxygenase (PDO). SQR and PDO collectively oxidize sulfide and sulfane sulfur to sulfite. YrkD sensed sulfane sulfur to derepress the 11 genes. The NreBC system sensed sulfide and further amplified the transcription of sqr and pdo. The two regulatory systems synergistically controlled the expression of the gene cluster, which was required for the bacterium to grow on feather. The findings highlight the necessity of removing sulfide and sulfane sulfur during feather degradation and may help with bioremediation of feather waste and sulfide pollution.
Collapse
Affiliation(s)
- Chao Tang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Jingjing Li
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China ,grid.10388.320000 0001 2240 3300Present Address: Institut für Mikrobiologie & Biotechnologie of Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Yuemeng Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Menghui Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Honglei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Huaiwei Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
8
|
Raytek LM, Dastmalchi M. Plant nutrition: An architect of nitrate-hunger cues. Curr Biol 2022; 32:R1320-R1323. [PMID: 36473445 DOI: 10.1016/j.cub.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrate perception and uptake are critical for plant well-being. A known actor in nitrate signaling, the transcription factor NLP7, has now been reported to have a new role: as a nitrate sensor. The latter function has been characterized and exploited to generate a fluorescent nitrate biosensor.
Collapse
Affiliation(s)
- Lee Marie Raytek
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
9
|
Fu YF, Xie LB, Yang XY, Zhang ZW, Yuan S. Whether do plant cells sense nitrate changes without a sensor? FRONTIERS IN PLANT SCIENCE 2022; 13:1083594. [PMID: 36507373 PMCID: PMC9731675 DOI: 10.3389/fpls.2022.1083594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
|
10
|
Liu KH, Liu M, Lin Z, Wang ZF, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 2022; 377:1419-1425. [PMID: 36137053 DOI: 10.1126/science.add1104] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nitrate is an essential nutrient and signaling molecule for plant growth. Plants sense intracellular nitrate to adjust their metabolic and growth responses. Here we identify the primary nitrate sensor in plants. We found that mutation of all seven Arabidopsis NIN-like protein (NLP) transcription factors abolished plants' primary nitrate responses and developmental programs. Analyses of NIN-NLP7 chimeras and nitrate binding revealed that NLP7 is derepressed upon nitrate perception via its amino terminus. A genetically encoded fluorescent split biosensor, mCitrine-NLP7, enabled visualization of single-cell nitrate dynamics in planta. The nitrate sensor domain of NLP7 resembles the bacterial nitrate sensor NreA. Substitutions of conserved residues in the ligand-binding pocket impaired the ability of nitrate-triggered NLP7 to control transcription, transport, metabolism, development, and biomass. We propose that NLP7 represents a nitrate sensor in land plants.
Collapse
Affiliation(s)
- Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.,Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.,Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Menghong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Ziwei Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Binqing Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Aping Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Mineko Konishi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Coronel-Tellez RH, Pospiech M, Barrault M, Liu W, Bordeau V, Vasnier C, Felden B, Sargueil B, Bouloc P. sRNA-controlled iron sparing response in Staphylococci. Nucleic Acids Res 2022; 50:8529-8546. [PMID: 35904807 PMCID: PMC9410917 DOI: 10.1093/nar/gkac648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.
Collapse
Affiliation(s)
- Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Mateusz Pospiech
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Wenfeng Liu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Valérie Bordeau
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | | | - Brice Felden
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Ji K, Baek K, Peng W, Alberto KA, Torabifard H, Nielsen SO, Dodani SC. Biophysical and in silico characterization of NrtA: a protein-based host for aqueous nitrate and nitrite recognition. Chem Commun (Camb) 2022; 58:965-968. [PMID: 34937073 PMCID: PMC9197583 DOI: 10.1039/d1cc05879g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitrate and nitrite are key components of the global nitrogen cycle. As such, Nature has evolved proteins as biological supramolecular hosts for the recognition, translocation, and transformation of both nitrate and nitrite. To understand the supramolecular principles that govern these anion-protein interactions, here, we employ a hybrid biophysical and in silico approach to characterize the thermodynamic properties and protein dynamics of NrtA from the cyanobacterium Synechocystis sp. PCC 6803 for the recognition of nitrate and nitrite.
Collapse
Affiliation(s)
- Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Kevin A Alberto
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
13
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
14
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
15
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
16
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
17
|
Sangare L, Chen W, Wang C, Chen X, Wu M, Zhang X, Zang J. Structural insights into the conformational change of Staphylococcus aureus NreA at C-terminus. Biotechnol Lett 2020; 42:787-795. [PMID: 31970556 DOI: 10.1007/s10529-020-02807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is an anaerobic facultative microorganism that features the NreABC system for nitrate respiration. NreB is the sensor histidine kinase that phosphorylates the response regulator NreC to stimulate the expression of target genes. NreA is a nitrate sensor which dissociates from NreB in the present of nitrate and relieves its inhibition on NreB. However, the molecular basis of how NreA regulate NreB remains unknown. In this study, we determined the crystal structures of nitrate-bound NreA from S. aureus (SaNreA/NO3-) and its apoNreA-like mutant SaNreAY94A in complex with ethanediol (SaNreAY94A/EDO). Structural comparison reveals that the C-terminal loop in SaNreA/NO3- rearranges to an α-helix (α7) in SaNreAY94A/EDO, which converts an acidic pocket on the surface to a positively charged region. This conformational change of SaNreA C-terminus might play a role in SaNreB binding.
Collapse
Affiliation(s)
- Lancine Sangare
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China.,Institute Superior Agronomic and Veterinary of Faranah, 131, Faranah, Guinea
| | - Wanbiao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Xiaobao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Minhao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China. .,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China.
| |
Collapse
|
18
|
Klein R, Kretzschmar A, Unden G. Control of the bifunctional O
2
‐sensor kinase NreB of
Staphylococcus carnosus
by the nitrate sensor NreA: Switching from kinase to phosphatase state. Mol Microbiol 2019; 113:369-380. [DOI: 10.1111/mmi.14425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Germany
| | - Ann‐Katrin Kretzschmar
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Germany
| |
Collapse
|
19
|
Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, Jules-Clement G, Feld M, Barrientos-Somarribas M, Sinkko H, van den Bogaard EH, Zeeuwen PLJM, Rikken G, Schalkwijk J, Niehues H, Däubener W, Eller SK, Alexander H, Pennino D, Suomela S, Tessas I, Lybeck E, Baran AM, Darban H, Gangwar RS, Gerstel U, Jahn K, Karisola P, Yan L, Hansmann B, Katayama S, Meller S, Bylesjö M, Hupé P, Levi-Schaffer F, Greco D, Ranki A, Schröder JM, Barker J, Kere J, Tsoka S, Lauerma A, Soumelis V, Nestle FO, Homey B, Andersson B, Alenius H. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun 2019; 10:4703. [PMID: 31619666 PMCID: PMC6795799 DOI: 10.1038/s41467-019-12253-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in understanding microbial diversity in skin homeostasis, the relevance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a comparative analysis of skin microbial communities coupled to global patterns of cutaneous gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is analysed by 16S amplicon or whole genome sequencing and the skin transcriptome by microarrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis can be classified by distinct microbes, which differ from healthy volunteers microbiome composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and associated with a disease relevant host transcriptomic signature enriched for skin barrier function, tryptophan metabolism and immune activation. In contrast, psoriasis is characterized by co-occurring communities of microbes with weak associations with disease related gene expression. Our work provides a basis for biomarker discovery and targeted therapies in skin dysbiosis. Atopic dermatitis (AD) and psoriasis (PSO) are associated with dysbiosis. Here, by analyses of skin microbiome and host transcriptome of AD and PSO patients, the authors find distinct microbial and disease-related gene transcriptomic signatures that differentiate both diseases.
Collapse
Affiliation(s)
- Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden.,Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Gareth Muirhead
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, WC2R 2LS, UK.,Cutaneous Medicine Unit, St. John's Institute of Dermatology and Biomedical Research Centre, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Marine Jeanmougin
- Institut Curie, 26 rue d'Ulm, 75248, Paris, France.,INSERM, U900, 75248, Paris, France.,Mines ParisTech, 77300, Fontainebleau, France.,INSERM, U932, 75248, Paris, France
| | - Peter Olah
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany.,Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Pécs, 7632, Hungary
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Gerome Jules-Clement
- Institut Curie, 26 rue d'Ulm, 75248, Paris, France.,INSERM, U900, 75248, Paris, France.,Mines ParisTech, 77300, Fontainebleau, France.,INSERM, U932, 75248, Paris, France
| | - Micha Feld
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany
| | | | - Hanna Sinkko
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden.,Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525, The Netherlands
| | - Walter Däubener
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Duesseldorf, Duesseldorf, 40225, Germany
| | - Silvia Kathrin Eller
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Duesseldorf, Duesseldorf, 40225, Germany
| | - Helen Alexander
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, Kings College London, London, SE1 9RT, UK
| | - Davide Pennino
- Cutaneous Medicine Unit, St. John's Institute of Dermatology and Biomedical Research Centre, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| | - Sari Suomela
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, 00250, Finland
| | - Ioannis Tessas
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, 00250, Finland
| | - Emilia Lybeck
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, 00250, Finland
| | - Anna M Baran
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany
| | - Hamid Darban
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Roopesh Singh Gangwar
- Pharmacology Unit, School of Pharmacy, The Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ulrich Gerstel
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Katharina Jahn
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany
| | - Piia Karisola
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Lee Yan
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, WC2R 2LS, UK
| | - Britta Hansmann
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Stephan Meller
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany
| | | | - Philippe Hupé
- Institut Curie, 26 rue d'Ulm, 75248, Paris, France.,INSERM, U900, 75248, Paris, France.,Mines ParisTech, 77300, Fontainebleau, France.,CNRS, UMR144, 75248, Paris, France
| | - Francesca Levi-Schaffer
- Pharmacology Unit, School of Pharmacy, The Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Dario Greco
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland.,Institute of Biomedical Technology, University of Tampere, Tampere, 33520, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, 00250, Finland
| | - Jens M Schröder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Jonathan Barker
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, Kings College London, London, SE1 9RT, UK
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 17177, Sweden.,School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, WC2R 2LS, UK
| | - Antti Lauerma
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, 00250, Finland
| | - Vassili Soumelis
- Institut Curie, 26 rue d'Ulm, 75248, Paris, France.,INSERM, U932, 75248, Paris, France
| | - Frank O Nestle
- Cutaneous Medicine Unit, St. John's Institute of Dermatology and Biomedical Research Centre, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Duesseldorf, 40225, Germany
| | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden. .,Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
20
|
Mu X, Luo J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling. Cell Mol Life Sci 2019; 76:3753-3764. [PMID: 31161283 PMCID: PMC11105697 DOI: 10.1007/s00018-019-03164-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Nitrogen (N) is one of the most important essential macro-elements for plant growth and development, and nitrate represents the most abundant inorganic form of N in soils. The nitrate uptake and assimilation processes are finely tuned according to the available nitrate in the surroundings as well as by the internal finely coordinated signaling pathways. The NIN-like proteins (NLPs) harbor both RWP-RK, and Phox and Bem1 (PB1) domains, and they belong to the well-characterized plant-specific RWP-RK transcription factor gene family. NLPs are known to be involved in the nitrate signaling pathway by activating downstream target genes, and thus they are implicated in the primary nitrate response in the nucleus via their RWP-RK domains. The PB1 domain is a ubiquitous protein-protein interaction domain and it comprises another regulatory layer for NLPs via the protein interactions within NLPs or with other essential components. Recently, Ca2+-Ca2+ sensor protein kinase-NLP signaling cascades have been identified and they allow NLPs to have central roles in mediating the nitrate signaling pathway. NLPs play essential roles in many aspects of plant growth and development via the finely tuned nitrate signaling pathway. Furthermore, recent studies have highlighted the emerging roles played by NLPs in the N starvation response, nodule formation in legumes, N and P interactions, and root cap release in higher plants. In this review, we consider recent advances in the identification, evolution, molecular characteristics, and functions of the NLP gene family in plant growth and development.
Collapse
Affiliation(s)
- Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jie Luo
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
22
|
Proctor R. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0069-2019. [PMID: 31198131 PMCID: PMC11257146 DOI: 10.1128/microbiolspec.gpp3-0069-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that Staphylococcus aureus has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.
Collapse
Affiliation(s)
- Richard Proctor
- Department of Medical Microbiology and Immunology University of Wisconsin School of Medicine and Public Health Madison, WI 53705
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
24
|
Liu M, Chang W, Fan Y, Sun W, Qu C, Zhang K, Liu L, Xu X, Tang Z, Li J, Lu K. Genome-Wide Identification and Characterization of NODULE-INCEPTION-Like Protein (NLP) Family Genes in Brassica napus. Int J Mol Sci 2018; 19:E2270. [PMID: 30072649 PMCID: PMC6121332 DOI: 10.3390/ijms19082270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
NODULE-INCEPTION-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in responses to nitrogen deficiency. However, the evolutionary relationships and characteristics of NLP family genes in Brassica napus are unclear. In this study, we identified 31 NLP genes in B. napus, including 16 genes located in the A subgenome and 15 in the C subgenome. Subcellular localization predictions indicated that most BnaNLP proteins are localized to the nucleus. Phylogenetic analysis suggested that the NLP gene family could be divided into three groups and that at least three ancient copies of NLP genes existed in the ancestor of both monocots and dicots prior to their divergence. The ancestor of group III NLP genes may have experienced duplication more than once in the Brassicaceae species. Three-dimensional structural analysis suggested that 14 amino acids in BnaNLP7-1 protein are involved in DNA binding, whereas no binding sites were identified in the two RWP-RK and PB1 domains conserved in BnaNLP proteins. Expression profile analysis indicated that BnaNLP genes are expressed in most organs but tend to be highly expressed in a single organ. For example, BnaNLP6 subfamily members are primarily expressed in roots, while the four BnaNLP7 subfamily members are highly expressed in leaves. BnaNLP genes also showed different expression patterns in response to nitrogen-deficient conditions. Under nitrogen deficiency, all members of the BnaNLP1/4/5/9 subfamilies were upregulated, all BnaNLP2/6 subfamily members were downregulated, and BnaNLP7/8 subfamily members showed various expression patterns in different organs. These results provide a comprehensive evolutionary history of NLP genes in B. napus, and insight into the biological functions of BnaNLP genes in response to nitrogen deficiency.
Collapse
Affiliation(s)
- Miao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Wei Chang
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Shennong Class, Southwest University, Beibei, Chongqing 400715, China.
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Wei Sun
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xingfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhanglin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
25
|
Wang Z, Zhang L, Sun C, Gu R, Mi G, Yuan L. Phylogenetic, expression and functional characterizations of the maize NLP transcription factor family reveal a role in nitrate assimilation and signaling. PHYSIOLOGIA PLANTARUM 2018; 163:269-281. [PMID: 29364528 DOI: 10.1111/ppl.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 05/09/2023]
Abstract
Although nitrate represents an important nitrogen (N) source for maize, a major crop of dryland areas, the molecular mechanisms of nitrate uptake and assimilation remain poorly understood. Here, we identified nine maize NIN-like protein (ZmNLP) genes and analyzed the function of one member, ZmNLP3.1, in nitrate nutrition and signaling. The NLP family genes were clustered into three clades in a phylogenic tree. Comparative genomic analysis showed that most ZmNLP genes had collinear relationships to the corresponding NLPs in rice, and that the expansion of the ZmNLP family resulted from segmental duplications in the maize genome. Quantitative PCR analysis revealed the expression of ZmNLP2.1, ZmNLP2.2, ZmNLP3.1, ZmNLP3.2, ZmNLP3.3, and ZmNLP3.4 was induced by nitrate in maize roots. The function of ZmNLP3.1 was investigated by overexpressing it in the Arabidopsis nlp7-1 mutant, which is defective in the AtNLP7 gene for nitrate signaling and assimilation. Ectopic expression of ZmNLP3.1 restored the N-deficient phenotypes of nlp7-1 under nitrate-replete conditions in terms of shoot biomass, root morphology and nitrate assimilation. Furthermore, the nitrate induction of NRT2.1, NIA1, and NiR1 gene expression was recovered in the 35S::ZmNLP3.1/nlp7-1 transgenic lines, indicating that ZmNLP3.1 plays essential roles in nitrate signaling. Taken together, these results suggest that ZmNLP3.1 plays an essential role in regulating nitrate signaling and assimilation processes, and represents a valuable candidate for developing transgenic maize cultivars with high N-use efficiency.
Collapse
Affiliation(s)
- Zhangkui Wang
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Soil Fertilizer Extension Service Station, Beijing, 100029, China
| | - Ci Sun
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
27
|
Löfblom J, Rosenstein R, Nguyen MT, Ståhl S, Götz F. Staphylococcus carnosus: from starter culture to protein engineering platform. Appl Microbiol Biotechnol 2017; 101:8293-8307. [PMID: 28971248 PMCID: PMC5694512 DOI: 10.1007/s00253-017-8528-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/04/2023]
Abstract
Since the 1950s, Staphylococcus carnosus is used as a starter culture for sausage fermentation where it contributes to food safety, flavor, and a controlled fermentation process. The long experience with S. carnosus has shown that it is a harmless and "food grade" species. This was confirmed by the genome sequence of S. carnosus TM300 that lacks genes involved in pathogenicity. Since the development of a cloning system in TM300, numerous genes have been cloned, expressed, and characterized and in particular, virulence genes that could be functionally validated in this non-pathogenic strain. A secretion system was developed for production and secretion of industrially important proteins and later modified to also enable display of heterologous proteins on the surface. The display system has been employed for various purposes, such as development of live bacterial delivery vehicles as well as microbial biocatalysts or bioadsorbents for potential environmental or biosensor applications. Recently, this surface display system has been utilized for display of peptide and protein libraries for profiling of protease substrates and for generation of various affinity proteins, e.g., Affibody molecules and scFv antibodies. In addition, by display of fragmented antigen-encoding genes, the surface expression system has been successfully used for epitope mapping of antibodies. Reviews on specific applications of S. carnosus have been published earlier, but here we provide a more extensive overview, covering a broad range of areas from food fermentation to sophisticated methods for protein-based drug discovery, which are all based on S. carnosus.
Collapse
Affiliation(s)
- John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden
| | - Ralf Rosenstein
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden.
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
28
|
Langton MJ, Serpell CJ, Beer PD. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angew Chem Int Ed Engl 2016; 55:1974-87. [PMID: 26612067 PMCID: PMC4755225 DOI: 10.1002/anie.201506589] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/22/2022]
Abstract
The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C-H hydrogen bonding and halogen bonding. We also look beyond the field of small-molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles.
Collapse
Affiliation(s)
- Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
29
|
Langton MJ, Serpell CJ, Beer PD. Anionenerkennung in Wasser: aktuelle Fortschritte aus supramolekularer und makromolarer Sicht. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506589] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew J. Langton
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| | - Christopher J. Serpell
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
- School of Physical Sciences, Ingram Building; University of Kent; Canterbury Kent CT2 7NH Vereinigtes Königreich
| | - Paul D. Beer
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| |
Collapse
|
30
|
Gorrec F. The MORPHEUS II protein crystallization screen. Acta Crystallogr F Struct Biol Commun 2015; 71:831-7. [PMID: 26144227 PMCID: PMC4498703 DOI: 10.1107/s2053230x1500967x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/19/2015] [Indexed: 11/10/2022] Open
Abstract
High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.
Collapse
Affiliation(s)
- Fabrice Gorrec
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| |
Collapse
|
31
|
Huang Q, Abdalla AE, Xie J. Phylogenomics of Mycobacterium Nitrate Reductase Operon. Curr Microbiol 2015; 71:121-8. [PMID: 25980349 DOI: 10.1007/s00284-015-0838-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker.
Collapse
Affiliation(s)
- Qinqin Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 1 Rd Tiansheng, Beibei, Chongqing, 400715, People's Republic of China
| | | | | |
Collapse
|
32
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
33
|
Chardin C, Girin T, Roudier F, Meyer C, Krapp A. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5577-87. [PMID: 24987011 DOI: 10.1093/jxb/eru261] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.
Collapse
Affiliation(s)
- Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Christian Meyer
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|