1
|
Gabaldón C, Karakuzu O, Garsin DA. SKN-1 activation during infection of Caenorhabditis elegans requires CDC-48 and endoplasmic reticulum proteostasis. Genetics 2024; 228:iyae131. [PMID: 39166513 PMCID: PMC11538416 DOI: 10.1093/genetics/iyae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
During challenge of Caenorhabditis elegans with human bacterial pathogens such as Pseudomonas aeruginosa and Enterococcus faecalis, the elicited host response can be damaging if not properly controlled. The activation of Nrf (nuclear factor erythroid-related factor)/CNC (Cap-n-collar) transcriptional regulators modulates the response by upregulating genes that neutralize damaging molecules and promote repair processes. Activation of the C. elegans Nrf ortholog, SKN-1, is tightly controlled by a myriad of regulatory mechanisms, but a central feature is an activating phosphorylation accomplished by the p38 mitogen-activated kinase (MAPK) cascade. In this work, loss of CDC-48, an AAA+ ATPase, was observed to severely compromise SKN-1 activation on pathogen and we sought to understand the mechanism. CDC-48 is part of the endoplasmic reticulum (ER)-associated degradation (ERAD) complex where it functions as a remodeling chaperone enabling the translocation of proteins from the ER to the cytoplasm for degradation by the proteosome. Interestingly, one of the proteins retrotranslocated by ERAD, a process necessary for its activation, is SKN-1A, the ER isoform of SKN-1. However, we discovered that SKN-1A is not activated by pathogen exposure in marked contrast to the cytoplasmic-associated isoform SKN-1C. Rather, loss of CDC-48 blocks the antioxidant response normally orchestrated by SKN-1C by strongly inducing the unfolded protein response (UPRER). The data are consistent with the model of these 2 pathways being mutually inhibitory and support the emerging paradigm in the field of coordinated cooperation between different stress responses.
Collapse
Affiliation(s)
- Carolaing Gabaldón
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ozgur Karakuzu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Inès D, Courty PE, Wendehenne D, Rosnoblet C. CDC48 in plants and its emerging function in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:786-798. [PMID: 38218650 DOI: 10.1016/j.tplants.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Protein homeostasis, namely the balance between protein synthesis and degradation, must be finely controlled to ensure cell survival, notably through the ubiquitin-proteasome system (UPS). In all species, including plants, homeostasis is disrupted by biotic and abiotic stresses. A key player in the maintenance of protein balance, the protein CDC48, shows emerging functions in plants, particularly in response to biotic stress. In this review on CDC48 in plants, we detail its highly conserved structure, describe a gene expansion that is only present in Viridiplantae, discuss its various functions and regulations, and finally highlight its recruitment, still not clear, during the plant immune response.
Collapse
Affiliation(s)
- Damien Inès
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France.
| |
Collapse
|
3
|
Sun X, Tang X, Qiu H. Cardiac-Specific Suppression of Valosin-Containing Protein Induces Progressive Heart Failure and Premature Mortality Correlating with Temporal Dysregulations in mTOR Complex 2 and Protein Phosphatase 1. Int J Mol Sci 2024; 25:6445. [PMID: 38928151 PMCID: PMC11203954 DOI: 10.3390/ijms25126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
| | - Xicong Tang
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Jones NH, Liu Q, Urnavicius L, Dahan NE, Vostal LE, Kapoor TM. Allosteric activation of VCP, an AAA unfoldase, by small molecule mimicry. Proc Natl Acad Sci U S A 2024; 121:e2316892121. [PMID: 38833472 PMCID: PMC11181084 DOI: 10.1073/pnas.2316892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.
Collapse
Affiliation(s)
- Natalie H. Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY10065
| | - Qiwen Liu
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| | - Noa E. Dahan
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY10065
| | - Lauren E. Vostal
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY10065
| |
Collapse
|
5
|
Yu G, Bai Y, Zhang ZY. Valosin-Containing Protein (VCP)/p97 Oligomerization. Subcell Biochem 2024; 104:485-501. [PMID: 38963497 DOI: 10.1007/978-3-031-58843-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.
Collapse
Affiliation(s)
- Guimei Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Jones NH, Liu Q, Urnavicius L, Dahan NE, Vostal LE, Kapoor TM. Allosteric activation of VCP, a AAA unfoldase, by small molecule mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560478. [PMID: 37873168 PMCID: PMC10592943 DOI: 10.1101/2023.10.02.560478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme activity, activator binding must be permissive to different conformational states needed for enzyme function. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, a AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP Activator 1 (VA1), a compound that dose-dependently stimulates VCP ATPase activity up to ∼3-fold. Our cryo-EM studies resulted in structures (∼2.9-3.5 Å-resolution) of VCP in apo and ADP-bound states, and revealed VA1 binding an allosteric pocket near the C-terminus in both states. Engineered mutations in the VA1 binding site confer resistance to VA1, and furthermore, modulate VCP activity to a similar level as VA1-mediated activation. The VA1 binding site can alternatively be occupied by a phenylalanine residue in the VCP C-terminal tail, a motif that is post-translationally modified and interacts with cofactors. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry. Significance The loss of function of valosin-containing protein (VCP/p97), a mechanoenzyme from the AAA superfamily that hydrolyzes ATP and uses the released energy to extract or unfold substrate proteins, is linked to protein aggregation-based disorders. However, druggable allosteric sites to activate VCP, or any AAA mechanoenzyme, have not been identified. Here, we report cryo-EM structures of VCP in two states in complex with VA1, a compound we identified that dose-dependently stimulates VCP's ATP hydrolysis activity. The VA1 binding site can also be occupied by a phenylalanine residue in the VCP C-terminal tail, suggesting that VA1 acts through mimicry of this interaction. Our study reveals a druggable allosteric site and a mechanism of enzyme regulation.
Collapse
|
7
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
Tang SK, Zhi XY, Zhang Y, Makarova KS, Liu BB, Zheng GS, Zhang ZP, Zheng HJ, Wolf YI, Zhao YR, Jiang SH, Chen XM, Li EY, Zhang T, Chen PR, Feng YZ, Xiang MX, Lin ZQ, Shi JH, Chang C, Zhang X, Li R, Lou K, Wang Y, Chang L, Yin M, Yang LL, Gao HY, Zhang ZK, Tao TS, Guan TW, He FC, Lu YH, Cui HL, Koonin EV, Zhao GP, Xu P. Cellular differentiation into hyphae and spores in halophilic archaea. Nat Commun 2023; 14:1827. [PMID: 37005419 PMCID: PMC10067837 DOI: 10.1038/s41467-023-37389-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.
Collapse
Affiliation(s)
- Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Bing-Bing Liu
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Guo-Song Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhen-Peng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Yu-Rong Zhao
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Song-Hao Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Xi-Ming Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - En-Yuan Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Pei-Ru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Yu-Zhou Feng
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ming-Xian Xiang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhi-Qian Lin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jia-Hui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Xue Zhang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Rui Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Kai Lou
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Yun Wang
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Min Yin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ling-Ling Yang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Zhong-Kai Zhang
- Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Tian-Shen Tao
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Wei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Fu-Chu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China.
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China.
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
- Guizhou University, School of Medicine, Guiyang, 550025, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
11
|
Jian JT, Liu LK, Liu HP. Autophagy and white spot syndrome virus infection in crustaceans. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100047. [DOI: 10.1016/j.fsirep.2021.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
|
12
|
Ma C, Wu D, Chen Q, Gao N. Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition. Nat Commun 2022; 13:6765. [PMID: 36351914 PMCID: PMC9646744 DOI: 10.1038/s41467-022-34511-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The type II AAA + ATPase Drg1 is a ribosome assembly factor, functioning to release Rlp24 from the pre-60S particle just exported from nucleus, and its activity in can be inhibited by a drug molecule diazaborine. However, molecular mechanisms of Drg1-mediated Rlp24 removal and diazaborine-mediated inhibition are not fully understood. Here, we report Drg1 structures in different nucleotide-binding and benzo-diazaborine treated states. Drg1 hexamers transits between two extreme conformations (planar or helical arrangement of protomers). By forming covalent adducts with ATP molecules in both ATPase domain, benzo-diazaborine locks Drg1 hexamers in a symmetric and non-productive conformation to inhibits both inter-protomer and inter-ring communication of Drg1 hexamers. We also obtained a substrate-engaged mutant Drg1 structure, in which conserved pore-loops form a spiral staircase to interact with the polypeptide through a sequence-independent manner. Structure-based mutagenesis data highlight the functional importance of the pore-loop, the D1-D2 linker and the inter-subunit signaling motif of Drg1, which share similar regulatory mechanisms with p97. Our results suggest that Drg1 may function as an unfoldase that threads a substrate protein within the pre-60S particle.
Collapse
Affiliation(s)
- Chengying Ma
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China ,Changping Laboratory, 102206 Beijing, China
| | - Damu Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Qian Chen
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China ,Changping Laboratory, 102206 Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, 100871 Beijing, China
| |
Collapse
|
13
|
Wang X, Wen T, Miao H, Hu W, Lei M, Zhu Y. Discovery of a new class of valosine containing protein (VCP/P97) inhibitors for the treatment of colorectal cancer. Bioorg Med Chem 2022; 74:117050. [DOI: 10.1016/j.bmc.2022.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
14
|
Bezerra MJR, Moura DMN, Freire ER, Holetz FB, Reis CRS, Monteiro TTS, Pinto ARS, Zhang N, Rezende AM, Pereira-Neves A, Figueiredo RCBQ, Clayton C, Field MC, Carrington M, de Melo Neto OP. Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei. Front Mol Biosci 2022; 9:971811. [PMID: 36275617 PMCID: PMC9585242 DOI: 10.3389/fmolb.2022.971811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
Collapse
Affiliation(s)
- Maria J. R. Bezerra
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Eden R. Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | | | | | - Adriana R. S. Pinto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | - Christine Clayton
- Heidelberg University Center for Molecular Biology, Heidelberg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Osvaldo P. de Melo Neto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- *Correspondence: Osvaldo P. de Melo Neto,
| |
Collapse
|
15
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Kobakhidze G, Sethi A, Valimehr S, Ralph SA, Rouiller I. The AAA+ ATPase p97 as a novel parasite and tuberculosis drug target. Trends Parasitol 2022; 38:572-590. [DOI: 10.1016/j.pt.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
18
|
Cryo-EM structure of dodecamer human p97 in complex with NMS-873 reveals S 765-G 779 peptide plays critical role for D2 ring oligomerization. Biochem Biophys Res Commun 2022; 601:146-152. [PMID: 35247768 DOI: 10.1016/j.bbrc.2022.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023]
Abstract
The AAA + ATPase p97 is a well-known hexametric enzyme that is evolutionary conserved in eukaryotes. p97 contains an amino-terminal N domain, two tandem ATPase domains (D1 and D2 domain) and a C-terminal unstructured extensive tail, involved in many cellular processes and plays important biological functions, but the structural basis of p97 for its biological roles still remain unclear. Here we report the Cryo-EM structure of full-length human p97 dodecamer in 3.0 Å resolution, the structure was captured in ADP-bound form but only D1 ATPase sites were well occupied by nucleotide and D2 sites are empty, furthermore, 12 non-ATP-competitive inhibitors of NMS-873 bound in the interface between each p97 monomer. We also found that the C-terminal S765-G779 (765-'SRGFGSFRFPSGNQG'-779) peptide plays critical roles for the D2 ring oligomerization, biochemical and electron microscopy studies confirm that the S765-G779 peptide could induce the D2 ring itself to form the heptamer, this give new insights how p97 protomers assemble to the biological functional multimers.
Collapse
|
19
|
Yu G, Bai Y, Li K, Amarasinghe O, Jiang W, Zhang ZY. Cryo-electron microscopy structures of VCP/p97 reveal a new mechanism of oligomerization regulation. iScience 2021; 24:103310. [PMID: 34765927 PMCID: PMC8571493 DOI: 10.1016/j.isci.2021.103310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
VCP/p97 is an evolutionarily conserved AAA+ ATPase important for cellular homeostasis. Previous studies suggest that VCP predominantly exists as a homohexamer. Here, we performed structural and biochemical characterization of VCP dodecamer, an understudied state of VCP. The structure revealed an apo nucleotide status that has rarely been captured, a tail-to-tail assembly of two hexamers, and the up-elevated N-terminal domains akin to that seen in the ATP-bound hexamer. Further analyses elucidated a nucleotide status-dependent dodecamerization mechanism, where nucleotide dissociation from the D2 AAA domains induces and promotes VCP dodecamerization. In contrast, nucleotide-free D1 AAA domains are associated with the up-rotation of N-terminal domains, which may prime D1 for ATP binding. These results therefore reveal new nucleotide status-dictated intra- and interhexamer conformational changes and suggest that modulation of D2 domain nucleotide occupancy may serve as a mechanism in controlling VCP oligomeric states.
Collapse
Affiliation(s)
- Guimei Yu
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Ovini Amarasinghe
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
21
|
Burns GD, Hilal OE, Sun Z, Reutter KR, Preston GM, Augustine AA, Brodsky JL, Guerriero CJ. Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function. FEBS Lett 2021; 595:2383-2394. [PMID: 34358326 DOI: 10.1002/1873-3468.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022]
Abstract
Maintenance of the proteome (proteostasis) is essential for cellular homeostasis and prevents cytotoxic stress responses that arise from protein misfolding. However, little is known about how different types of misfolded proteins impact homeostasis, especially when protein degradation pathways are compromised. We examined the effects of misfolded protein expression on yeast growth by characterizing a suite of substrates possessing the same aggregation-prone domain but engaging different quality control pathways. We discovered that treatment with a proteasome inhibitor was more toxic in yeast expressing misfolded membrane proteins, and this growth defect was mirrored in yeast lacking a proteasome-specific transcription factor, Rpn4p. These results highlight weaknesses in the proteostasis network's ability to handle the stress arising from an accumulation of misfolded membrane proteins.
Collapse
Affiliation(s)
- Grace D Burns
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Olivia E Hilal
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | |
Collapse
|
22
|
Hoq MR, Vago FS, Li K, Kovaliov M, Nicholas RJ, Huryn DM, Wipf P, Jiang W, Thompson DH. Affinity Capture of p97 with Small-Molecule Ligand Bait Reveals a 3.6 Å Double-Hexamer Cryoelectron Microscopy Structure. ACS NANO 2021; 15:8376-8385. [PMID: 33900731 DOI: 10.1021/acsnano.0c10185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent progress in the development of affinity grids for cryoelectron microscopy (cryo-EM) typically employs genetic engineering of the protein sample such as histidine or Spy tagging, immobilized antibody capture, or nonselective immobilization via electrostatic interactions or Schiff base formation. We report a powerful and flexible method for the affinity capture of target proteins for cryo-EM analysis that utilizes small-molecule ligands as bait for concentrating human target proteins directly onto the grid surface for single-particle reconstruction. This approach is demonstrated for human p97, captured using two different small-molecule high-affinity ligands of this AAA+ ATPase. Four electron density maps are revealed, each representing a p97 conformational state captured from solution, including a double-hexamer structure resolved to 3.6 Å. These results demonstrate that the noncovalent capture of protein targets on EM grids modified with high-affinity ligands can enable the structure elucidation of multiple configurational states of the target and potentially inform structure-based drug design campaigns.
Collapse
Affiliation(s)
- Md Rejaul Hoq
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Frank S Vago
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kunpeng Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marina Kovaliov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert J Nicholas
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wen Jiang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
24
|
Davis C, Spaller BL, Matouschek A. Mechanisms of substrate recognition by the 26S proteasome. Curr Opin Struct Biol 2021; 67:161-169. [PMID: 33296738 PMCID: PMC8096638 DOI: 10.1016/j.sbi.2020.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
The majority of regulated protein degradation in eukaryotes is accomplished by the 26S proteasome, the large proteolytic complex responsible for removing regulatory proteins and damaged proteins. Proteins are targeted to the proteasome by ubiquitination, and degradation is initiated at a disordered region within the protein. The ability of the proteasome to precisely select which proteins to break down is necessary for cellular functioning. Recent studies reveal the subtle mechanisms of substrate recognition by the proteasome - diverse ubiquitin chains can act as potent proteasome targeting signals, ubiquitin receptors function uniquely and cooperatively, and modification of initiation regions modulate degradation. Here, we summarize recent findings illuminating the nature of substrate recognition by the proteasome.
Collapse
Affiliation(s)
- Caroline Davis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian Logan Spaller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
26
|
Ravanelli S, den Brave F, Hoppe T. Mitochondrial Quality Control Governed by Ubiquitin. Front Cell Dev Biol 2020; 8:270. [PMID: 32391359 PMCID: PMC7193050 DOI: 10.3389/fcell.2020.00270] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential organelles important for energy production, proliferation, and cell death. Biogenesis, homeostasis, and degradation of this organelle are tightly controlled to match cellular needs and counteract chronic stress conditions. Despite providing their own DNA, the vast majority of mitochondrial proteins are encoded in the nucleus, synthesized by cytosolic ribosomes, and subsequently imported into different mitochondrial compartments. The integrity of the mitochondrial proteome is permanently challenged by defects in folding, transport, and turnover of mitochondrial proteins. Therefore, damaged proteins are constantly sequestered from the outer mitochondrial membrane and targeted for proteasomal degradation in the cytosol via mitochondrial-associated degradation (MAD). Recent studies identified specialized quality control mechanisms important to decrease mislocalized proteins, which affect the mitochondrial import machinery. Interestingly, central factors of these ubiquitin-dependent pathways are shared with the ER-associated degradation (ERAD) machinery, indicating close collaboration between both tubular organelles. Here, we summarize recently described cellular stress response mechanisms, which are triggered by defects in mitochondrial protein import and quality control. Moreover, we discuss how ubiquitin-dependent degradation is integrated with cytosolic stress responses, particularly focused on the crosstalk between MAD and ERAD.
Collapse
Affiliation(s)
- Sonia Ravanelli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Biomolecules 2020; 10:biom10040629. [PMID: 32325699 PMCID: PMC7226402 DOI: 10.3390/biom10040629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation.
Collapse
|
28
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
29
|
Shi W, Ding R, Zhou PP, Fang Y, Wan R, Chen Y, Jin J. Coordinated Actions Between p97 and Cullin-RING Ubiquitin Ligases for Protein Degradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:61-78. [PMID: 31898222 DOI: 10.1007/978-981-15-1025-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cullin-RING ubiquitin ligases comprise the largest subfamily of ubiquitin ligases. They control ubiquitylation and degradation of a large number of protein substrates in eukaryotes. p97 is an ATPase domain-containing protein segregase. It plays essential roles in post-ubiquitylational events in the ubiquitin-proteasome pathway. Together with its cofactors, p97 collaborates with ubiquitin ligases to extract ubiquitylated substrates and deliver them to the proteasome for proteolysis. Here we review the structure, functions, and mechanisms of p97 in cellular protein degradation in coordination with its cofactors and the cullin-RING ubiquitin ligases.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ran Ding
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Pei Pei Zhou
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yuan Fang
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ruixi Wan
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yilin Chen
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Jianping Jin
- Life Science Institute, Zhejiang University, HangZhou, China.
| |
Collapse
|
30
|
Huryn DM, Kornfilt DJP, Wipf P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections. J Med Chem 2019; 63:1892-1907. [PMID: 31550150 DOI: 10.1021/acs.jmedchem.9b01318] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The AAA+ ATPase, p97, also referred to as VCP, plays an essential role in cellular homeostasis by regulating endoplasmic reticulum-associated degradation (ERAD), mitochondrial-associated degradation (MAD), chromatin-associated degradation, autophagy, and endosomal trafficking. Mutations in p97 have been linked to a number of neurodegenerative diseases, and overexpression of wild type p97 is observed in numerous cancers. Furthermore, p97 activity has been shown to be essential for the replication of certain viruses, including poliovirus, herpes simplex virus (HSV), cytomegalovirus (CMV), and influenza. Taken together, these observations highlight the potential for targeting p97 as a therapeutic approach in neurodegeneration, cancer, and certain infectious diseases. This Perspective reviews recent advances in the discovery of small molecule inhibitors of p97, their optimization and characterization, and therapeutic potential.
Collapse
|
31
|
Carissimo G, Chan YH, Utt A, Chua TK, Bakar FA, Merits A, Ng LFP. VCP/p97 Is a Proviral Host Factor for Replication of Chikungunya Virus and Other Alphaviruses. Front Microbiol 2019; 10:2236. [PMID: 31636613 PMCID: PMC6787436 DOI: 10.3389/fmicb.2019.02236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved AAA+ ATPase valosin-containing protein (VCP) was previously shown to be a proviral host factor for several viruses from different viral families such as Flaviviridae, Picornaviridae, and Herpesviridae. VCP was shown to affect trafficking of Sindbis virus receptor and functions as a component of Semliki Forest virus (SFV) replicase compartment. However, the role of this cellular protein was not evaluated during replication of alphaviruses including chikungunya virus (CHIKV). Using siRNA, chemical inhibitors, and trans-replication assays, we show here that VCP is a proviral factor involved in the replication of CHIKV. Immunofluorescence assays confirmed that VCP co-localized with non-structural replicase proteins but not with dsRNA foci possibly due to VCP epitope unavailability. VCP pro-viral role is also observed with other alphaviruses such as o’nyong’nyong virus (ONNV) and SFV in different human cell lines. VCP proviral roles on several viral families now extend to replication of alphaviruses CHIKV and ONNV, emphasizing the pivotal role of VCP in virus–host interaction biology.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Age Utt
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tze-Kwang Chua
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Andres Merits
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. TRF4, the novel TBP-related protein of Drosophila melanogaster, is concentrated at the endoplasmic reticulum and copurifies with proteins participating in the processes associated with endoplasmic reticulum. J Cell Biochem 2019; 120:7927-7939. [PMID: 30426565 DOI: 10.1002/jcb.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Nabirochkina
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G Georgieva
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Kopytova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Bègue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:34-44. [PMID: 30709491 DOI: 10.1016/j.plantsci.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity. First data indicated that CDC48 is S-nitrosylated in plant cells undergoing an immune response, regulates the turnover of immune receptors and mediates the degradation of viral proteins. Furthermore its overexpression was associated to an exacerbated hypersensitive-like cell death. We also designed and reported here the first CDC48 interactome. The corresponding data confirm the closed interaction of CDC48 with components of the UPS and shed light on its putative regulatory function of S-adenosyl-methionine synthesis and metabolism. More generally, these investigations further support the concept that plant cells facing pathogen attack finely regulate the protein quality control machinery.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
34
|
Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin. Mol Cell 2019; 69:664-676.e5. [PMID: 29452641 DOI: 10.1016/j.molcel.2018.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023]
Abstract
The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive. Here we show that condensin has a strong tendency to trap itself in its own reaction product during chromatin compaction and yet is capable of interacting with chromatin in a highly dynamic manner in vivo. To resolve this apparent paradox, we identified specific chromatin remodelers and AAA-class ATPases that act in a coordinated manner to release condensin from chromatin entrapment. The Cdc48 segregase is the central linchpin of this regulatory mechanism and promotes ubiquitin-dependent cycling of condensin on mitotic chromatin as well as effective chromosome condensation. Collectively, our results show that condensin inhibition by its own reaction product is relieved by forceful enzyme extraction from chromatin.
Collapse
|
35
|
Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas JL, Chardot T, Gallois JL, D'Andrea S. PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. THE PLANT CELL 2018; 30:2116-2136. [PMID: 30087208 PMCID: PMC6181022 DOI: 10.1105/tpc.18.00275] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 05/19/2023]
Abstract
Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that Arabidopsis thaliana oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown. Here, we report that PUX10, a member of the plant UBX-domain containing (PUX) protein family, is an integral LD protein that associates with a subpopulation of LDs during seed germination. In pux10 mutant seedlings, PUX10 deficiency impaired the degradation of ubiquitinated oleosins and prevented the extraction of ubiquitinated oleosins from LDs. We also showed that PUX10 interacts with ubiquitin and CDC48A, the AAA ATPase Cell Division Cycle 48, through its UBA and UBX domains, respectively. Collectively, these results strongly suggest that PUX10 is an adaptor recruiting CDC48A to ubiquitinated oleosins, thus facilitating the dislocation of oleosins from LDs by the segregase activity of CDC48A. We propose that PUX10 and CDC48A are core components of a LD-associated degradation machinery, which we named the LD-associated degradation system. Importantly, PUX10 is also the first determinant of a LD subpopulation described in plants, suggesting functional differentiation of LDs in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Carine Deruyffelaere
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Zita Purkrtova
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Bouchez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sabine D'Andrea
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
36
|
Ghosh DK, Roy A, Ranjan A. The ATPase VCP/p97 functions as a disaggregase against toxic Huntingtin-exon1 aggregates. FEBS Lett 2018; 592:2680-2692. [PMID: 30069866 DOI: 10.1002/1873-3468.13213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022]
Abstract
Intracellular protein aggregation is characterized by accumulation of misfolded proteins. Chaperones, degradation machineries, and quality-control mechanisms counteract protein aggregation. In this study, we report that the ATPase valosin-containing protein (VCP/p97) acts as a functional disaggregase that disassembles Huntingtin-exon1 aggregates in vitro and in HeLa cells. The N-terminal part of VCP (Cdc48_N domain) interacts with the N-terminal 17-amino acid region of Huntingtin-exon1. We show that VCP has properties of a disaggregase, since it is capable of reducing preformed protein aggregates and displays increased ATPase activity in the presence of protein aggregates. However, VCP shows high divergence/disparity from other disaggregases. Taken together, our studies show the novel function of VCP/p97 as a disaggregase which detangles protein aggregates to probably channelize their degradation.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
37
|
Lyupina YV, Erokhov PA, Kravchuk OI, Finoshin AD, Abaturova SB, Orlova OV, Beljelarskaya SN, Kostyuchenko MV, Mikhailov VS. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells. Virus Res 2018; 253:68-76. [PMID: 29890203 DOI: 10.1016/j.virusres.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yulia V Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Pavel A Erokhov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Oksana I Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Alexander D Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana B Abaturova
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Olga V Orlova
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana N Beljelarskaya
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Margarita V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow, 119334, Russia
| | - Victor S Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia.
| |
Collapse
|
38
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
39
|
VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell 2017; 69:182-194. [PMID: 29153394 DOI: 10.1016/j.molcel.2017.10.028] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The AAA+-type ATPase p97 governs an ever-expanding number of cellular processes reaching from degradation of damaged proteins and organelles to key signaling events and chromatin regulation with thousands of client proteins. With its relevance for cellular homeostasis and genome stability, it is linked to muscular and neuronal degeneration and, conversely, constitutes an attractive anti-cancer drug target. Its molecular function is ATP-driven protein unfolding, which is directed by ubiquitin and assisted by a host of cofactor proteins. This activity underlies p97's diverse ability to pull proteins out of membranes, unfold proteins for proteasomal degradation, or segregate proteins from partners for downstream activity. Recent advances in structural analysis and biochemical reconstitution have underscored this notion, resolved detailed molecular motions within the p97 hexamer, and suggested substrate threading through the central channel of the p97 hexamer as the driving mechanism. We will discuss the mechanisms and open questions in the context of the diverse cellular activities.
Collapse
|
40
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identification of Proteins Interacting with Ubiquitin Chains. Angew Chem Int Ed Engl 2017; 56:15764-15768. [DOI: 10.1002/anie.201705898] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohui Zhao
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Joachim Lutz
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Martin Scheffner
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
41
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identifizierung von Interaktoren von Ubiquitinketten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaohui Zhao
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Joachim Lutz
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Höllmüller
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Martin Scheffner
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Florian Stengel
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
42
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|
43
|
Esaki M, Islam MT, Tani N, Ogura T. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48. Sci Rep 2017; 7:5475. [PMID: 28710470 PMCID: PMC5511170 DOI: 10.1038/s41598-017-05806-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Md Tanvir Islam
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Microbiology, Jessore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
44
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
45
|
Saffert P, Enenkel C, Wendler P. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes. Front Mol Biosci 2017; 4:33. [PMID: 28611990 PMCID: PMC5447069 DOI: 10.3389/fmolb.2017.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80–150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.
Collapse
Affiliation(s)
- Paul Saffert
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
46
|
Guerriero CJ, Reutter KR, Augustine AA, Preston GM, Weiberth KF, Mackie TD, Cleveland-Rubeor HC, Bethel NP, Callenberg KM, Nakatsukasa K, Grabe M, Brodsky JL. Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Mol Biol Cell 2017; 28:2076-2090. [PMID: 28539401 PMCID: PMC5509421 DOI: 10.1091/mbc.e17-03-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum-associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency.
Collapse
Affiliation(s)
| | - Karl-Richard Reutter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Andrew A Augustine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kurt F Weiberth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Neville P Bethel
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Keith M Callenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.,Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
47
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
48
|
Hänzelmann P, Schindelin H. The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97. Front Mol Biosci 2017; 4:21. [PMID: 28451587 PMCID: PMC5389986 DOI: 10.3389/fmolb.2017.00021] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
The hexameric type II AAA ATPase (ATPase associated with various activities) p97 (also referred to as VCP, Cdc48, and Ter94) is critically involved in a variety of cellular activities including pathways such as DNA replication and repair which both involve chromatin remodeling, and is a key player in various protein quality control pathways mediated by the ubiquitin proteasome system as well as autophagy. Correspondingly, p97 has been linked to various pathophysiological states including cancer, neurodegeneration, and premature aging. p97 encompasses an N-terminal domain, two highly conserved ATPase domains and an unstructured C-terminal tail. This enzyme hydrolyzes ATP and utilizes the resulting energy to extract or disassemble protein targets modified with ubiquitin from stable protein assemblies, chromatin and membranes. p97 participates in highly diverse cellular processes and hence its activity is tightly controlled. This is achieved by multiple regulatory cofactors, which either associate with the N-terminal domain or interact with the extreme C-terminus via distinct binding elements and target p97 to specific cellular pathways, sometimes requiring the simultaneous association with more than one cofactor. Most cofactors are recruited to p97 through conserved binding motifs/domains and assist in substrate recognition or processing by providing additional molecular properties. A tight control of p97 cofactor specificity and diversity as well as the assembly of higher-order p97-cofactor complexes is accomplished by various regulatory mechanisms, which include bipartite binding, binding site competition, changes in oligomeric assemblies, and nucleotide-induced conformational changes. Furthermore, post-translational modifications (PTMs) like acetylation, palmitoylation, phosphorylation, SUMOylation, and ubiquitylation of p97 have been reported which further modulate its diverse molecular activities. In this review, we will describe the molecular basis of p97-cofactor specificity/diversity and will discuss how PTMs can modulate p97-cofactor interactions and affect the physiological and patho-physiological functions of p97.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| |
Collapse
|
49
|
Li ZH, Wang Y, Xu M, Jiang T. Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase. Biochem Biophys Res Commun 2017; 486:94-100. [PMID: 28274878 DOI: 10.1016/j.bbrc.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
In humans, UBXD7 (also called UBXN7), an adaptor of p97 ATPase, can participate in the degradation of misfolded or damaged proteins in the p97-mediated ubiquitin proteasome system (UPS). UBXD7 binds to ubiquitinated substrates via its UBA domain and interacts with p97 N-terminal domain through its UBX domain to recruit p97 or the p97 core complex (p97/NPL4/UFD1). Here, we report the crystal structures of the UBX domain of UBXD7 (UBXD7UBX) at 2.0 Å resolution and its complex with p97 N-terminal domain (p97NTD-UBXD7UBX complex) at 2.4 Å resolution. A structural analysis and isothermal titration calorimetry results provide detailed molecular basis of interaction between UBXD7UBX and p97NTD. Moreover, structural superpositions suggest that dimerization of UBXD7UBX via an intermolecular disulfide bond could interfere with the formation of the p97NTD-UBXD7UBX complex. Interestingly, UBXD7 may have a cooperative effect on p97 interaction with UFD1. Together, these results provide structural and biochemical insights into the interaction between p97NTD and UBXD7UBX.
Collapse
Affiliation(s)
- Zhi-Hui Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yong Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
50
|
McEwan WA, Falcon B, Vaysburd M, Clift D, Oblak AL, Ghetti B, Goedert M, James LC. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci U S A 2017; 114:574-579. [PMID: 28049840 PMCID: PMC5255578 DOI: 10.1073/pnas.1607215114] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/metabolism
- Cells, Cultured
- Cytosol/metabolism
- Humans
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Degeneration/immunology
- Nerve Degeneration/metabolism
- Nerve Degeneration/prevention & control
- Neurons/immunology
- Neurons/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Aggregates
- Protein Aggregation, Pathological/immunology
- Protein Aggregation, Pathological/metabolism
- Protein Aggregation, Pathological/prevention & control
- Proteostasis Deficiencies/metabolism
- Proteostasis Deficiencies/prevention & control
- Receptors, Fc/deficiency
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Ribonucleoproteins/deficiency
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- tau Proteins/chemistry
- tau Proteins/immunology
- tau Proteins/metabolism
Collapse
Affiliation(s)
- William A McEwan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Benjamin Falcon
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marina Vaysburd
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Adrian L Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|