1
|
Yang R, Ko YH, Li F, Lokareddy RK, Hou CFD, Kim C, Klein S, Antolínez S, Marín JF, Pérez-Segura C, Jarrold MF, Zlotnick A, Hadden-Perilla JA, Cingolani G. Structural basis for nuclear import of hepatitis B virus (HBV) nucleocapsid core. SCIENCE ADVANCES 2024; 10:eadi7606. [PMID: 38198557 PMCID: PMC10780889 DOI: 10.1126/sciadv.adi7606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Christine Kim
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Shelby Klein
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Santiago Antolínez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan F. Marín
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Jana AK, Sharawy M, May ER. Non-equilibrium virus particle dynamics: Microsecond MD simulations of the complete Flock House virus capsid under different conditions. J Struct Biol 2023; 215:107964. [PMID: 37105277 PMCID: PMC10205670 DOI: 10.1016/j.jsb.2023.107964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Collapse
Affiliation(s)
- Asis K Jana
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA; Department of Microbiology and Biotechnology, Sister Nivedita University, New Town, West Bengal 700156, India
| | - Mahmoud Sharawy
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA
| | - Eric R May
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA.
| |
Collapse
|
4
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
5
|
Methods to study viruses. Viruses 2023. [DOI: 10.1016/b978-0-323-90385-1.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
6
|
Sikdar S, Banerjee M, Vemparala S. Effect of cholesterol on the membrane partitioning dynamics of hepatitis A virus-2B peptide. SOFT MATTER 2021; 17:7963-7977. [PMID: 34378608 DOI: 10.1039/d1sm01019k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
| | | | | |
Collapse
|
7
|
Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021. [PMID: 34205401 DOI: 10.3390/diagnostics11061119.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
|
8
|
Taha BA, Al Mashhadany Y, Bachok NN, Ashrif A Bakar A, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021; 11:1119. [PMID: 34205401 PMCID: PMC8234865 DOI: 10.3390/diagnostics11061119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Nur Nadia Bachok
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Ahmad Ashrif A Bakar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|
9
|
Jana AK, May ER. Atomistic dynamics of a viral infection process: Release of membrane lytic peptides from a non-enveloped virus. SCIENCE ADVANCES 2021; 7:7/16/eabe1761. [PMID: 33853772 PMCID: PMC8046363 DOI: 10.1126/sciadv.abe1761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 05/13/2023]
Abstract
Molecular simulations have played an instrumental role in uncovering the structural dynamics and physical properties of virus capsids. In this work, we move beyond equilibrium physicochemical characterization of a virus system to study a stage of the infection process that is required for viral proliferation. Despite many biochemical and functional studies, the molecular mechanism of host cell entry by non-enveloped viruses remains largely unresolved. Flock House virus (FHV) is a model system for non-enveloped viruses and is the subject of the current study. FHV infects through the acid-dependent endocytic pathway, where low pH triggers externalization of membrane-disrupting (γ) peptides from the capsid interior. Using all-atom equilibrium and enhanced sampling simulations, the mechanism and energetics of γ peptide liberation and the effect of pH on this process are investigated. Our computations agree with experimental findings and reveal nanoscopic details regarding the pH control mechanism, which are not readily accessible in experiments.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Nangia S, Boyd KJ, May ER. Molecular dynamics study of membrane permeabilization by wild-type and mutant lytic peptides from the non-enveloped Flock House virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183102. [PMID: 31678020 DOI: 10.1016/j.bbamem.2019.183102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Flock House virus (FHV) serves as a model system for understanding infection mechanisms utilized by non-enveloped viruses to transport across cellular membranes. During the infection cycle of FHV, a fundamental stage involves disruption of the endosomal membrane by membrane active peptides, following externalization of the peptides from the capsid interior. The FHV lytic agents are the 44 C-terminal amino acids residues of the capsid protein, which are auto-catalytically cleaved during the capsid maturation process. The cleaved peptides are termed γ peptides. In this study, we perform multi-scale molecular dynamics simulations including 40 μs all-atom molecular dynamics simulations to study the behavior of pre-inserted transmembrane lytic peptides at a high concentration in a neutral membrane. We study the dynamical organization among peptides to form oligomeric bundles in four systems including the wild-type γ peptide and three mutant forms; namely, a truncation mutant in which the 23 C-terminal residues are deleted (γ1), a construct where the 8 C-terminal residues of γ are fused to γ1 (Δ385-399 γ) and a single-point mutant (F402A γ), all of which have been experimentally shown to drastically affect infectivity and lytic activity compared to the wild-type γ. Our results shed light on the actions of varied forms of the FHV lytic peptide including membrane insertion, trans-membrane stability, peptide oligomerization, water permeation activity and dynamic pore formation. Findings from this study provide detailed structural information and rationale for the differences in lytic activity among variants of FHV γ.
Collapse
Affiliation(s)
- Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America
| | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
11
|
Dey D, Siddiqui SI, Mamidi P, Ghosh S, Kumar CS, Chattopadhyay S, Ghosh S, Banerjee M. The effect of amantadine on an ion channel protein from Chikungunya virus. PLoS Negl Trop Dis 2019; 13:e0007548. [PMID: 31339886 PMCID: PMC6655611 DOI: 10.1371/journal.pntd.0007548] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Viroporins like influenza A virus M2, hepatitis C virus p7, HIV-1 Vpu and picornavirus 2B associate with host membranes, and create hydrophilic corridors, which are critical for viral entry, replication and egress. The 6K proteins from alphaviruses are conjectured to be viroporins, essential during egress of progeny viruses from host membranes, although the analogue in Chikungunya Virus (CHIKV) remains relatively uncharacterized. Using a combination of electrophysiology, confocal and electron microscopy, and molecular dynamics simulations we show for the first time that CHIKV 6K is an ion channel forming protein that primarily associates with endoplasmic reticulum (ER) membranes. The ion channel activity of 6K can be inhibited by amantadine, an antiviral developed against the M2 protein of Influenza A virus; and CHIKV infection of cultured cells can be effectively inhibited in presence of this drug. Our study provides crucial mechanistic insights into the functionality of 6K during CHIKV-host interaction and suggests that 6K is a potential therapeutic drug target, with amantadine and its derivatives being strong candidates for further development. Chikungunya fever is a severe crippling illness caused by the arthropod-borne virus CHIKV. Originally from the African subcontinent, the virus has now spread worldwide and is responsible for substantial morbidity and economic loss. The existing treatment against CHIKV is primarily symptomatic, and it is imperative that specific therapeutics be devised. The present study provides detailed insight into the functionality of 6K, an ion channel forming protein of CHIKV. Amantadine, a known antiviral against influenza virus, also inhibits CHIKV replication in cell culture and drastically alters the morphology of virus particles. This work highlights striking parallels among functionalities of virus-encoded membrane-interacting proteins, which may be exploited for developing broad-spectrum antivirals.
Collapse
Affiliation(s)
- Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | | | | | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | | | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi (South Campus), Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Souto S, Olveira JG, García-Rosado E, Dopazo CP, Bandín I. Amino acid changes in the capsid protein of a reassortant betanodavirus strain: Effect on viral replication in vitro and in vivo. JOURNAL OF FISH DISEASES 2019; 42:221-227. [PMID: 30511462 DOI: 10.1111/jfd.12916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Betanodavirus reassortant strains (RGNNV/SJNNV) isolated from Senegalese sole harbour an SJNNV capsid featuring several changes with respect to the SJNNV-type strain, sharing three hallmark substitutions. Here, we have employed recombinant strains harbouring mutations in these positions (r20 and r20 + 247 + 270) and have demonstrated that the three substitutions affect different steps of the viral replication process. Adsorption ability and efficiency of viral attachment were only affected by substitutions in the C-terminal side of the capsid. However, the concurrent mutation in the N-terminal side seems to slightly decrease these properties, suggesting that this region could also be involved in viral binding. Differences in the intracellular and extracellular production of the mutant strains suggest that both the C-terminal and N-terminal regions of the capsid protein may be involved in the particle budding. Furthermore, viral replication in sole brain tissue of the mutant strains, and especially double- and triple-mutant strains, is clearly delayed with respect to the wt strain. These data support previous findings indicating that the C-terminal side plays a role in virulence because of a slower spread in the fish host brain and suggest that the concurrent participation of the N-terminal side is also important for viral replication in vivo.
Collapse
Affiliation(s)
- Sandra Souto
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther García-Rosado
- Facultad de Ciencias, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
15
|
Folding a viral peptide in different membrane environments: pathway and sampling analyses. J Biol Phys 2018; 44:195-209. [PMID: 29644513 DOI: 10.1007/s10867-018-9490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022] Open
Abstract
Flock House virus (FHV) is a well-characterized model system to study infection mechanisms in non-enveloped viruses. A key stage of the infection cycle is the disruption of the endosomal membrane by a component of the FHV capsid, the membrane active γ peptide. In this study, we perform all-atom molecular dynamics simulations of the 21 N-terminal residues of the γ peptide interacting with membranes of differing compositions. We carry out umbrella sampling calculations to study the folding of the peptide to a helical state in homogenous and heterogeneous membranes consisting of neutral and anionic lipids. From the trajectory data, we evaluate folding energetics and dissect the mechanism of folding in the different membrane environments. We conclude the study by analyzing the extent of configurational sampling by performing time-lagged independent component analysis.
Collapse
|
16
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|
17
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
18
|
Kharche S, Joshi M, Sengupta D, Chattopadhyay A. Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR1: insights from atomistic simulations. Chem Phys Lipids 2017; 210:142-148. [PMID: 28939366 DOI: 10.1016/j.chemphyslip.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
The CXC chemokine receptor 1 (CXCR1) is an important member of the G protein-coupled receptor (GPCR) family in which the extracellular N-terminal domain has been implicated in ligand binding and selectivity. The structure of this domain has not yet been elucidated due to its inherent dynamics, but experimental evidence points toward membrane-dependent organization and dynamics. To gain molecular insight into the interaction of the N-terminal domain with the membrane bilayer, we performed a series of microsecond time scale atomistic simulations of the N-terminal domain of CXCR1 in the presence and absence of POPC bilayers. Our results show that the peptide displays a high propensity to adopt a β-sheet conformation in the presence of the membrane bilayer. The interaction of the peptide with the membrane bilayer was found to be transient in our simulations. Interestingly, a scrambled peptide, containing the same residues in a randomly varying sequence, did not exhibit membrane-modulated structural dynamics. These results suggest that sequence-dependent electrostatics, modulated by the membrane, could play an important role in folding of the N-terminal domain. We believe that our results reinforce the emerging paradigm that cellular membranes could be important modulators of function of G protein-coupled receptors such as CXCR1.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Manali Joshi
- Bioinformatics Center, S.P. Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | | |
Collapse
|
19
|
Nangia S, May ER. Influence of membrane composition on the binding and folding of a membrane lytic peptide from the non-enveloped flock house virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1190-1199. [PMID: 28395954 DOI: 10.1016/j.bbamem.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Using a combination of coarse-grained and atomistic molecular dynamics simulations we have investigated the membrane binding and folding properties of the membrane lytic peptide of Flock House virus (FHV). FHV is an animal virus and an excellent model system for studying cell entry mechanisms in non-enveloped viruses. FHV undergoes a maturation event where the 44 C-terminal amino acids are cleaved from the major capsid protein, forming the membrane lytic (γ) peptides. Under acidic conditions, γ is released from the capsid interior allowing the peptides to bind and disrupt membranes. The first 21 N-terminal residues of γ, termed γ1, have been resolved in the FHV capsid structure and γ1 has been the subject of in vitro studies. γ1 is structurally dynamic as it adopts helical secondary structure inside the capsid and on membranes, but it is disordered in solution. In vitro studies have shown the binding free energies to POPC or POPG membranes are nearly equivalent, but binding to POPC is enthalpically driven, while POPG binding is entropically driven. Through coarse-grained and multiple microsecond all-atom simulations the membrane binding and folding properties of γ1 are investigated against homogeneous and heterogeneous bilayers to elucidate the dependence of the microenvironment on the structural properties of γ1. Our studies provide a rationale for the thermodynamic data and suggest binding of γ1 to POPG bilayers occurs in a disordered state, but γ1 must adopt a helical conformation when binding POPC bilayers.
Collapse
Affiliation(s)
- Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
20
|
Abstract
This chapter describes methods for growing, purifying, counting, and characterizing viruses. It also provides general principles of diagnostic virology. As obligate intracellular parasites, viruses require cell in which to replicate. The cells must express appropriate receptors and other proteins required by the virus. Cultured cells are often used to study basic steps in virus replication. Viruses can be purified away from cellular proteins and organelles using centrifugation techniques. Most viruses cannot be seen using standard light microscopes, but are often imaged using electron microscopy. Methods that combine image collection and computationally demanding image processing can provide incredible details about virus architecture. Another common way to visualize viruses is to use fluorescent tags or dyes. Although these techniques do not show detailed virus structures, they can be used to follow the progress of a virus through a cell and can provide a direct window into protein–protein interactions required for virus replication. A more indirect method to detect viruses is to look for virally induced changes to cell morphology. A variety of basic biochemical techniques are useful for analyzing viral proteins and nucleic acids. As the viral genomes are relatively simple, they can be manipulated/mutated to study the function of virtually any viral protein. Powerful genetic techniques can also be used to generate “designer” cells or organisms. There are a variety of methods for quantitating viruses. Infectivity assays measure the ability of a virus to productively infect a cell. Techniques that identify specific viral proteins or genomes provide ways to rapidly identify viruses. Some of these assays can be used at the bedside, or in the field. Powerful and inexpensive DNA sequencing technologies are being used to identify new viruses, many of which could not be found by other methods. The challenge is to understand how or if these viruses impact their hosts.
Collapse
|
21
|
Hodak H. Down to the Molecular Mechanisms of Host–Pathogen Interactions. J Mol Biol 2016; 428:3353-4. [DOI: 10.1016/j.jmb.2016.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|