1
|
Eze FN. Transthyretin Amyloidosis: Role of oxidative stress and the beneficial implications of antioxidants and nutraceutical supplementation. Neurochem Int 2024; 179:105837. [PMID: 39154837 DOI: 10.1016/j.neuint.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Guzzi R, Bartucci R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin. Biochem Biophys Res Commun 2024; 722:150168. [PMID: 38797156 DOI: 10.1016/j.bbrc.2024.150168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy; CNR-NANOTEC, Department of Physics, University of Calabria, 87036, Rende, Italy.
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy
| |
Collapse
|
3
|
Deryusheva EI, Shevelyova MP, Rastrygina VA, Nemashkalova EL, Vologzhannikova AA, Machulin AV, Nazipova AA, Permyakova ME, Permyakov SE, Litus EA. In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide. Int J Mol Sci 2024; 25:4975. [PMID: 38732194 PMCID: PMC11084196 DOI: 10.3390/ijms25094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aβ40 interaction: prednisone favors HSA-Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.
Collapse
Affiliation(s)
- Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pr. Nauki, 5, Pushchino 142290, Moscow Region, Russia;
| | - Alija A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| | - Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino 142290, Moscow Region, Russia; (M.P.S.); (V.A.R.); (E.L.N.); (A.A.V.); (A.A.N.); (M.E.P.); (S.E.P.); (E.A.L.)
| |
Collapse
|
4
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
5
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
6
|
Sakalauskas A, Ziaunys M, Snieckute R, Janoniene A, Veiveris D, Zvirblis M, Dudutiene V, Smirnovas V. The Major Components of Cerebrospinal Fluid Dictate the Characteristics of Inhibitors against Amyloid-Beta Aggregation. Int J Mol Sci 2023; 24:ijms24065991. [PMID: 36983069 PMCID: PMC10059578 DOI: 10.3390/ijms24065991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The main pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β into amyloid fibrils, leading to a neurodegeneration cascade. The current medications are far from sufficient to prevent the onset of the disease, hence requiring more research to find new alternative drugs for curing AD. In vitro inhibition experiments are one of the primary tools in testing whether a molecule may be potent to impede the aggregation of amyloid-beta peptide (Aβ42). However, kinetic experiments in vitro do not match the mechanism found when aggregating Aβ42 in cerebrospinal fluid. The different aggregation mechanisms and the composition of the reaction mixtures may also impact the characteristics of the inhibitor molecules. For this reason, altering the reaction mixture to resemble components found in cerebrospinal fluid (CSF) is critical to partially compensate for the mismatch between the inhibition experiments in vivo and in vitro. In this study, we used an artificial cerebrospinal fluid that contained the major components found in CSF and performed Aβ42 aggregation inhibition studies using oxidized epigallocatechin-3-gallate (EGCG) and fluorinated benzenesulfonamide VR16-09. This led to a discovery of a complete turnaround of their inhibitory characteristics, rendering EGCG ineffective while significantly improving the efficacy of VR16-09. HSA was the main contributor in the mixture that significantly increased the anti-amyloid characteristics of VR16-09.
Collapse
Affiliation(s)
- Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Agne Janoniene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Dominykas Veiveris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Zvirblis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Virginija Dudutiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Hu S, Guo Q, Wang S, Zhang W, Ye J, Su L, Zou S, Zhang D, Zhang Y, Yu D, Xu J, Wei Y. Supplementation of serum albumin is associated with improved pulmonary function: NHANES 2013–2014. Front Physiol 2022; 13:948370. [PMID: 36262258 PMCID: PMC9574070 DOI: 10.3389/fphys.2022.948370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The serum albumin level is reflective of the function of multiple organs, such as the liver and kidneys. However, the association between serum albumin and pulmonary function is unclear; therefore, this study aimed to determine the relationship between pulmonary function and serum albumin, including the threshold of serum albumin at the changes of the pulmonary function in the total population and in different strata of population. Methods: In this cross-sectional study, We examined the relationship between serum albumin and two independent indicators of pulmonary function: forced vital capacity (FVC) and forced expiratory volume in one second (FEV 1), using data from National Health and Nutrition Examination Survey (NHANES 2013–2014) (n = 3286). We used univariate analysis, stratified analysis, and multiple regression equation analysis to examine the correlation between serum albumin levels and FVC and FEV 1, and performed smoothed curve fitting, threshold effect, and saturation effect analysis (for stratification) to determine the threshold serum albumin level at which FVC and FEV 1 begin to change. Results: The adjusted smoothed curve fit plot showed a linear relationship between serum albu-min levels and FVC: for every 1 g/dl increase in the serum albumin level, FVC increased by 80.40 ml (11.18, 149.61). Serum albumin and FEV 1 showed a non-linear relationship. When serum al-bumin reached the inflection point (3.8 g/dl), FEV 1 increased with increasing serum albumin and the correlation coefficient β was 205.55 (140.15, 270.95). Conclusion: Serum albumin is a core indicator of liver function, and abnormal liver function has a direct impact on pulmonary function. In the total population, serum albumin levels were linearly and positively correlated with FVC. Above 3.6 g/dl, serum albumin was positively correlated with FEV 1. Based on the total population and different population strata, this study revealed a positive association between the serum albumin level and pulmonary function, and identified the threshold of serum albumin when Indicators of pulmonary function tests starts to rise, providing a new early warning indicator for people at high risk of pulmonary insufficiency and has positive implications for the prevention of combined respiratory failure in patients with liver insufficiency.
Collapse
|
8
|
Ibuprofen Favors Binding of Amyloid-β Peptide to Its Depot, Serum Albumin. Int J Mol Sci 2022; 23:ijms23116168. [PMID: 35682848 PMCID: PMC9181795 DOI: 10.3390/ijms23116168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
The deposition of amyloid-β peptide (Aβ) in the brain is a critical event in the progression of Alzheimer’s disease (AD). This Aβ deposition could be prevented by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aβ. We show here that an exogenous HSA ligand, ibuprofen (IBU), exerts the analogous effect. Plasmon resonance spectroscopy data evidence that a therapeutic IBU level increases HSA affinity to monomeric Aβ40/Aβ42 by a factor of 3–5. Using thioflavin T fluorescence assay and transmission electron microcopy, we show that IBU favors the suppression of Aβ40 fibrillation by HSA. Molecular docking data indicate partial overlap between the IBU/Aβ40-binding sites of HSA. The revealed enhancement of the HSA–Aβ interaction by IBU and the strengthened inhibition of Aβ fibrillation by HSA in the presence of IBU could contribute to the neuroprotective effects of the latter, previously observed in mouse and human studies of AD.
Collapse
|
9
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|
11
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
12
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
13
|
Zhao M, Guo C. Multipronged Regulatory Functions of Serum Albumin in Early Stages of Amyloid-β Aggregation. ACS Chem Neurosci 2021; 12:2409-2420. [PMID: 34160192 DOI: 10.1021/acschemneuro.1c00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human serum albumin (HSA) is a major interacting-partner of Alzheimer's amyloid-β (Aβ) peptide in the plasma and has emerged as a promising therapeutic target. HSA inhibits Aβ fibrillization, but the underlying molecular mechanism is not well elucidated. In this work, we investigated the role of HSA in the early stages of Aβ aggregation by simulating the binding process of multiple Aβ monomers and protofibrils to HSA with extensive molecular dynamics simulations. HSA could simultaneously trap multiple Aβ monomers and accommodate the formation of nonfibrillar Aβ oligomers after binding. In particular, domains I and III show stronger binding capacities and hold preferable interaction sites for oligomers. Consequently, HSA prevents the formation of fibrillar oligomers in water, thus interfering with the nucleation process. On the other aspect, when protofibrils are preformed, HSA tends to block the β-strand spanning the central hydrophobic core located at the protofibril end, preventing the addition of monomers to protofibrils. Furthermore, Aβ protofibril structures are severely disrupted both globally and locally. Thus, further growth of protofibrils to fibrils is impeded by HSA. Our results collectively indicate that HSA performs multipronged regulatory functions in the early stages of Aβ aggregation. Our work advances the understanding of the amyloid inhibition of Aβ by HSA and provides theoretical guidance for developing rational therapies of Alzheimer's disease.
Collapse
Affiliation(s)
- Mengjuan Zhao
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
14
|
Litus EA, Kazakov AS, Deryusheva EI, Nemashkalova EL, Shevelyova MP, Nazipova AA, Permyakova ME, Raznikova EV, Uversky VN, Permyakov SE. Serotonin Promotes Serum Albumin Interaction with the Monomeric Amyloid β Peptide. Int J Mol Sci 2021; 22:ijms22115896. [PMID: 34072751 PMCID: PMC8199245 DOI: 10.3390/ijms22115896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Prevention of amyloid β peptide (Aβ) deposition via facilitation of Aβ binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer's disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aβ by a factor of 3 (BBRC, 510(2), 248-253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aβ monomer to HSA by a factor of 7/17 for Aβ40/Aβ42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA's affinity to monomeric Aβ, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aβ release from HSA in the central nervous system due to impairment of the SRO-mediated Aβ trapping by HSA.
Collapse
Affiliation(s)
- Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Elena V. Raznikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-0522 (S.E.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (E.A.L.); (A.S.K.); (E.I.D.); (E.L.N.); (M.P.S.); (A.A.N.); (M.E.P.); (E.V.R.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-0522 (S.E.P.)
| |
Collapse
|
15
|
Xie H, Guo C. Albumin Alters the Conformational Ensemble of Amyloid-β by Promiscuous Interactions: Implications for Amyloid Inhibition. Front Mol Biosci 2021; 7:629520. [PMID: 33708792 PMCID: PMC7940760 DOI: 10.3389/fmolb.2020.629520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Human serum albumin (HSA) is a key endogenous inhibitor of amyloid-β (Αβ) aggregation. In vitro HSA inhibits Aβ fibrillization and targets multiple species along the aggregation pathway including monomers, oligomers, and protofibrils. Amyloid inhibition by HSA has both pathological implications and therapeutic potential, but the underlying molecular mechanism remains elusive. As a first step towards addressing this complex question, we studied the interactions of an Aβ42 monomer with HSA by molecular dynamics simulations. To adequately sample the conformational space, we adapted the replica exchange with solute tempering (REST2) method to selectively heat the Aβ42 peptide in the absence and presence of HSA. Aβ42 binds to multiple sites on HSA with a preference to domain III and adopts various conformations that all differ from the free state. The β-sheet abundances of H14-E22 and A30-M33 regions are significantly reduced by HSA, so are the β-sheet lengths. HSA shifts the conformational ensemble towards more disordered states and alters the β-sheet association patterns. In particular, the frequent association of Q15-V24 and N27-V36 regions into β-hairpin which is critical for aggregation is impeded. HSA primarily interacts with the latter β-region and the N-terminal charged residues. They form promiscuous interactions characterized by salt bridges at the edge of the peptide-protein interface and hydrophobic cores at the center. Consequently, intrapeptide interactions crucial for β-sheet formation are disrupted. Our work builds the bridge between the modification of Aβ conformational ensemble and amyloid inhibition by HSA. It also illustrates the potential of the REST2 method in studying interactions between intrinsically disordered peptides and globular proteins.
Collapse
Affiliation(s)
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Rossi E, Tran NT, Hirtz C, Lehmann S, Taverna M. Efficient extraction of intact HSA-Aβ peptide complexes from sera: Toward albuminome biomarker identification. Talanta 2020; 216:121002. [PMID: 32456932 DOI: 10.1016/j.talanta.2020.121002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
The performances of three commercial albumin extraction methods for the isolation of intact albumin-amyloid beta peptide (HSA-Aβ) complexes from serum were compared using different analytical approaches. To determine the extraction yield, the repeatability and the selectivity of the extraction procedures, a capillary electrophoresis coupled to UV detection method was developed. For the evaluation of the specificity and integrity of the extracted HSA-Aβ complexes, SDS-PAGE, hybrid and ultra-sensitive ELISA experiments were conducted. All the extraction methods showed different characteristics depending on their chemical binding affinities toward albumin. The ProteoExtract Albumin Depletion kit extracted albumin with a high repeatability but was not efficient for the extraction of intact HSA-Aβ complexes. The PureProteome Albumin magnetic beads showed a high specificity toward HSA thanks to the grafting of anti-HSA antibodies on their surface but tended to dissociate HSA from Aβ peptides. The Pierce Albumin depletion kit showed a high extraction yield, no selectivity towards the different albumin proteoforms and proved to be the most efficient method for the extraction of intact HSA-Aβ complexes from serum.
Collapse
Affiliation(s)
- Emilie Rossi
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France
| | - N Thuy Tran
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| | - Christophe Hirtz
- Laboratoire de Biochimie Protéomique Clinique, Plateforme de Protéomique Clinique, CHU de Montpellier, INSERM, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, Plateforme de Protéomique Clinique, CHU de Montpellier, INSERM, Université de Montpellier, Montpellier, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
17
|
Sciortino G, Sanna D, Lubinu G, Maréchal J, Garribba E. Unveiling VIVO2+Binding Modes to Human Serum Albumins by an Integrated Spectroscopic–Computational Approach. Chemistry 2020; 26:11316-11326. [DOI: 10.1002/chem.202001492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giuseppe Sciortino
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Daniele Sanna
- Istituto di Chimica BiomolecolareConsiglio Nazionale delle Ricerche Trav. La Crucca 3 07100 Sassari Italy
| | - Giuseppe Lubinu
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Jean‐Didier Maréchal
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
18
|
Ishima Y, Mimono A, Tuan Giam Chuang V, Fukuda T, Kusumoto K, Okuhira K, Suwa Y, Watanabe H, Ishida T, Morioka H, Maruyama T, Otagiri M. Albumin domain mutants with enhanced Aβ binding capacity identified by phage display analysis for application in various peripheral Aβ elimination approaches of Alzheimer's disease treatment. IUBMB Life 2019; 72:641-651. [PMID: 31794135 DOI: 10.1002/iub.2203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/03/2019] [Indexed: 11/11/2022]
Abstract
Deposition of amyloid protein, particularly Aβ1-42 , is a major contributor to the onset of Alzheimer's disease (AD). However, almost no deposition of Aβ in the peripheral tissues could be found. Human serum albumin (HSA), the most abundant protein in the blood, has been reported to inhibit amyloid formation through binding Aβ, which is believed to play an important role in the peripheral clearance of Aβ. We identified the Aβ binding site on HSA and developed HSA mutants with high binding capacities for Aβ using a phage display method. HSA fragment 187-385 (Domain II) was found to exhibit the highest binding capacity for Aβ compared with the other two HSA fragments. To elucidate the sequence that forms the binding site for Aβ on Domain II, a random screening of Domain II display phage biopanning was constructed. A number of mutants with higher Aβ binding capacities than the wild type were identified. These mutants exhibited stronger scavenging abilities than the wild type, as revealed via in vitro equilibrium dialysis of Aβ experiments. These findings provide useful basic data for developing a safer alternative therapy than Aβ vaccines and for application in plasma exchange as well as extracorporeal dialysis.
Collapse
Affiliation(s)
- Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.,School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Selangor, Malaysia
| | - Ai Mimono
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Selangor, Malaysia
| | - Tetsuya Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan
| | - Kohshi Kusumoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan.,DDS Research Institute, Sojo University, Ikeda, Kumamoto, Japan
| |
Collapse
|
19
|
Menendez-Gonzalez M, Gasparovic C. Albumin Exchange in Alzheimer's Disease: Might CSF Be an Alternative Route to Plasma? Front Neurol 2019; 10:1036. [PMID: 31681137 PMCID: PMC6813234 DOI: 10.3389/fneur.2019.01036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloid β (Aβ) in brain parenchyma is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). Aβ is transported from the brain to the plasma via complex transport mechanisms at the blood-brain barrier (BBB). About 90-95% of plasma Aβ may be bound to albumin. Replacement of serum albumin in plasma has been proposed as a promising therapy for AD. However, the efficacy of this approach may be compromised by altered BBB Aβ receptors in AD, as well as multiple pools of Aβ from other organs in exchange with plasma Aβ, competing for albumin binding sites. The flow of interstitial fluid (ISF) into cerebrospinal fluid (CSF) is another major route of Aβ clearance. Though the concentration of albumin in CSF is much lower than in plasma, the mixing of CSF with ISF is not impeded by a highly selective barrier and, hence, Aβ in the two pools is in more direct exchange. Furthermore, unlike in plasma, Aβ in CSF is not in direct exchange with multiple organ sources of Aβ. Here we consider albumin replacement in CSF as an alternative method for therapeutic brain Aβ removal and describe the possible advantages and rationale supporting this hypothesis.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | | |
Collapse
|
20
|
Coverdale JPC, Barnett JP, Adamu AH, Griffiths EJ, Stewart AJ, Blindauer CA. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution. Metallomics 2019; 11:1805-1819. [PMID: 31612889 DOI: 10.1039/c9mt00177h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Serum albumin is a highly abundant plasma protein associated with the transport of metal ions, pharmaceuticals, fatty acids and a variety of small molecules in the blood. Once thought of as a molecular 'sponge', mounting evidence suggests that the albumin-facilitated transport of chemically diverse entities is not independent. One such example is the transport of Zn2+ ions and non-esterified 'free' fatty acids (FFAs) by albumin, both of which bind at high affinity sites located in close proximity. Our previous research suggests that their transport in blood plasma is linked via an allosteric mechanism on serum albumin. In direct competition, albumin-bound FFAs significantly decrease the binding capacity of albumin for Zn2+, with one of the predicted consequences being a change in plasma/serum zinc speciation. Using liquid chromatography (LC), ICP-MS and fluorescence assays, our work provides a quantitative assessment of this phenomenon, and finds that in the presence of high FFA concentrations encountered in various physiological conditions, a significant proportion of albumin-bound Zn2+ is re-distributed amongst plasma/serum proteins. Using peptide mass fingerprinting and immunodetection, we identify candidate acceptor proteins for Zn2+ liberated from albumin. These include histidine-rich glycoprotein (HRG), a multifunctional protein associated with the regulation of blood coagulation, and members of the complement system involved in the innate immune response. Our findings highlight how FFA-mediated changes in extracellular metal speciation might contribute to the progression of certain pathological conditions.
Collapse
Affiliation(s)
| | - James P Barnett
- Department of Life Sciences, Birmingham City University, Edgbaston, B15 3TN, UK
| | - Adamu H Adamu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ellie J Griffiths
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | | |
Collapse
|
21
|
Al-Harthi S, Lachowicz JI, Nowakowski ME, Jaremko M, Jaremko Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J Inorg Biochem 2019; 198:110716. [PMID: 31153112 DOI: 10.1016/j.jinorgbio.2019.110716] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human serum albumin (HSA) is a monomeric, globular, multi-carrier and the most abundant protein in the blood. HSA displays multiple ligand binding sites with extraordinary binding capacity for a wide range of ions and molecules. For decades, HSA's ability to bind to various ligands has led many scientists to study its physiological properties and protein structure; indeed, a better understanding of HSA-ligand interactions in human blood, at the atomic level, will likely foster the development of more potent, and overall more performant, diagnostic and therapeutic tools against serious human disorders such as diabetes, cardiovascular disorders, and cancer. Here, we present a concise overview of the current knowledge of HSA's structural characteristics, and its coordination chemistry with transition metal ions, within the scope and limitations of current techniques and biophysical methods to reach atomic resolution in solution and in blood serum. We also highlight the overwhelming need of a detailed atomistic understanding of HSA dynamic structures and interactions that are transient, weak, multi-site and multi-step, and allosterically affected by each other. Considering the fact that HSA is a current clinical tool for drug delivery systems and a potential contender as molecular cargo and nano-vehicle used in biophysical, clinical and industrial fields, we underline the emerging need for novel approaches to target the dynamic functional coordination chemistry of the human blood serum albumin in solution, at the atomic level.
Collapse
Affiliation(s)
- Samah Al-Harthi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Michal Eligiusz Nowakowski
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
22
|
Nguyen VP, Palanikumar L, Kennel SJ, Alves DS, Ye Y, Wall JS, Magzoub M, Barrera FN. Mechanistic insights into the pH-dependent membrane peptide ATRAM. J Control Release 2019; 298:142-153. [PMID: 30763623 PMCID: PMC6408977 DOI: 10.1016/j.jconrel.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
pH-responsive peptides are promising therapeutic molecules that can specifically target the plasma membrane in the acidified extracellular medium that bathes cells in tumors. We designed the acidity-triggered rational membrane (ATRAM) peptide to have a pH-responsive membrane interaction. At physiological pH, ATRAM binds to the membrane surface in a largely unstructured conformation, while in acidic conditions it inserts into lipid bilayers forming a transmembrane helix. However, the molecular mechanism ATRAM uses to target and insert into tumor cells remains poorly understood. Here, we determined that ATRAM inserts into cancer cells with a preferential membrane orientation, where the C-terminus of the peptide traverses the plasma membrane and explores the cytoplasm. Using biophysical techniques, we determined that the membrane interaction of ATRAM is contingent on the concentration of the peptide. Kinetic studies showed that membrane insertion occurs in at least three steps, where only the first step was affected by the membrane density of ATRAM. These observations, combined with membrane binding and leakage data, indicate that the interaction of ATRAM with lipid membranes is dependent on its oligomerization state. SPECT/CT imaging in mice revealed that ATRAM accumulates in the blood pool, where it has a prolonged circulation time (> 4 h). Since fast peptide clearance and degradation in circulation are major problems for clinical development, we studied the mechanism ATRAM uses to remain in the blood stream. Using binding and transfer assays, we determined that ATRAM binds reversibly to human serum albumin. We propose that ATRAM uses albumin as a carrier in the blood stream to evade clearance and proteolysis before interacting with the plasma membrane of cancer cells. We also show that ATRAM is able to be deliver liposomes to cells in a pH dependent way. Our data highlight the potential of ATRAM as a specific therapeutic agent for diseases that lead to acidic tissues, including cancer.
Collapse
Affiliation(s)
- Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Loganathan Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stephen J Kennel
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Jonathan S Wall
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
23
|
Litus EA, Kazakov AS, Sokolov AS, Nemashkalova EL, Galushko EI, Dzhus UF, Marchenkov VV, Galzitskaya OV, Permyakov EA, Permyakov SE. The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids. Biochem Biophys Res Commun 2019; 510:248-253. [PMID: 30685090 DOI: 10.1016/j.bbrc.2019.01.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
Abstract
Human serum albumin (HSA) serves as a natural depot of amyloid β peptide (Aβ). Improvement of Aβ binding to HSA should impede Alzheimer's disease (AD). We developed a method for quantitation of the interaction between monomeric Aβ40/42 and HSA using surface plasmon resonance spectroscopy. The dissociation constant of HSA complex with recombinant Aβ40/42 is 0.2-0.3 μM. Flemish variant of Aβ40 has 2.5-10-fold higher affinity to HSA. The parameters of the HSA-Aβ interaction are selectively sensitive to HSA binding of major plasma unsaturated fatty acids and Cu2+. Linoleic and arachidonic acids promote the HSA-Aβ42 interaction. The developed methodology for quantitation of HSA-Aβ interaction may serve as a tool for search of compounds favoring HSA-Aβ interaction, thereby preventing AD progression.
Collapse
Affiliation(s)
- E A Litus
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - A S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - A S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - E L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - E I Galushko
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - U F Dzhus
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - V V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya str., 4, Pushchino, Moscow Region, 142290, Russia.
| | - E A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| | - S E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
24
|
Guo C, Zhou HX. Fatty Acids Compete with Aβ in Binding to Serum Albumin by Quenching Its Conformational Flexibility. Biophys J 2018; 116:248-257. [PMID: 30580919 DOI: 10.1016/j.bpj.2018.11.3133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human serum albumin (HSA) has been identified as an important regulator of amyloid-β (Aβ) fibrillization both in blood plasma and in cerebrospinal fluid. Fatty acids bind to HSA, and high serum levels of fatty acids increase the risk of Alzheimer's disease. In vitro, fatty-acid-loaded HSA (FA·HSA) loses the protective effect against Aβ fibrillization, but the mechanism underlying the interference of fatty acids on Aβ-HSA interactions has been unclear. Here, we used molecular dynamics simulations to gain atomic-level insight on the weak binding of monomeric Aβ40 and Aβ42 peptides with apo and FA·HSA. Consistent with recent NMR data, C-terminal residues of the Aβ peptides have the highest propensities for interacting with apo HSA. Interestingly, the Aβ binding residues of apo and FA·HSA exhibit distinct patterns, which qualitatively correlate with backbone flexibility. In FA·HSA, both flexibilities and Aβ binding propensities are relatively even among the three domains. In contrast, in apo HSA, domain III shows the highest flexibility and is the primary target for Aβ binding. Specifically, deformation of apo HSA creates strong binding sites within subdomain IIIb, around the interface between subdomains IIIa and IIIb, and at the cleft between domains III and I. Therefore, much like disordered proteins, HSA can take advantage of flexibility in forming promiscuous interactions with partners, until the flexibility is quenched by fatty-acid binding. Our work explains the effect of fatty acids on Aβ-HSA binding and contributes to the understanding of HSA regulation of Aβ aggregation.
Collapse
Affiliation(s)
- Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, China.
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
25
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
26
|
Sumner IL, Edwards RA, Asuni AA, Teeling JL. Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease. Front Neurosci 2018; 12:254. [PMID: 29740272 PMCID: PMC5924811 DOI: 10.3389/fnins.2018.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
There are nearly 50 million people with Alzheimer's disease (AD) worldwide and currently no disease modifying treatment is available. AD is characterized by deposits of Amyloid-β (Aβ), neurofibrillary tangles, and neuroinflammation, and several drug discovery programmes studies have focussed on Aβ as therapeutic target. Active immunization and passive immunization against Aβ leads to the clearance of deposits in humans and transgenic mice expressing human Aβ but have failed to improve memory loss. This review will discuss the possible explanations for the lack of efficacy of Aβ immunotherapy, including the role of a pro-inflammatory response and subsequent vascular side effects, the binding site of therapeutic antibodies and the timing of the treatment. We further discuss how antibodies can be engineered for improved efficacy.
Collapse
Affiliation(s)
- Isabelle L Sumner
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ross A Edwards
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Jessica L Teeling
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|