1
|
Liu J, Zhao X, Cheng H, Guo Y, Ni X, Wang L, Sun G, Wen X, Chen J, Wang J, An J, Guo X, Shi Z, Li H, Wang R, Zhao M, Liao X, Wang Y, Zheng P, Wang M, Sun J. Comprehensive screening of industrially relevant components at genome scale using a high-quality gene overexpression collection of Corynebacterium glutamicum. Trends Biotechnol 2024:S0167-7799(24)00281-6. [PMID: 39455323 DOI: 10.1016/j.tibtech.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Development of efficient microbial strains for biomanufacturing requires deep understanding of the biology and functional components responsible for the synthesis, transport, and tolerance of the target compounds. A high-quality controllable gene overexpression strain collection was constructed for the industrial workhorse Corynebacterium glutamicum covering 99.7% of its genes. The collection was then used for comprehensive screening of components relevant to biomanufacturing features. In total, 15 components endowing cells with improved hyperosmotic tolerance and l-lysine productivity were identified, including novel transcriptional factors and DNA repair proteins. Systematic interrogation of a subset of the collection revealed efficient and specific exporters functioning in both C. glutamicum and Escherichia coli. Application of the new exporters was showcased to construct a strain with the highest l-threonine production level reported for C. glutamicum (75.1 g/l and 1.5 g/l·h) thus far. The genome-scale gene overexpression collection will serve as a valuable resource for fundamental biological studies and for developing industrial microorganisms for producing amino acids and other biochemicals.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiao Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jin Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing An
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenkun Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Ruoyu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Muqiang Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Liao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Aguilar G, Bauer M, Vigano MA, Guerrero I, Affolter M. Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology. STAR Protoc 2024; 5:102932. [PMID: 38996063 PMCID: PMC11296251 DOI: 10.1016/j.xpro.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 07/14/2024] Open
Abstract
The generation of knockins is fundamental to dissect biological systems. SEED/Harvest, a technology based on CRISPR-Cas9, offers a powerful approach for seamless genome editing in Drosophila. Here, we present a protocol to tag any gene in the Drosophila genome using SEED/Harvest technology. We describe knockin design, plasmid preparation, injection, and insertion screening. We then detail procedures for germline harvesting. The technique combines straightforward cloning and robust screening of insertions, while still resulting in scarless gene editing. For complete details on the use and execution of this protocol, please refer to Aguilar et al.1.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, CBMSO (CSIC-UAM), Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Houghton CJ, Coelho NC, Chiang A, Hedayati S, Parikh SB, Ozbaki-Yagan N, Wacholder A, Iannotta J, Berger A, Carvunis AR, O’Donnell AF. Cellular processing of beneficial de novo emerging proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610198. [PMID: 39257767 PMCID: PMC11384008 DOI: 10.1101/2024.08.28.610198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Novel proteins can originate de novo from non-coding DNA and contribute to species-specific adaptations. It is challenging to conceive how de novo emerging proteins may integrate pre-existing cellular systems to bring about beneficial traits, given that their sequences are previously unseen by the cell. To address this apparent paradox, we investigated 26 de novo emerging proteins previously associated with growth benefits in yeast. Microscopy revealed that these beneficial emerging proteins preferentially localize to the endoplasmic reticulum (ER). Sequence and structure analyses uncovered a common protein organization among all ER-localizing beneficial emerging proteins, characterized by a short hydrophobic C-terminus immediately preceded by a transmembrane domain. Using genetic and biochemical approaches, we showed that ER localization of beneficial emerging proteins requires the GET and SND pathways, both of which are evolutionarily conserved and known to recognize transmembrane domains to promote post-translational ER insertion. The abundance of ER-localizing beneficial emerging proteins was regulated by conserved proteasome- and vacuole-dependent processes, through mechanisms that appear to be facilitated by the emerging proteins' C-termini. Consequently, we propose that evolutionarily conserved pathways can convergently govern the cellular processing of de novo emerging proteins with unique sequences, likely owing to common underlying protein organization patterns.
Collapse
Affiliation(s)
- Carly J. Houghton
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Nelson Castilho Coelho
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stefanie Hedayati
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Saurin B. Parikh
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Nejla Ozbaki-Yagan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Aaron Wacholder
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - John Iannotta
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Alexis Berger
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Anne-Ruxandra Carvunis
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Allyson F. O’Donnell
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
4
|
Zhang Y, Zhang P, Wang J, Zhang J, Tong T, Zhou X, Zhou Y, Wei M, Feng C, Li J, Zhang X, Xie C, Cai T. Mitochondrial targeting sequence of magnetoreceptor MagR: More than just targeting. Zool Res 2024; 45:468-477. [PMID: 38583938 PMCID: PMC11188603 DOI: 10.24272/j.issn.2095-8137.2023.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 04/09/2024] Open
Abstract
Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
Collapse
Affiliation(s)
- Yanqi Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yajie Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Mengke Wei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinqian Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| | - Tiantian Cai
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Quantum Sensing, Zhejiang University, Hangzhou, Zhejiang 310027, China. E-mail:
| |
Collapse
|
5
|
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail AM, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). THE NEW PHYTOLOGIST 2024; 241:1250-1265. [PMID: 38009305 DOI: 10.1111/nph.19411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.
Collapse
Affiliation(s)
- Mingjuan Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Hongye Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Qidong Zhu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jinsong Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| |
Collapse
|
6
|
Hawes E, Claxton D, Oeser J, O’Brien R. Identification of structural motifs critical for human G6PC2 function informed by sequence analysis and an AlphaFold2-predicted model. Biosci Rep 2024; 44:BSR20231851. [PMID: 38095063 PMCID: PMC10776900 DOI: 10.1042/bsr20231851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
G6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit, primarily expressed in pancreatic islet β cells, which modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). Mutational analyses were conducted to validate an AlphaFold2 (AF2)-predicted structure of human G6PC2 in conjunction with a novel method to solubilize and purify human G6PC2 from a heterologous expression system. These analyses show that residues forming a predicted intramolecular disulfide bond are essential for G6PC2 expression and that residues forming part of a type 2 phosphatidic acid phosphatase (PAP2) motif are critical for enzyme activity. Additional mutagenesis shows that residues forming a predicted substrate cavity modulate enzyme activity and substrate specificity and residues forming a putative cholesterol recognition amino acid consensus (CRAC) motif influence protein expression or enzyme activity. This CRAC motif begins at residue 219, the site of a common G6PC2 non-synonymous single-nucleotide polymorphism (SNP), rs492594 (Val219Leu), though the functional impact of this SNP is disputed. In microsomal membrane preparations, the L219 variant has greater activity than the V219 variant, but this difference disappears when G6PC2 is purified in detergent micelles. We hypothesize that this was due to a differential association of the two variants with cholesterol. This concept was supported by the observation that the addition of cholesteryl hemi-succinate to the purified enzymes decreased the Vmax of the V219 and L219 variants ∼8-fold and ∼3 fold, respectively. We anticipate that these observations should support the rational development of G6PC2 inhibitors designed to lower FBG.
Collapse
Affiliation(s)
- Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Derek P. Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
7
|
Knöringer K, Groh C, Krämer L, Stein KC, Hansen KG, Zimmermann J, Morgan B, Herrmann JM, Frydman J, Boos F. The unfolded protein response of the endoplasmic reticulum supports mitochondrial biogenesis by buffering nonimported proteins. Mol Biol Cell 2023; 34:ar95. [PMID: 37379206 PMCID: PMC10551703 DOI: 10.1091/mbc.e23-05-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Almost all mitochondrial proteins are synthesized in the cytosol and subsequently targeted to mitochondria. The accumulation of nonimported precursor proteins occurring upon mitochondrial dysfunction can challenge cellular protein homeostasis. Here we show that blocking protein translocation into mitochondria results in the accumulation of mitochondrial membrane proteins at the endoplasmic reticulum, thereby triggering the unfolded protein response (UPRER). Moreover, we find that mitochondrial membrane proteins are also routed to the ER under physiological conditions. The level of ER-resident mitochondrial precursors is enhanced by import defects as well as metabolic stimuli that increase the expression of mitochondrial proteins. Under such conditions, the UPRER is crucial to maintain protein homeostasis and cellular fitness. We propose the ER serves as a physiological buffer zone for those mitochondrial precursors that cannot be immediately imported into mitochondria while engaging the UPRER to adjust the ER proteostasis capacity to the extent of precursor accumulation.
Collapse
Affiliation(s)
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin C. Stein
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Katja G. Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123 Saarbrücken, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123 Saarbrücken, Germany
| | | | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Smith CN, Kihn K, Williamson ZA, Chow KM, Hersh LB, Korotkov KV, Deredge D, Blackburn JS. Development and characterization of nanobodies that specifically target the oncogenic Phosphatase of Regenerating Liver-3 (PRL-3) and impact its interaction with a known binding partner, CNNM3. PLoS One 2023; 18:e0285964. [PMID: 37220097 PMCID: PMC10204944 DOI: 10.1371/journal.pone.0285964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.
Collapse
Affiliation(s)
- Caroline N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Zachary A. Williamson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| |
Collapse
|
9
|
Müller L. Protocol to determine the subcellular localization of protein interactions in murine keratinocytes. STAR Protoc 2023; 4:102309. [PMID: 37200194 DOI: 10.1016/j.xpro.2023.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Protein activities and interactions are determined by their subcellular localization. Elucidating the network of protein-protein interactions at a spatial resolution is essential for understanding the complexity of protein functions, their regulation, and cellular processes. Here, we present a protocol to determine the subcellular localization of protein interactions in non-transformed murine keratinocytes. We describe steps for nucleus/cytoplasm fractionation, immunoprecipitation from these fractions, and immunoblotting. We then detail binding quantification. For complete details on the use and execution of this protocol, please refer to Müller et al. (2023).1.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| |
Collapse
|
10
|
Ragon M, Bertheau L, Dumont J, Bellanger T, Grosselin M, Basu M, Pourcelot E, Horrigue W, Denimal E, Marin A, Vaucher B, Berland A, Lepoivre C, Dupont S, Beney L, Davey H, Guyot S. The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112603. [PMID: 36459911 DOI: 10.1016/j.jphotobiol.2022.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Although fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang).
Collapse
Affiliation(s)
- Mélanie Ragon
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Lucie Bertheau
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Jennifer Dumont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Tiffany Bellanger
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Marie Grosselin
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Mohini Basu
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Eléonore Pourcelot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Walid Horrigue
- UMR Agroécologie Équipe Biocom, INRAE Dijon, Institut Agro, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Emmanuel Denimal
- Institut Agro Dijon, Direction Scientifique, Appui à la Recherche, 26 Bd Dr Petitjean, 21000 Dijon, France
| | - Ambroise Marin
- Plateau Technique d'IMagerie Spectroscopique (PIMS), DImaCell Platform Université de Bourgogne - INRAE, Dijon, France
| | - Basile Vaucher
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Antoine Berland
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Corentin Lepoivre
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, F-21000 Dijon, France.
| |
Collapse
|
11
|
Schneider KL, Reibenspies LE, Nyström T, Shashkova S. Growth Rate Evaluation of the Budding Yeast Saccharomyces cerevisiae Cells Carrying Endogenously Expressed Fluorescent Protein Fusions. Methods Mol Biol 2023; 2564:213-222. [PMID: 36107344 DOI: 10.1007/978-1-0716-2667-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent proteins within fluorescent fusions have been reported to affect cellular growth fitness via altering native protein function and intracellular localization. Here we report in detail a procedure to analyze the growth characteristics of yeast cells expressing such fusions in comparison to unmodified parental strain. This approach can serve as an initial step in fluorescent protein characterization in vivo.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucas E Reibenspies
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
12
|
Tsirkas I, Zur T, Dovrat D, Cohen A, Ravkaie L, Aharoni A. Protein fluorescent labeling in live yeast cells using scFv-based probes. CELL REPORTS METHODS 2022; 2:100357. [PMID: 36590693 PMCID: PMC9795370 DOI: 10.1016/j.crmeth.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The fusion of fluorescent proteins (FPs) to endogenous proteins is a widespread approach for microscopic examination of protein function, expression, and localization in the cell. However, proteins that are sensitive to FP fusion or expressed at low levels are difficult to monitor using this approach. Here, we develop a single-chain fragment variable (scFv)-FP approach to efficiently label Saccharomyces cerevisiae proteins that are tagged with repeats of hemagglutinin (HA)-tag sequences. We demonstrate the successful labeling of DNA-binding proteins and proteins localized to different cellular organelles including the nuclear membrane, peroxisome, Golgi apparatus, and mitochondria. This approach can lead to a significant increase in fluorescence intensity of the labeled protein, allows C'-terminal labeling of difficult-to-tag proteins and increased detection sensitivity of DNA-damage foci. Overall, the development of a scFv-FP labeling approach in yeast provides a general and simple tool for the function and localization analysis of the yeast proteome.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Tomer Zur
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amit Cohen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Lior Ravkaie
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
13
|
Lee JM, Gadhe CG, Kang H, Pae AN, Lee CJ. Glutamate Permeability of Chicken Best1. Exp Neurobiol 2022; 31:277-288. [PMID: 36351838 PMCID: PMC9659495 DOI: 10.5607/en22038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 07/28/2023] Open
Abstract
Bestrophin-1 (Best1) is a calcium (Ca2+)-activated chloride (Cl-) channel which has a phylogenetically conserved channel structure with an aperture and neck in the ion-conducting pathway. Mammalian mouse Best1 (mBest1) has been known to have a permeability for large organic anions including gluconate, glutamate, and D-serine, in addition to several small monovalent anions, such as Cl‑, bromine (Br-), iodine (I-), and thiocyanate (SCN-). However, it is still unclear whether non-mammalian Best1 has a glutamate permeability through the ion-conducting pathway. Here, we report that chicken Best1 (cBest1) is permeable to glutamate in a Ca2+-dependent manner. The molecular docking and molecular dynamics simulation showed a glutamate binding at the aperture and neck of cBest1 and a glutamate permeation through the ion-conducting pore, respectively. Moreover, through electrophysiological recordings, we calculated the permeability ratio of glutamate to Cl- (PGlutamate/PCl) as 0.28 based on the reversal potential shift by ion substitution from Cl- to glutamate in the internal solution. Finally, we directly detected the Ca2+-dependent glutamate release through cBest1 using the ultrasensitive two-cell sniffer patch technique. Our results propose that Best1 homologs from non-mammalian (cBest1) to mammalian (mBest1) have a conserved permeability for glutamate.
Collapse
Affiliation(s)
- Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | | | - Hyunji Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34113, Korea
| | - Ae Nim Pae
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
- KIST School, University of Science and Technology, Seoul 02792, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
14
|
Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022; 43:741-756. [PMID: 35965152 PMCID: PMC10118063 DOI: 10.1016/j.it.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) technologies have greatly expanded the size of the known transcriptome. Many newly discovered transcripts are classified as long noncoding RNAs (lncRNAs) which are assumed to affect phenotype through sequence and structure and not via translated protein products despite the vast majority of them harboring short open reading frames (sORFs). Recent advances have demonstrated that the noncoding designation is incorrect in many cases and that sORF-encoded peptides (SEPs) translated from these transcripts are important contributors to diverse biological processes. Interest in SEPs is at an early stage and there is evidence for the existence of thousands of SEPs that are yet unstudied. We hope to pique interest in investigating this unexplored proteome by providing a discussion of SEP characterization generally and describing specific discoveries in innate immunity.
Collapse
Affiliation(s)
- Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Susan Carpenter
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA; Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
15
|
Phenomics approaches to understand genetic networks and gene function in yeast. Biochem Soc Trans 2022; 50:713-721. [PMID: 35285506 PMCID: PMC9162466 DOI: 10.1042/bst20210285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/03/2023]
Abstract
Over the past decade, major efforts have been made to systematically survey the characteristics or phenotypes associated with genetic variation in a variety of model systems. These so-called phenomics projects involve the measurement of 'phenomes', or the set of phenotypic information that describes an organism or cell, in various genetic contexts or states, and in response to external factors, such as environmental signals. Our understanding of the phenome of an organism depends on the availability of reagents that enable systematic evaluation of the spectrum of possible phenotypic variation and the types of measurements that can be taken. Here, we highlight phenomics studies that use the budding yeast, a pioneer model organism for functional genomics research. We focus on genetic perturbation screens designed to explore genetic interactions, using a variety of phenotypic read-outs, from cell growth to subcellular morphology.
Collapse
|
16
|
Bordet F, Romanet R, Eicher C, Grandvalet C, Klein G, Gougeon R, Julien-Ortiz A, Roullier-Gall C, Alexandre H. eGFP Gene Integration in HO: A Metabolomic Impact? Microorganisms 2022; 10:microorganisms10040781. [PMID: 35456831 PMCID: PMC9032140 DOI: 10.3390/microorganisms10040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Integrating fluorescent genes including eGFP in the yeast genome is common practice for various applications, including cell visualization and population monitoring. The transformation of a commercial S. cerevisiae strain by integrating a cassette including a gene encoding an EGFP protein in the HO gene was carried out using CRISPR-Cas9 technology. Although this type of integration is often used and described as neutral at the phenotypic level of the cell, we have highlighted that under alcoholic fermentation (in a Chardonnay must), it has an impact on the exometabolome. We observed 41 and 82 unique biomarkers for the S3 and S3GFP strains, respectively, as well as 28 biomarkers whose concentrations varied significantly between the wild-type and the modified strains. These biomarkers were mainly found to correspond to peptides. Despite similar phenotypic growth and fermentation parameters, high-resolution mass spectrometry allowed us to demonstrate, for the first time, that the peptidome is modified when integrating this cassette in the HO gene.
Collapse
Affiliation(s)
- Fanny Bordet
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
- Correspondence:
| | - Rémy Romanet
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| | - Camille Eicher
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| | - Cosette Grandvalet
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| | - Géraldine Klein
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| | - Régis Gougeon
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France
| | - Anne Julien-Ortiz
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
| | - Chloé Roullier-Gall
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| | - Hervé Alexandre
- Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin (IUVV), Université Bourgogne Franche-Comté, Rue Claude Ladrey, BP 27877, CEDEX, 21000 Dijon, France; (R.R.); (C.E.); (C.G.); (G.K.); (R.G.); (C.R.-G.); (H.A.)
| |
Collapse
|
17
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
18
|
Dionne U, Gingras AC. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome. Front Mol Biosci 2022; 9:852911. [PMID: 35309513 PMCID: PMC8930824 DOI: 10.3389/fmolb.2022.852911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, proximity-dependent biotinylation approaches, including BioID, APEX, and their derivatives, have been widely used to define the compositions of organelles and other structures in cultured cells and model organisms. The associations between specific proteins and given compartments are regulated by several post-translational modifications (PTMs); however, these effects have not been systematically investigated using proximity proteomics. Here, we discuss the progress made in this field and how proximity-dependent biotinylation strategies could elucidate the contributions of PTMs, such as phosphorylation, to the compartmentalization of proteins.
Collapse
Affiliation(s)
- Ugo Dionne
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Anne-Claude Gingras,
| |
Collapse
|
19
|
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Mol Cell Proteomics 2022; 21:100186. [PMID: 34922010 PMCID: PMC8864473 DOI: 10.1016/j.mcpro.2021.100186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The internal environment of cells is molecularly crowded, which requires spatial organization via subcellular compartmentalization. These compartments harbor specific conditions for molecules to perform their biological functions, such as coordination of the cell cycle, cell survival, and growth. This compartmentalization is also not static, with molecules trafficking between these subcellular neighborhoods to carry out their functions. For example, some biomolecules are multifunctional, requiring an environment with differing conditions or interacting partners, and others traffic to export such molecules. Aberrant localization of proteins or RNA species has been linked to many pathological conditions, such as neurological, cancer, and pulmonary diseases. Differential expression studies in transcriptomics and proteomics are relatively common, but the majority have overlooked the importance of subcellular information. In addition, subcellular transcriptomics and proteomics data do not always colocate because of the biochemical processes that occur during and after translation, highlighting the complementary nature of these fields. In this review, we discuss and directly compare the current methods in spatial proteomics and transcriptomics, which include sequencing- and imaging-based strategies, to give the reader an overview of the current tools available. We also discuss current limitations of these strategies as well as future developments in the field of spatial -omics.
Collapse
Affiliation(s)
- Josie A Christopher
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Charlotte S Dawson
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Owen L Vennard
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
20
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
22
|
Can only one physiological trait determinate the adverse effect of green fluorescent protein (GFP) incorporation on Vibrio virulence? Appl Microbiol Biotechnol 2021; 105:7899-7912. [PMID: 34559285 DOI: 10.1007/s00253-021-11556-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Green fluorescent protein (GFP) has been used extensively for in situ animal studies that follow up bacterial infection under epifluorescence microscopy. It is assumed that GFP is acting as a "neutral" protein with no influence on the bacterial physiology. To verify this hypothesis, the virulence of Vibrio splendidus ME9, Vibrio anguillarum NB10, and their respective GFP-tagged strains ME9-GFP and NB10-GFP (transconjugants) was compared in vitro and tested in vivo towards blue mussel (Mytilus edulis) larvae. Results showed that the incorporation of GFP negatively impacted the growth and swimming motility of NB10 in vitro. Correspondingly, the mRNA levels of genes involved in bacterial swimming motility (flaA, flaE, and cheR) were significantly down-regulated in NB10-GFP. As for the strain ME9 on the other hand, GFP incorporation only had a negative effect on swimming motility. However, both the strains NB10-GFP and ME9-GFP showed almost the same virulence as their respective parental strain towards mussel larvae in vivo. Overall, the data presented here demonstrated that incorporation of GFP may cause modifications in cell physiology and highlight the importance of preliminary physiological tests to minimize the negative influence of GFP tagging when it is used to monitor the target localization. The study also supports the idea that the virulence of Vibrio species is determined by complex regulatory networks. Notwithstanding the change of a single physiological trait, especially growth or swimming motility, the GFP-tagged Vibrio strain can thus still be considered usable in studies mainly focusing on the virulence of the strain. KEY POINTS: • The effect of GFP incorporation on physiological trait of Vibrio strains. • The virulence in vibrios could be multifactorial. • The stable virulence of Vibrio strains after GFP incorporation.
Collapse
|
23
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
24
|
Adlung L, Stapor P, Tönsing C, Schmiester L, Schwarzmüller LE, Postawa L, Wang D, Timmer J, Klingmüller U, Hasenauer J, Schilling M. Cell-to-cell variability in JAK2/STAT5 pathway components and cytoplasmic volumes defines survival threshold in erythroid progenitor cells. Cell Rep 2021; 36:109507. [PMID: 34380040 DOI: 10.1016/j.celrep.2021.109507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Survival or apoptosis is a binary decision in individual cells. However, at the cell-population level, a graded increase in survival of colony-forming unit-erythroid (CFU-E) cells is observed upon stimulation with erythropoietin (Epo). To identify components of Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signal transduction that contribute to the graded population response, we extended a cell-population-level model calibrated with experimental data to study the behavior in single cells. The single-cell model shows that the high cell-to-cell variability in nuclear phosphorylated STAT5 is caused by variability in the amount of Epo receptor (EpoR):JAK2 complexes and of SHP1, as well as the extent of nuclear import because of the large variance in the cytoplasmic volume of CFU-E cells. 24-118 pSTAT5 molecules in the nucleus for 120 min are sufficient to ensure cell survival. Thus, variability in membrane-associated processes is sufficient to convert a switch-like behavior at the single-cell level to a graded population-level response.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paul Stapor
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Christian Tönsing
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Leonard Schmiester
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Luisa E Schwarzmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lena Postawa
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dantong Wang
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Jens Timmer
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Jan Hasenauer
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany; Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
26
|
Schneider KL, Wollman AJM, Nyström T, Shashkova S. Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Sci Rep 2021; 11:12819. [PMID: 34140587 PMCID: PMC8211707 DOI: 10.1038/s41598-021-92249-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The yeast Hsp104 protein disaggregase is often used as a reporter for misfolded or damaged protein aggregates and protein quality control and ageing research. Observing Hsp104 fusions with fluorescent proteins is a popular approach to follow post stress protein aggregation, inclusion formation and disaggregation. While concerns that bigger protein tags, such as genetically encoded fluorescent tags, may affect protein behaviour and function have been around for quite some time, experimental evidence of how exactly the physiology of the protein of interest is altered within fluorescent protein fusions remains limited. To address this issue, we performed a comparative assessment of endogenously expressed Hsp104 fluorescent fusions function and behaviour. We provide experimental evidence that molecular behaviour may not only be altered by introducing a fluorescent protein tag but also varies depending on such a tag within the fusion. Although our findings are especially applicable to protein quality control and ageing research in yeast, similar effects may play a role in other eukaryotic systems.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle, NE2 4HH, UK
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
27
|
Zhang X, Harding BW, Aggad D, Courtine D, Chen JX, Pujol N, Ewbank JJ. Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genet 2021; 17:e1009600. [PMID: 34166401 PMCID: PMC8263066 DOI: 10.1371/journal.pgen.1009600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/07/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.
Collapse
Affiliation(s)
- Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Benjamin W. Harding
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Dina Aggad
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Damien Courtine
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Jonathan J. Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
28
|
Favero BT, Tan Y, Lin Y, Hansen HB, Shadmani N, Xu J, He J, Müller R, Almeida A, Lütken H. Transgenic Kalanchoë blossfeldiana, Containing Individual rol Genes and Open Reading Frames Under 35S Promoter, Exhibit Compact Habit, Reduced Plant Growth, and Altered Ethylene Tolerance in Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:672023. [PMID: 34025708 PMCID: PMC8138453 DOI: 10.3389/fpls.2021.672023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Reduced growth habit is a desirable trait for ornamental potted plants and can successfully be obtained through Rhizobium rhizogenes transformation in a stable and heritable manner. Additionally, it can also be obtained by transformation with Agrobacterium tumefaciens harboring specific genes from R. rhizogenes. The bacterial T-DNA harbors four root oncogenic loci (rol) genes and 14 less known open reading frames (ORFs). The four rol genes, i.e., rolA, rolB, rolC, and rolD, are conceived as the common denominator for the compact phenotype and the other less characterized ORFs seem auxiliary but present a potential breeding target for less aberrant and/or more tailored phenotypes. In this study, Kalanchoë blossfeldiana 'Molly' was transformed with individual rol genes and selected ORFs in 35S overexpressing cassettes to comprehensively characterize growth traits, gene copy and expression, and ethylene tolerance of the flowers. An association of reduced growth habit, e.g. height and diameter, was observed for rolB2 and ORF14-2 when a transgene single copy and high gene expression were detected. Chlorophyll content was reduced in overexpressing lines compared to wild type (WT), except for one ΔORF13a (a truncated ORF13a, where SPXX DNA-binding motif is absent). The flower number severely decreased in the overexpressing lines compared to WT. The anthesis timing showed that WT opened the first flower at 68.9 ± 0.9 days and the overexpressing lines showed similar or up to 24 days delay in flowering. In general, a single or low relative gene copy insertion was correlated to higher gene expression, ca. 3 to 5-fold, in rolB and ΔORF13a lines, while in ORF14 such relation was not directly linked. The increased gene expression observed in rolB2 and ΔORF13a-2 contributed to reducing plant growth and a more compact habit. Tolerance of detached flowers to 0.5 μl L-1 ethylene was markedly higher for ORF14 with 66% less flower closure at day 3 compared to WT. The subcellular localization of rolC and ΔORF13a was investigated by transient expression in Nicotiana benthamiana and confocal images showed that rolC and ΔORF13a are soluble and localize in the cytoplasm being able to enter the nucleus.
Collapse
Affiliation(s)
- Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yi Tan
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yan Lin
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Hanne Bøge Hansen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Nasim Shadmani
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Jiaming Xu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Junou He
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Renate Müller
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Aldo Almeida
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
29
|
Dankovich TM, Rizzoli SO. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 2021; 24:102134. [PMID: 33665555 PMCID: PMC7898072 DOI: 10.1016/j.isci.2021.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details requires large datasets of high-quality, reproducible SRM images. In this review, we discuss the unique set of challenges facing quantitative SRM, giving particular attention to the shortcomings of conventional specimen preparation techniques and the necessity for optimal labeling of molecular targets. We further discuss the obstacles to scaling SRM methods, such as lengthy image acquisition and complex SRM data analysis. For each of these challenges, we review the recent advances in the field that circumvent these pitfalls and provide practical advice to biologists for optimizing SRM experiments.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen 37075, Germany
| |
Collapse
|
30
|
Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. MEMBRANES 2021; 11:membranes11020155. [PMID: 33671740 PMCID: PMC7926488 DOI: 10.3390/membranes11020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| | - Paola Bartoccioni
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| |
Collapse
|
31
|
Abu Irqeba A, Ogilvie JM. Di-arginine and FFAT-like motifs retain a subpopulation of PRA1 at ER-mitochondria membrane contact sites. PLoS One 2020; 15:e0243075. [PMID: 33259547 PMCID: PMC7707580 DOI: 10.1371/journal.pone.0243075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022] Open
Abstract
Prenylated Rab Acceptor 1 (PRA1/Rabac1) is a four-pass transmembrane protein that has been found to localize to the Golgi and promiscuously associate with a diverse array of Rab GTPases. We have previously identified PRA1 to be among the earliest significantly down-regulated genes in the rd1 mouse model of retinitis pigmentosa, a retinal degenerative disease. Here, we show that an endogenous subpopulation of PRA1 resides within the endoplasmic reticulum (ER) at ER-mitochondria membrane contact sites in cultured mammalian cells. We also demonstrate that PRA1 contains two previously unidentified ER retention/retrieval amino acid sequences on its cytosolic N-terminal region: a membrane distal di-arginine motif and a novel membrane proximal FFAT-like motif. Using a truncation construct that lacks complete Golgi targeting information, we show that mutation of either motif leads to an increase in cell surface localization, while mutation of both motifs exhibits an additive effect. We also present evidence that illustrates that N- or C- terminal addition of a tag to full-length PRA1 leads to differential localization to either the Golgi or reticular ER, phenotypes that do not completely mirror endogenous protein localization. The presence of multiple ER retention motifs on the PRA1 N-terminal region further suggests that it has a functional role within the ER.
Collapse
Affiliation(s)
- Ameair Abu Irqeba
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail: (AAI); (JMO)
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail: (AAI); (JMO)
| |
Collapse
|
32
|
Petit E, Berger M, Camborde L, Vallejo V, Daydé J, Jacques A. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana. Sci Rep 2020; 10:15137. [PMID: 32934264 PMCID: PMC7493886 DOI: 10.1038/s41598-020-71746-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is a key modification that contributes to determine bioactivity and bioavailability of plant natural products, including that of terpenoids and steviol glycosides (SVglys). It is mediated by uridine-diphosphate glycosyltransferases (UGTs), that achieve their activity by transferring sugars on small molecules. Thus, the diversity of SVglys is due to the number, the position and the nature of glycosylations on the hydroxyl groups in C-13 and C-19 of steviol. Despite the intense sweetener property of SVglys and the numerous studies conducted, the SVglys biosynthetic pathway remains largely unknown. More than 60 SVglys and 68 putative UGTs have been identified in Stevia rebaudiana. This study aims to provide methods to characterize UGTs putatively involved in SVglys biosynthesis. After agroinfiltration-based transient gene expression in Nicotiana benthamiana, functionality of the recombinant UGT can be tested simply and directly in plants expressing it or from a crude extract. The combined use of binary vectors from pGWBs series to produce expression vectors containing the stevia's UGT, enables functionality testing with many substrates as well as other applications for further analysis, including subcellular localization.
Collapse
Affiliation(s)
- Eva Petit
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Monique Berger
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France.
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS, Université Paul Sabatier (UPS), Toulouse, France
| | | | - Jean Daydé
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| | - Alban Jacques
- Equipe Physiologie, Pathologie et Génétique Végétales (PPGV), INP-PURPAN, Université de Toulouse, 75 voie du TOEC, BP 57611, 31076, Toulouse Cedex 03, France
| |
Collapse
|
33
|
Perroud PF, Demko V. Challenges of in vivo protein localization in plants seen through the DEK1 protein lens. PLANT SIGNALING & BEHAVIOR 2020; 15:1780404. [PMID: 32567469 PMCID: PMC8570728 DOI: 10.1080/15592324.2020.1780404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
During the last 25 y, fluorescent protein tagging has become a tool of choice to investigate protein function in a cellular context. The information gathered with this approach is not only providing insights into protein subcellular localization but also allows contextualizing protein function in multicellular settings. Here we illustrate the power of this method by commenting on the recent successful localization of the large membrane DEK1 protein during three-dimensional body formation in the moss Physcomitrella patens. But as many approaches, protein tagging is not exempt of caveats. The multiple infructuous (failed) attempts to detect DEK1 using a fluorescent protein tag present a good overview of such potential problems. Here we discuss the insertion of different fluorescent proteins at different positions in the PpDEK1 protein and the resulting unintended range of mutant phenotypes. Albeit none of these mutants generated a detectable fluorescent signal they can still provide interesting biological information about DEK1 function.
Collapse
Affiliation(s)
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
34
|
Palanisamy N, Öztürk MA, Akmeriç EB, Di Ventura B. C-terminal eYFP fusion impairs Escherichia coli MinE function. Open Biol 2020; 10:200010. [PMID: 32456552 PMCID: PMC7276532 DOI: 10.1098/rsob.200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo, in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.
Collapse
Affiliation(s)
- Navaneethan Palanisamy
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Mehmet Ali Öztürk
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Emir Bora Akmeriç
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Barbara Di Ventura
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.,Centers for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
35
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
36
|
Perroud PF, Meyberg R, Demko V, Quatrano RS, Olsen OA, Rensing SA. DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth. THE NEW PHYTOLOGIST 2020; 226:1029-1041. [PMID: 31913503 DOI: 10.1111/nph.16417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 05/18/2023]
Abstract
Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus. Confocal microscopy coupled with the use of time-gating allowed the precise DEK1 subcellular localization during 3D morphogenesis. DEK1 localization displays a strong polarized signal, as it is restricted to the plasma membrane domain between recently divided cells during the early steps of 3D growth development as well as during the subsequent vegetative growth. The signal furthermore displays a clear developmental pattern because it is only detectable in recently divided and elongating cells. Additionally, DEK1 localization appears to be independent of its calpain domain proteolytic activity. The DEK1 polar subcellular distribution in 3D tissue developing cells defines a functional cellular framework to explain its role in this developmental phase. Also, the observation of DEK1 during spermatogenesis suggests another biological function for this protein in plants. Finally the DEK1-tagged strain generated here provides a biological platform upon which further investigations into 3D developmental processes can be performed.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 84215, Slovakia
| | - Ralph S Quatrano
- Department of Biology, Washington University in St Louis, One Brookings Dr., Campus, Box 1137, St Louis, MO, 63130, USA
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, PO Box 5003, Aas, NO-1432, Norway
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, Marburg, 35043, Germany
| |
Collapse
|
37
|
Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry. Appl Microbiol Biotechnol 2020; 104:5547-5562. [DOI: 10.1007/s00253-020-10607-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 01/22/2023]
|
38
|
Ye C, Lin J, Li QQ. Discovery of alternative polyadenylation dynamics from single cell types. Comput Struct Biotechnol J 2020; 18:1012-1019. [PMID: 32382395 PMCID: PMC7200215 DOI: 10.1016/j.csbj.2020.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative polyadenylation (APA) occurs in the process of mRNA maturation by adding a poly(A) tail at different locations, resulting increased diversity of mRNA isoforms and contributing to the complexity of gene regulatory network. Benefit from the development of high-throughput sequencing technologies, we could now delineate APA profiles of transcriptomes at an unprecedented pace. Especially the single cell RNA sequencing (scRNA-seq) technologies provide us opportunities to interrogate biological details of diverse and rare cell types. Despite increasing evidence showing that APA is involved in the cell type-specific regulation and function, efficient and specific laboratory methods for capturing poly(A) sites at single cell resolution are underdeveloped to date. In this review, we summarize existing experimental and computational methods for the identification of APA dynamics from diverse single cell types. A future perspective is also provided.
Collapse
Affiliation(s)
- Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
39
|
Mori Y, Yoshida Y, Satoh A, Moriya H. Development of an experimental method of systematically estimating protein expression limits in HEK293 cells. Sci Rep 2020; 10:4798. [PMID: 32179769 PMCID: PMC7075890 DOI: 10.1038/s41598-020-61646-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/28/2020] [Indexed: 11/25/2022] Open
Abstract
Protein overexpression sometimes causes cellular defects, although the underlying mechanism is still unknown. A protein's expression limit, which triggers cellular defects, is a useful indication of the underlying mechanism. In this study, we developed an experimental method of estimating the expression limits of target proteins in the human embryonic kidney cell line HEK293 by measuring the proteins' expression levels in cells that survived after the high-copy introduction of plasmid DNA by which the proteins were expressed under a strong cytomegalovirus promoter. The expression limits of nonfluorescent target proteins were indirectly estimated by measuring the levels of green fluorescent protein (GFP) connected to the target proteins with the self-cleaving sequence P2A. The expression limit of a model GFP was ~5.0% of the total protein, and sustained GFP overexpression caused cell death. The expression limits of GFPs with mitochondria-targeting signals and endoplasmic reticulum localization signals were 1.6% and 0.38%, respectively. The expression limits of four proteins involved in vesicular trafficking were far lower compared to a red fluorescent protein. The protein expression limit estimation method developed will be valuable for defining toxic proteins and consequences of protein overexpression.
Collapse
Affiliation(s)
- Yoshihiro Mori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuki Yoshida
- Sony Computer Science Laboratories, Tokyo, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hisao Moriya
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan.
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
40
|
Gil-Muñoz F, Sánchez-Navarro JA, Besada C, Salvador A, Badenes ML, Naval MDM, Ríos G. MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit. Sci Rep 2020; 10:3543. [PMID: 32103143 PMCID: PMC7044221 DOI: 10.1038/s41598-020-60635-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such as trichome formation in many plant species. DkMYB2 and DkMYB4 (MYB-type), DkMYC1 (bHLH-type) and DkWDR1 (WD40-type) factors have been proposed by different authors to take part of persimmon MBW complexes for proanthocyanidin accumulation in immature fruit, leading to its characteristic astringent flavour with important agronomical and ecological effects. We have confirmed the nuclear localization of these proteins and their mutual physical interaction by bimolecular fluorescence complementation analysis. In addition, transient expression of DkMYB2, DkMYB4 and DkMYC1 cooperatively increase the expression of a persimmon anthocyanidin reductase gene (ANR), involved in the biosynthesis of cis-flavan-3-ols, the structural units of proanthocyanidin compounds. Collectively, these data support the presence of MBW complexes in persimmon fruit and suggest their coordinated participation in ANR regulation for proanthocyanidin production.
Collapse
Affiliation(s)
- Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, E-46022, Valencia, Spain
| | - Cristina Besada
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Alejandra Salvador
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - María Del Mar Naval
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain.
| |
Collapse
|
41
|
Varasteh Moradi S, Gagoski D, Mureev S, Walden P, McMahon KA, Parton RG, Johnston WA, Alexandrov K. Mapping Interactions among Cell-Free Expressed Zika Virus Proteins. J Proteome Res 2020; 19:1522-1532. [DOI: 10.1021/acs.jproteome.9b00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shayli Varasteh Moradi
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Dejan Gagoski
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|