1
|
Ngo JS, Amitabh P, Sokoloff JG, Trinh C, Wiles TJ, Guillemin K, Parthasarathy R. The Vibrio type VI secretion system induces intestinal macrophage redistribution and enhanced intestinal motility. mBio 2025; 16:e0241924. [PMID: 39576112 PMCID: PMC11708011 DOI: 10.1128/mbio.02419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal microbes, whether resident or transient, influence the physiology of their hosts, altering both the chemical and the physical characteristics of the gut. An example of the latter is the human pathogen Vibrio cholerae's ability to induce strong mechanical contractions, discovered in zebrafish. The underlying mechanism has remained unknown, but the phenomenon requires the actin crosslinking domain (ACD) of Vibrio's type VI secretion system (T6SS), a multicomponent protein syringe that pierces adjacent cells and delivers toxins. By using a zebrafish-native Vibrio and imaging-based assays of host intestinal mechanics and immune responses, we find evidence that macrophages mediate the connection between the T6SS ACD and intestinal activity. Inoculation with Vibrio gives rise to strong, ACD-dependent, gut contractions whose magnitude resembles those resulting from genetic depletion of macrophages. Vibrio also induces tissue damage and macrophage activation, both ACD-dependent, recruiting macrophages to the site of tissue damage and away from their unperturbed positions near enteric neurons that line the midgut and regulate intestinal motility. Given known crosstalk between macrophages and enteric neurons, our observations suggest that macrophage redistribution forms a key link between Vibrio activity and intestinal motility. In addition to illuminating host-directed actions of the widespread T6SS protein apparatus, our findings highlight how localized bacteria-induced injury can reshape neuro-immune cellular dynamics to impact whole-organ physiology. IMPORTANCE Gut microbes, whether beneficial, harmful, or neutral, can have dramatic effects on host activities. The human pathogen Vibrio cholerae can induce strong intestinal contractions, though how this is achieved has remained a mystery. Using a zebrafish-native Vibrio and live imaging of larval fish, we find evidence that immune cells mediate the connection between bacteria and host mechanics. A piece of Vibrio's type VI secretion system, a syringe-like apparatus that stabs cellular targets, induces localized tissue damage, activating macrophages and drawing them from their normal residence near neurons, whose stimulation of gut contractions they dampen, to the damage site. Our observations reveal a mechanism in which cellular rearrangements, rather than bespoke biochemical signaling, drives a dynamic neuro-immune response to bacterial activity.
Collapse
Affiliation(s)
- Julia S. Ngo
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Piyush Amitabh
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Jonah G. Sokoloff
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Calvin Trinh
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Travis J. Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
4
|
Yang C, Xiao H, Zhu H, Du Y, Wang L. Revealing the gut microbiome mystery: A meta-analysis revealing differences between individuals with autism spectrum disorder and neurotypical children. Biosci Trends 2024; 18:233-249. [PMID: 38897955 DOI: 10.5582/bst.2024.01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The brain-gut axis intricately links gut microbiota (GM) dysbiosis to the development or worsening of autism spectrum disorder (ASD). However, the precise GM composition in ASD and the effectiveness of probiotics are unclear. To address this, we performed a thorough meta-analysis of 28 studies spanning PubMed, PsycINFO, Web of Science, Scopus, and MEDLINE, involving 1,256 children with ASD and 1042 neurotypical children, up to February 2024. Using Revman 5.3, we analyzed the relative abundance of 8 phyla and 64 genera. While individuals with ASD did not exhibit significant differences in included phyla, they exhibited elevated levels of Parabacteroides, Anaerostipes, Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Lachnoclostridium, Catenibacterium, and Collinsella along with reduced percentages of Barnesiella, Odoribacter, Paraprevotella, Blautia, Turicibacter, Lachnospira, Pseudomonas, Parasutterella, Haemophilus, and Bifidobacterium. Notably, discrepancies in Faecalibacterium, Clostridium, Dorea, Phascolarctobacterium, Catenibacterium, Odoribacter, and Bifidobacterium persisted even upon systematic exclusion of individual studies. Consequently, the GM of individuals with ASD demonstrates an imbalance, with potential increases or decreases in both beneficial and harmful bacteria. Therefore, personalized probiotic interventions tailored to ASD specifics are imperative, rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Changjiang Yang
- Faculty of Education, East China Normal University, Shanghai, China
| | - Hongli Xiao
- Faculty of Education, East China Normal University, Shanghai, China
| | - Han Zhu
- Faculty of Education, East China Normal University, Shanghai, China
| | - Yijie Du
- Qingpu Traditional Chinese Medicine Hospital, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
5
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy MK, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Eren AM, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. mBio 2024; 15:e0283023. [PMID: 38063424 PMCID: PMC10790697 DOI: 10.1128/mbio.02830-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Miette K. Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
7
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy M, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Murat Eren A, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540287. [PMID: 37214927 PMCID: PMC10197588 DOI: 10.1101/2023.05.11.540287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteroides fragilis comprises 1-5% of the gut microbiota in healthy humans but can expand to >50% of the population in ulcerative colitis (UC) patients experiencing inflammation. The mechanisms underlying such microbial blooms are poorly understood, but the gut of UC patients has physicochemical features that differ from healthy patients and likely impact microbial physiology. For example, levels of the secondary bile acid deoxycholate (DC) are highly reduced in the ileoanal J-pouch of UC colectomy patients. We isolated a B. fragilis strain from a UC patient with pouch inflammation (i.e. pouchitis) and developed it as a genetic model system to identify genes and pathways that are regulated by DC and that impact B. fragilis fitness in DC and crude bile. Treatment of B. fragilis with a physiologically relevant concentration of DC reduced cell growth and remodeled transcription of one-quarter of the genome. DC strongly induced expression of chaperones and select transcriptional regulators and efflux systems and downregulated protein synthesis genes. Using a barcoded collection of ≈50,000 unique insertional mutants, we further defined B. fragilis genes that contribute to fitness in media containing DC or crude bile. Genes impacting cell envelope functions including cardiolipin synthesis, cell surface glycosylation, and systems implicated in sodium-dependent bioenergetics were major bile acid fitness factors. As expected, there was limited overlap between transcriptionally regulated genes and genes that impacted fitness in bile when disrupted. Our study provides a genome-scale view of a B. fragilis bile response and genetic determinants of its fitness in DC and crude bile.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Miette Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Roe AL, Boyte ME, Elkins CA, Goldman VS, Heimbach J, Madden E, Oketch-Rabah H, Sanders ME, Sirois J, Smith A. Considerations for determining safety of probiotics: A USP perspective. Regul Toxicol Pharmacol 2022; 136:105266. [PMID: 36206977 PMCID: PMC10292223 DOI: 10.1016/j.yrtph.2022.105266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
A history of safe use is a backbone of safety assessments for many current probiotic species, however, there is no global harmonization regarding requirements for establishing probiotic safety for use in foods and supplements. As probiotic manufacturers are increasingly seeking to use new strains, novel species, and next-generation probiotics, justification based on a significant history of use may be challenged. There are efforts underway by a variety of stakeholders, including the United States Pharmacopeia (USP), to develop best practices guidelines for assessing the quality and safety of probiotics. A current initiative of the USP seeks to provide expert advice specific to safety considerations for probiotics. Toward this goal, this review provides a helpful summary guide to global regulatory guidelines. We question the suitability of traditional animal toxicology studies designed for testing chemicals for relevance in assessing probiotic safety. This includes discussion of the use of excessive dose levels, the length of repeated dose toxicity studies needed, and the most suitable animal species used in toxicology studies. In addition, the importance of proper manufacturing practices with regard to final product safety are also included. Thus, an outline of essential parameters of a comprehensive safety assessment for a probiotic are provided.
Collapse
Affiliation(s)
- Amy L Roe
- The Procter & Gamble Company, Cincinnati, OH, USA.
| | | | - Chris A Elkins
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia S Goldman
- Department of Dietary Supplements and Herbal Medicines, Science Division, US Pharmacopeial Convention, Rockville, MD, USA
| | | | - Emily Madden
- Department of Dietary Supplements and Herbal Medicines, Science Division, US Pharmacopeial Convention, Rockville, MD, USA
| | - Hellen Oketch-Rabah
- Department of Dietary Supplements and Herbal Medicines, Science Division, US Pharmacopeial Convention, Rockville, MD, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Sacramento, CA, USA
| | - Jay Sirois
- Consumer Health Products Association, Washington, DC, USA
| | - Amy Smith
- IFF Health & Biosciences, Wilmington, DE, USA
| |
Collapse
|
9
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Buckley SJ, Harvey RJ. Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes. Front Cell Infect Microbiol 2022; 11:809560. [PMID: 35004362 PMCID: PMC8739889 DOI: 10.3389/fcimb.2021.809560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus is a globally significant human pathogen. The extensive variability of the GAS genome, virulence phenotypes and clinical outcomes, render it an excellent candidate for the application of genotype-phenotype association studies in the era of whole-genome sequencing. We have catalogued the distribution and diversity of the transcription regulators of GAS, and employed phylogenetics, concordance metrics and machine learning (ML) to test for associations. In this review, we communicate the lessons learnt in the context of the recent bacteria genotype-phenotype association studies of others that have utilised both genome-wide association studies (GWAS) and ML. We envisage a promising future for the application GWAS in bacteria genotype-phenotype association studies and foresee the increasing use of ML. However, progress in this field is hindered by several outstanding bottlenecks. These include the shortcomings that are observed when GWAS techniques that have been fine-tuned on human genomes, are applied to bacterial genomes. Furthermore, there is a deficit of easy-to-use end-to-end workflows, and a lag in the collection of detailed phenotype and clinical genomic metadata. We propose a novel quality control protocol for the collection of high-quality GAS virulence phenotype coupled to clinical outcome data. Finally, we incorporate this protocol into a workflow for testing genotype-phenotype associations using ML and ‘linked’ patient-microbe genome sets that better represent the infection event.
Collapse
Affiliation(s)
- Sean J Buckley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
11
|
Anisman H, Kusnecov AW. Microbiota and health. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Cultivating Healthy Connections: Exploring and Engineering the Microbial Flow That Shapes Microbiomes. mSystems 2021; 6:e0086321. [PMID: 34609161 PMCID: PMC8547466 DOI: 10.1128/msystems.00863-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our view of the microbial world has undergone a radical transformation over the past decade. For most of the 20th century, medical microbiological research was focused on understanding the virulent nature of disease-causing pathogens. More recently, advances in DNA sequencing methodologies have exposed a wider diversity of microscopic wildlife that associate with our bodies and the environments around us, and the unexpected roles they play in supporting our health. Our expanding view of the microbial world is now motivating therapeutic interventions that are based not just on the elimination of nefarious pathogens but the nurturing of beneficial microbiomes. In this Commentary, I consider how our historically pathogen-based view of host-microbe interactions may be limiting the scope of new and alternative strategies for engineering microbiomes. I suggest that recognizing the therapeutic potential of the ongoing microbial transmission that connects microbiomes could illuminate unexplored opportunities for cultivating healthy host-microbe relationships.
Collapse
|
13
|
Bergelson J, Kreitman M, Petrov DA, Sanchez A, Tikhonov M. Functional biology in its natural context: A search for emergent simplicity. eLife 2021; 10:e67646. [PMID: 34096867 PMCID: PMC8184206 DOI: 10.7554/elife.67646] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
The immeasurable complexity at every level of biological organization creates a daunting task for understanding biological function. Here, we highlight the risks of stripping it away at the outset and discuss a possible path toward arriving at emergent simplicity of understanding while still embracing the ever-changing complexity of biotic interactions that we see in nature.
Collapse
Affiliation(s)
- Joy Bergelson
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Martin Kreitman
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale UniversityNew HavenUnited States
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St LouisSt. LouisUnited States
| |
Collapse
|
14
|
The Not-So-Strange Case of Dr. Jekyll and Mr. Hyde in Antibiotic Research: An Interdisciplinary Opportunity. Antibiotics (Basel) 2020; 10:antibiotics10010019. [PMID: 33379290 PMCID: PMC7824619 DOI: 10.3390/antibiotics10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Literary-rhetorical devices like figurative language and analogy can help explain concepts that exceed our capacity to grasp intuitively. It is not surprising these devices are used to discuss virulence, pathogenesis, and antibiotics. Allusions to Robert Louis Stevenson’s Strange Case of Dr. Jekyll and Mr. Hyde seem to be used with particular frequency in research pertaining to pathogens, especially in studies contemporary with our evolving understanding of antibiotic resistance. More recent references to the text have appeared in research parsing definitions of virulence and acknowledging the role of anti-virulence in future therapeutics. While it is obvious that scientists invoke Stevenson’s story for stylistic purposes, its use could go beyond the stylistic—and might even generate rhetorical and imaginative possibilities for framing research. This perspective discusses the first published allusion to Jekyll and Hyde in reference to virulence and pathogenesis; comments on a select number of specific instances of Jekyll and Hyde in contemporary scientific literature; briefly contextualizes the novel; and concludes with the implications of a more productive engagement with humanistic disciplines in the face of antibiotic resistance.
Collapse
|
15
|
Abstract
Through coevolution with host cells, microorganisms have acquired mechanisms to avoid the detection by the host surveillance system and to use the cell's supplies to establish themselves. Indeed, certain pathogens have evolved proteins that imitate specific eukaryotic cell proteins, allowing them to manipulate host pathways, a phenomenon termed molecular mimicry. Bacterial "eukaryotic-like proteins" are a remarkable example of molecular mimicry. They are defined as proteins that strongly resemble eukaryotic proteins or that carry domains that are predominantly present in eukaryotes and that are generally absent from prokaryotes. The widest diversity of eukaryotic-like proteins known to date can be found in members of the bacterial genus Legionella, some of which cause a severe pneumonia in humans. The characterization of a number of these proteins shed light on their importance during infection. The subsequent identification of eukaryotic-like genes in the genomes of other amoeba-associated bacteria and bacterial symbionts suggested that eukaryotic-like proteins are a common means of bacterial evasion and communication, shaped by the continuous interactions between bacteria and their protozoan hosts. In this review, we discuss the concept of molecular mimicry using Legionella as an example and show that eukaryotic-like proteins effectively manipulate host cell pathways. The study of the function and evolution of such proteins is an exciting field of research that is leading us toward a better understanding of the complex world of bacterium-host interactions. Ultimately, this knowledge will teach us how host pathways are manipulated and how infections may possibly be tackled.
Collapse
|
16
|
Martinson VG. Rediscovering a Forgotten System of Symbiosis: Historical Perspective and Future Potential. Genes (Basel) 2020; 11:E1063. [PMID: 32916942 PMCID: PMC7563122 DOI: 10.3390/genes11091063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations (Candida auris) has highlighted the importance of better understanding animal-fungus interactions. Regardless of their prominence there are few animal-fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems. Here, I review a forgotten system of animal-fungus interactions: the beetle-fungus symbioses of Drugstore and Cigarette beetles with their symbiont Symbiotaphrina. As pioneering systems for the study of mutualistic symbioses, they were heavily researched between 1920 and 1970, but have received only sporadic attention in the past 40 years. Several features make them unique research organisms, including (1) the symbiont is both extracellular and intracellular during the life cycle of the host, and (2) both beetle and fungus can be cultured in isolation. Specifically, fungal symbionts intracellularly infect cells in the larval and adult beetle gut, while accessory glands in adult females harbor extracellular fungi. In this way, research on the microbiota, pathogenesis/infection, and mutualism can be performed. Furthermore, these beetles are economically important stored-product pests found worldwide. In addition to providing a historical perspective of the research undertaken and an overview of beetle biology and their symbiosis with Symbiotaphrina, I performed two analyses on publicly available genomic data. First, in a preliminary comparative genomic analysis of the fungal symbionts, I found striking differences in the pathways for the biosynthesis of two B vitamins important for the host beetle, thiamine and biotin. Second, I estimated the most recent common ancestor for Drugstore and Cigarette beetles at 8.8-13.5 Mya using sequence divergence (CO1 gene). Together, these analyses demonstrate that modern methods and data (genomics, transcriptomes, etc.) have great potential to transform these beetle-fungus systems into model systems again.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
17
|
Relman DA. Thinking about the microbiome as a causal factor in human health and disease: philosophical and experimental considerations. Curr Opin Microbiol 2020; 54:119-126. [PMID: 32114367 DOI: 10.1016/j.mib.2020.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
Abstract
Relationships between hosts and host-associated microbial communities are complex, intimate, and associated with a wide variety of health and disease states. For these reasons, these relationships have raised many difficult questions and claims about microbiome causation. While philosophers and scientists alike have pondered the challenges of causal inference and offered postulates and rules, there are no simple solutions, especially with poorly characterized, putative causal factors such as microbiomes, ill-defined host effects, and inadequate experimental models. Recommendations are provided here for conceptual and experimental approaches regarding microbiome causal inference, and for a research agenda.
Collapse
Affiliation(s)
- David A Relman
- Departments of Microbiology & Immunology, and of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States; Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
18
|
Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol 2020; 54:87-94. [PMID: 32062152 DOI: 10.1016/j.mib.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The repertoire of microbial cues monitored by animal and plant tissues encompasses not just molecules but also microbial activities. These include typical pathogen strategies of injuring membranes, degrading cellular material, and scavenging resources. These activities, however, are not exclusive to pathogens. Instead, they characterize the competitive strategies of microbes living in multispecies communities, like those typically found colonizing host tissues. Similar activities are also deployed by host tissues to keep microbes in check. We propose that host surveillance and mimicry of Microbial-Associated Competitive Activities (MACAs), derived from an evolutionary history of living in mixed microbial communities, has shaped contemporary animal and plant tissue programs of defense, repair, metabolism, and development.
Collapse
|
19
|
Brannon JR, Mulvey MA. Jekyll and Hyde: Bugs with Double Personalities that Muddle the Distinction between Commensal and Pathogen. J Mol Biol 2019; 431:2911-2913. [PMID: 31226308 DOI: 10.1016/j.jmb.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|