1
|
Gomes C, Huang KC, Harkin J, Baker A, Hughes JM, Pan Y, Tutrow K, VanderWall KB, Lavekar SS, Hernandez M, Cummins TR, Canfield SG, Meyer JS. Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models. Stem Cell Reports 2024; 19:1122-1136. [PMID: 39094561 PMCID: PMC11368677 DOI: 10.1016/j.stemcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Cátia Gomes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron Baker
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yanling Pan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kaylee Tutrow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kirstin B VanderWall
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sailee S Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melody Hernandez
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Scott G Canfield
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason S Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Pant K, Ali H, Singh SK, Dua K, Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson's disease pathogenesis. CNS Neurosci Ther 2024; 30:e14763. [PMID: 38790149 PMCID: PMC11126788 DOI: 10.1111/cns.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of CollegesMohaliPunjabIndia
| | - Gaurav Gupta
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - G. V. Sivaprasad
- Department of Basic Science & HumanitiesRaghu Engineering CollegeVisakhapatnamIndia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Kumud Pant
- Graphic Era (Deemed to be University)DehradunIndia
- Graphic Era Hill UniversityDehradunIndia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
4
|
Nam YR, Kang M, Kim M, Seok MJ, Yang Y, Han YE, Oh SJ, Kim DG, Son H, Chang MY, Lee SH. Preparation of human astrocytes with potent therapeutic functions from human pluripotent stem cells using ventral midbrain patterning. J Adv Res 2024:S2090-1232(24)00112-7. [PMID: 38521186 DOI: 10.1016/j.jare.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Astrocytes are glial-type cells that protect neurons from toxic insults and support neuronal functions and metabolism in a healthy brain. Leveraging these physiological functions, transplantation of astrocytes or their derivatives has emerged as a potential therapeutic approach for neurodegenerative disorders. METHODS To substantiate the clinical application of astrocyte-based therapy, we aimed to prepare human astrocytes with potent therapeutic capacities from human pluripotent stem cells (hPSCs). To that end, we used ventral midbrain patterning during the differentiation of hPSCs into astrocytes, based on the roles of midbrain-specific factors in potentiating glial neurotrophic/anti-inflammatory activity. To assess the therapeutic effects of human midbrain-type astrocytes, we transplanted them into mouse models of Parkinson's disease (PD) and Alzheimer's disease (AD). RESULTS Through a comprehensive series of in-vitro and in-vivo experiments, we were able to establish that the midbrain-type astrocytes exhibited the abilities to effectively combat oxidative stress, counter excitotoxic glutamate, and manage pathological protein aggregates. Our strategy for preparing midbrain-type astrocytes yielded promising results, demonstrating the strong therapeutic potential of these cells in various neurotoxic contexts. Particularly noteworthy is their efficacy in PD and AD-specific proteopathic conditions, in which the midbrain-type astrocytes outperformed forebrain-type astrocytes derived by the same organoid-based method. CONCLUSION The enhanced functions of the midbrain-type astrocytes extended to their ability to release signaling molecules that inhibited neuronal deterioration and senescence while steering microglial cells away from a pro-inflammatory state. This success was evident in both in-vitro studies using human cells and in-vivo experiments conducted in mouse models of PD and AD. In the end, our human midbrain-type astrocytes demonstrated remarkable effectiveness in alleviating neurodegeneration, neuroinflammation, and the pathologies associated with the accumulation of α-synuclein and Amyloid β proteins.
Collapse
Affiliation(s)
- Ye Rim Nam
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Min Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Young Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Premedicine, College of Medicine, Hanyang University, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea.
| |
Collapse
|
5
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
6
|
Janda E, Parafati M, Martino C, Crupi F, George William JN, Reybier K, Arbitrio M, Mollace V, Boutin JA. Autophagy and neuroprotection in astrocytes exposed to 6-hydroxydopamine is negatively regulated by NQO2: relevance to Parkinson's disease. Sci Rep 2023; 13:21624. [PMID: 38062122 PMCID: PMC10703796 DOI: 10.1038/s41598-023-44666-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Dopaminergic degeneration is a central feature of Parkinson's disease (PD), but glial dysfunction may accelerate or trigger neuronal death. In fact, astrocytes play a key role in the maintenance of the blood-brain barrier and detoxification. 6-hydroxydopamine (6OHDA) is used to induce PD in rodent models due to its specific toxicity to dopaminergic neurons, but its effect on astrocytes has been poorly investigated. Here, we show that 6OHDA dose-dependently impairs autophagy in human U373 cells and primary murine astrocytes in the absence of cell death. LC3II downregulation was observed 6 to 48 h after treatment. Interestingly, 6OHDA enhanced NRH:quinone oxidoreductase 2 (NQO2) expression and activity in U373 cells, even if 6OHDA turned out not to be its substrate. Autophagic flux was restored by inhibition of NQO2 with S29434, which correlated with a partial reduction in oxidative stress in response to 6OHDA in human and murine astrocytes. NQO2 inhibition also increased the neuroprotective capability of U373 cells, since S29434 protected dopaminergic SHSY5Y cells from 6OHDA-induced cell death when cocultured with astrocytes. The toxic effects of 6OHDA on autophagy were attenuated by silencing NQO2 in human cells and primary astrocytes from NQO2-/- mice. Finally, the analysis of Gene Expression Omnibus datasets showed elevated NQO2 gene expression in the blood cells of early-stage PD patients. These data support a toxifying function of NQO2 in dopaminergic degeneration via negative regulation of autophagy and neuroprotection in astrocytes, suggesting a potential pharmacological target in PD.
Collapse
Affiliation(s)
- Elzbieta Janda
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy.
| | - Maddalena Parafati
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Concetta Martino
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Francesco Crupi
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | | | - Karine Reybier
- UMR 152 Pharma-Dev, Université de Toulouse III, IRD, UPS, 31400, Toulouse, France
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 88100, Catanzaro, Italy.
| | - Vincenzo Mollace
- Laboratory of Cellular and Molecular Toxicology, Department of Health Science, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC UMR 1239, 76000, Rouen, France
| |
Collapse
|
7
|
He S, Shi Y, Ye J, Yin J, Yang Y, Liu D, Shen T, Zeng D, Zhang M, Li S, Xu F, Cai Y, Zhao F, Li H, Peng D. Does decreased autophagy and dysregulation of LC3A in astrocytes play a role in major depressive disorder? Transl Psychiatry 2023; 13:362. [PMID: 38001115 PMCID: PMC10673997 DOI: 10.1038/s41398-023-02665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Astrocytic dysfunction contributes to the molecular pathogenesis of major depressive disorder (MDD). However, the astrocytic subtype that mainly contributes to MDD etiology and whether dysregulated autophagy in astrocytes is associated with MDD remain unknown. Using a single-nucleus RNA sequencing (snRNA-seq) atlas, three astrocyte subtypes were identified in MDD, while C2 State-1Q astrocytes showed aberrant changes in both cell proportion and most differentially expressed genes compared with other subtypes. Moreover, autophagy pathways were commonly inhibited in astrocytes in the prefrontal cortices (PFCs) of patients with MDD, especially in C2 State-1Q astrocytes. Furthermore, by integrating snRNA-seq and bulk transcriptomic data, we found significant reductions in LC3A expression levels in the PFC region of CUMS-induced depressed mice, as well as in postmortem PFC tissues and peripheral blood samples from patients with MDD. These results were further validated by qPCR using whole-blood samples from patients with MDD and healthy controls. Finally, LC3A expression in the whole blood of patients with MDD was negatively associated with the severity of depressive symptoms. Overall, our results underscore autophagy inhibition in PFC astrocytes as a common molecular characteristic in MDD and might reveal a novel potential diagnostic marker LC3A.
Collapse
Affiliation(s)
- Shen He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinmei Ye
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufang Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feikang Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huafang Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Daihui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Chen K, Garcia Padilla C, Kiselyov K, Kozai TDY. Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials 2023; 302:122316. [PMID: 37738741 PMCID: PMC10897938 DOI: 10.1016/j.biomaterials.2023.122316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023]
Abstract
Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Yazdankhah M, Ghosh S, Liu H, Hose S, Zigler JS, Sinha D. Mitophagy in Astrocytes Is Required for the Health of Optic Nerve. Cells 2023; 12:2496. [PMID: 37887340 PMCID: PMC10605486 DOI: 10.3390/cells12202496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes βA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - J. Samuel Zigler
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
10
|
Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson's Disease. Biomolecules 2023; 13:1435. [PMID: 37892117 PMCID: PMC10604695 DOI: 10.3390/biom13101435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a devastating disease associated with accumulation of α-synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important intracellular degradation pathway, may be involved in different neurodegenerative diseases including PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we summarize the recent literature on the involvement of autophagy in PD pathogenesis.
Collapse
Affiliation(s)
| | | | - Ronit Pinkas-Kramarski
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (L.N.); (D.F.)
| |
Collapse
|
11
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Dharshika C, Gonzales J, Chow A, Morales-Soto W, Gulbransen BD. Stimulator of interferon genes (STING) expression in the enteric nervous system and contributions of glial STING in disease. Neurogastroenterol Motil 2023; 35:e14553. [PMID: 37309618 PMCID: PMC10266835 DOI: 10.1111/nmo.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Appropriate host-microbe interactions are essential for enteric glial development and subsequent gastrointestinal function, but the potential mechanisms of microbe-glial communication are unclear. Here, we tested the hypothesis that enteric glia express the pattern recognition receptor stimulator of interferon genes (STING) and communicate with the microbiome through this pathway to modulate gastrointestinal inflammation. METHODS In situ transcriptional labeling and immunohistochemistry were used to examine STING and IFNβ expression in enteric neurons and glia. Glial-STING KO mice (Sox10CreERT2+/- ;STINGfl/fl ) and IFNβ ELISA were used to characterize the role of enteric glia in canonical STING activation. The role of glial STING in gastrointestinal inflammation was assessed in the 3% DSS colitis model. RESULTS Enteric glia and neurons express STING, but only enteric neurons express IFNβ. While both the myenteric and submucosal plexuses produce IFNβ with STING activation, enteric glial STING plays a minor role in its production and seems more involved in autophagy processes. Furthermore, deleting enteric glial STING does not affect weight loss, colitis severity, or neuronal cell proportions in the DSS colitis model. CONCLUSION Taken together, our data support canonical roles for STING and IFNβ signaling in the enteric nervous system through enteric neurons but that enteric glia do not use these same mechanisms. We propose that enteric glial STING may utilize alternative signaling mechanisms and/or is only active in particular disease conditions. Regardless, this study provides the first glimpse of STING signaling in the enteric nervous system and highlights a potential avenue of neuroglial-microbial communication.
Collapse
Affiliation(s)
- Christine Dharshika
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
- College of Human Medicine, Michigan State University, 804 Service Road, East Lansing, MI, 48824 USA
| | - Jacques Gonzales
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Aaron Chow
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Wilmarie Morales-Soto
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| | - Brian D. Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824 USA
| |
Collapse
|
13
|
Zhu D, Huang Y, Guo S, Li N, Yang X, Sui A, Wu Q, Zhang Y, Kong Y, Li Q, Zhang T, Zheng W, Li A, Yu J, Ma T, Li S. AQP4 Aggravates Cognitive Impairment in Sepsis-Associated Encephalopathy through Inhibiting Na v 1.6-Mediated Astrocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205862. [PMID: 36922751 PMCID: PMC10190498 DOI: 10.1002/advs.202205862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.
Collapse
Affiliation(s)
- Dan‐Dan Zhu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Yue‐Lin Huang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Song‐Yu Guo
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Na Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Xue‐Wei Yang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ao‐Ran Sui
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qiong Wu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Kong
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qi‐Fa Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ting Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Wen‐Fei Zheng
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Ai‐Ping Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Jian Yu
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Tong‐Hui Ma
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shao Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| |
Collapse
|
14
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
15
|
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays Biochem 2023; 67:119-130. [PMID: 36449279 PMCID: PMC10011405 DOI: 10.1042/ebc20220079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| |
Collapse
|
16
|
Alam S, Afsar SY, Van Echten-Deckert G. S1P Released by SGPL1-Deficient Astrocytes Enhances Astrocytic ATP Production via S1PR 2,4, Thus Keeping Autophagy in Check: Potential Consequences for Brain Health. Int J Mol Sci 2023; 24:ijms24054581. [PMID: 36902011 PMCID: PMC10003137 DOI: 10.3390/ijms24054581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Astrocytes are critical players in brain health and disease. Sphingosine-1-phosphate (S1P), a bioactive signaling lipid, is involved in several vital processes, including cellular proliferation, survival, and migration. It was shown to be crucial for brain development. Its absence is embryonically lethal, affecting, inter alia, the anterior neural tube closure. However, an excess of S1P due to mutations in S1P-lyase (SGPL1), the enzyme responsible for its constitutive removal, is also harmful. Of note, the gene SGPL1 maps to a region prone to mutations in several human cancers and also in S1P-lyase insufficiency syndrome (SPLIS) characterized by several symptoms, including peripheral and central neurological defects. Here, we investigated the impact of S1P on astrocytes in a mouse model with the neural-targeted ablation of SGPL1. We found that SGPL1 deficiency, and hence the accumulation of its substrate, S1P, causes the elevated expression of glycolytic enzymes and preferentially directs pyruvate into the tricarboxylic acid (TCA) cycle through its receptors (S1PR2,4). In addition, the activity of TCA regulatory enzymes was increased, and consequently, so was the cellular ATP content. The high energy load activates the mammalian target of rapamycin (mTOR), thus keeping astrocytic autophagy in check. Possible consequences for the viability of neurons are discussed.
Collapse
|
17
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
18
|
Yuan R, Hahn Y, Stempel MH, Sidibe DK, Laxton O, Chen J, Kulkarni A, Maday S. Proteasomal inhibition preferentially stimulates lysosome activity relative to autophagic flux in primary astrocytes. Autophagy 2023; 19:570-596. [PMID: 35722992 PMCID: PMC9851260 DOI: 10.1080/15548627.2022.2084884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Neurons and astrocytes face unique demands on their proteome to enable proper function and survival of the nervous system. Consequently, both cell types are critically dependent on robust quality control pathways such as macroautophagy (hereafter referred to as autophagy) and the ubiquitin-proteasome system (UPS). We previously reported that autophagy is differentially regulated in astrocytes and neurons in the context of metabolic stress, but less is understood in the context of proteotoxic stress induced by inhibition of the UPS. Dysfunction of the proteasome or autophagy has been linked to the progression of various neurodegenerative diseases. Therefore, in this study, we explored the connection between autophagy and the proteasome in primary astrocytes and neurons. Prior studies largely in non-neural models report a compensatory relationship whereby inhibition of the UPS stimulates autophagy. To our surprise, inhibition of the proteasome did not robustly upregulate autophagy in astrocytes or neurons. In fact, the effects on autophagy are modest particularly in comparison to paradigms of metabolic stress. Rather, we find that UPS inhibition in astrocytes induces formation of Ub-positive aggregates that harbor the selective autophagy receptor, SQSTM1/p62, but these structures were not productive substrates for autophagy. By contrast, we observed a significant increase in lysosomal degradation in astrocytes in response to UPS inhibition, but this stimulation was not sufficient to reduce total SQSTM1 levels. Last, UPS inhibition was more toxic in neurons compared to astrocytes, suggesting a cell type-specific vulnerability to proteotoxic stress.Abbreviations: Baf A1: bafilomycin A1; CQ: chloroquine; Epox: epoxomicin; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; p-ULK1: phospho-ULK1; SQSTM1/p62: sequestosome 1; Ub: ubiquitin; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ruiyi Yuan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Younghee Hahn
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Max H. Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David K. Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Laxton
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Chen
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Hu LT, Xie XY, Zhou GF, Wen QX, Song L, Luo B, Deng XJ, Pan QL, Chen GJ. HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24. J Alzheimers Dis 2023; 91:407-426. [PMID: 36442191 DOI: 10.3233/jad-220640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-β protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or β-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.
Collapse
Affiliation(s)
- Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Abjean L, Ben Haim L, Riquelme-Perez M, Gipchtein P, Derbois C, Palomares MA, Petit F, Hérard AS, Gaillard MC, Guillermier M, Gaudin-Guérif M, Aurégan G, Sagar N, Héry C, Dufour N, Robil N, Kabani M, Melki R, De la Grange P, Bemelmans AP, Bonvento G, Deleuze JF, Hantraye P, Flament J, Bonnet E, Brohard S, Olaso R, Brouillet E, Carrillo-de Sauvage MA, Escartin C. Reactive astrocytes promote proteostasis in Huntington's disease through the JAK2-STAT3 pathway. Brain 2023; 146:149-166. [PMID: 35298632 DOI: 10.1093/brain/awac068] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.
Collapse
Affiliation(s)
- Laurene Abjean
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Lucile Ben Haim
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Miriam Riquelme-Perez
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France.,Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Pauline Gipchtein
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Céline Derbois
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Marie-Ange Palomares
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Fanny Petit
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gwennaëlle Aurégan
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Nisrine Sagar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Cameron Héry
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Mehdi Kabani
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Alexis P Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Jean-François Deleuze
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Philippe Hantraye
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Eric Bonnet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Solène Brohard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Robert Olaso
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
21
|
Dai D, Chen Y, Wang Q, Wang C, Zhang C. Graphene oxide induced dynamic changes of autophagy-lysosome pathway and cell apoptosis via TFEB dysregulation in F98 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114172. [PMID: 36244172 DOI: 10.1016/j.ecoenv.2022.114172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The extensive application of graphene oxide (GO) nanomaterials increases the risk of their release into the environment, thus posing a threat to the human body. Multiple studies indicate that GO could lead to neurotoxicity, while the intricate biological effects of GO in astrocytes remain unclear. The autophagic disorder was considered an important part of the exposure risk of GO in the application of neuromedicine. This study explored the key regulators mediating the autophagic process in rat astroglioma-derived F98 cells caused by GO, especially the dynamic changes in the cellular physiological state over time. We identified transcription factor EB (TFEB), a critical regulator of the autophagy-lysosome pathway (ALP), as a crucial factor in GO-induced autophagy flux blockade and cell apoptosis. Specifically, the prolonged exposure to GO increased the amount of its cellular internalization, which gradually prevented TFEB from entering the nucleus, thereby leading to the subsequent ALP dysfunction and excessive cell apoptosis. Furthermore, STIP1 homology and U-Box containing protein 1 (STUB1), an E3 ubiquitin ligase, was responsible for GO-triggered TFEB dysregulation, and overexpression of STUB1 helped alleviate GO cytotoxicity. Our study highlights that impaired TFEB activity underlies compromised autophagy flux in GO-induced apoptosis and opens up new avenues for the application of GO-based nanotherapeutics with specific autophagy-regulating properties in the central nervous system.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiuyu Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chunlin Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
22
|
Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep 2022; 41:111532. [DOI: 10.1016/j.celrep.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
|
23
|
Kim MJ, Kim HJ, Jang B, Kim HJ, Mostafa MN, Park SJ, Kim YS, Choi EK. Impairment of Neuronal Mitochondrial Quality Control in Prion-Induced Neurodegeneration. Cells 2022; 11:cells11172744. [PMID: 36078152 PMCID: PMC9454542 DOI: 10.3390/cells11172744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondrial dynamics continually maintain cell survival and bioenergetics through mitochondrial quality control processes (fission, fusion, and mitophagy). Aberrant mitochondrial quality control has been implicated in the pathogenic mechanism of various human diseases, including cancer, cardiac dysfunction, and neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. However, the mitochondrial dysfunction-mediated neuropathological mechanisms in prion disease are still uncertain. Here, we used both in vitro and in vivo scrapie-infected models to investigate the involvement of mitochondrial quality control in prion pathogenesis. We found that scrapie infection led to the induction of mitochondrial reactive oxygen species (mtROS) and the loss of mitochondrial membrane potential (ΔΨm), resulting in enhanced phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and its subsequent translocation to the mitochondria, which was followed by excessive mitophagy. We also confirmed decreased expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and reduced ATP production by scrapie infection. In addition, scrapie-infection-induced aberrant mitochondrial fission and mitophagy led to increased apoptotic signaling, as evidenced by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. These results suggest that scrapie infection induced mitochondrial dysfunction via impaired mitochondrial quality control processes followed by neuronal cell death, which may have an important role in the neuropathogenesis of prion diseases.
Collapse
Affiliation(s)
- Mo-Jong Kim
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Hee-Jun Kim
- Hongcheon Institute of Medicinal Herb, Hongcheon 25142, Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Hyun-Ji Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Mohd Najib Mostafa
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Seok-Joo Park
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Eun-Kyoung Choi
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Correspondence:
| |
Collapse
|
24
|
Almasabi F, Alosaimi F, Corrales-Terrón M, Wolters A, Strikwerda D, Smit JV, Temel Y, Janssen MLF, Jahanshahi A. Post-Mortem Analysis of Neuropathological Changes in Human Tinnitus. Brain Sci 2022; 12:brainsci12081024. [PMID: 36009087 PMCID: PMC9406157 DOI: 10.3390/brainsci12081024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Tinnitus is the phantom perception of a sound, often accompanied by increased anxiety and depressive symptoms. Degenerative or inflammatory processes, as well as changes in monoaminergic systems, have been suggested as potential underlying mechanisms. Herein, we conducted the first post-mortem histopathological assessment to reveal detailed structural changes in tinnitus patients’ auditory and non-auditory brain regions. Tissue blocks containing the medial geniculate body (MGB), thalamic reticular nucleus (TRN), central part of the inferior colliculus (CIC), and dorsal and obscurus raphe nuclei (DRN and ROb) were obtained from tinnitus patients and matched controls. Cell density and size were assessed in Nissl-stained sections. Astrocytes and microglia were assessed using immunohistochemistry. The DRN was stained using antibodies raised against phenylalanine hydroxylase-8 (PH8) and tyrosine-hydroxylase (TH) to visualize serotonergic and dopaminergic cells, respectively. Cell density in the MGB and CIC of tinnitus patients was reduced, accompanied by a reduction in the number of astrocytes in the CIC only. Quantification of cell surface size did not reveal any significant difference in any of the investigated brain regions between groups. The number of PH8-positive cells was reduced in the DRN and ROb of tinnitus patients compared to controls, while the number of TH-positive cells remained unchanged in the DRN. These findings suggest that both neurodegenerative and inflammatory processes in the MGB and CIC underlie the neuropathology of tinnitus. Moreover, the reduced number of serotonergic cell bodies in tinnitus cases points toward a potential role of the raphe serotonergic system in tinnitus.
Collapse
Affiliation(s)
- Faris Almasabi
- Department of Neurosurgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (F.A.); (F.A.); (Y.T.)
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (F.A.); (F.A.); (Y.T.)
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Minerva Corrales-Terrón
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
| | - Anouk Wolters
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
| | - Dario Strikwerda
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
| | - Jasper V. Smit
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
- Department of Ear, Nose, Throat, Head and Neck Surgery, Zuyderland Medical Center, 6419 PC Heerlen, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (F.A.); (F.A.); (Y.T.)
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
| | - Marcus L. F. Janssen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (F.A.); (F.A.); (Y.T.)
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (M.C.-T.); (A.W.); (D.S.); (J.V.S.); (M.L.F.J.)
- Correspondence:
| |
Collapse
|
25
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
26
|
Kaur M, Sharma S. Molecular mechanisms of cognitive impairment associated with stroke. Metab Brain Dis 2022; 37:279-287. [PMID: 35029798 DOI: 10.1007/s11011-022-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Stroke is the second leading cause of death after coronary heart disease in developed countries and is the greatest cause of disability and cognitive impairment. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, hypertension, arterial fibrillation, diabetes, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke, depressive illness duration of a stroke, location, volume, intensity, and degree of neuronal degeneration, location and size of infarction after stroke, time interval after stroke other cerebral dysfunctions. The pathophysiology of stroke associated cognitive impairment is complex and recent molecular, cellular, and animal models studies have revealed that multiple cellular changes have been implicated, including altered redox state, mitochondrial dysfunction, disruption of the blood-brain barrier, perivascular spacing, glymphatic system impairment, microglia activation and amyloid-β deposition in the parenchyma of the brain. These studies have also evidenced the involvement of various transcription factors, intracellular adhesion molecules, and endogenous growth factors in the pathogenesis of cognitive impairment associated with stroke and providing scope for developing therapeutic strategies for treatment. This review summarizes the latest research findings on molecular mechanisms involved in cognitive impairment associated with stroke.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Saurabh Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
27
|
Alpaugh M, Denis HL, Cicchetti F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol Psychiatry 2022; 27:269-280. [PMID: 34711942 DOI: 10.1038/s41380-021-01350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
28
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
29
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
30
|
Pan PY, Zhu J, Rizvi A, Zhu X, Tanaka H, Dreyfus CF. Synaptojanin1 deficiency upregulates basal autophagosome formation in astrocytes. J Biol Chem 2021; 297:100873. [PMID: 34126070 PMCID: PMC8258991 DOI: 10.1016/j.jbc.2021.100873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy dysregulation is implicated in multiple neurological disorders, such as Parkinson's disease. While autophagy pathways are heavily researched in heterologous cells and neurons, regulation of autophagy in the astrocyte, the most abundant cell type in the mammalian brain, is less well understood. Missense mutations in the Synj1 gene encoding Synaptojanin1 (Synj1), a neuron-enriched lipid phosphatase, have been linked to Parkinsonism with seizures. Our previous study showed that the Synj1 haploinsufficient (Synj1+/−) mouse exhibits age-dependent autophagy impairment in multiple brain regions. Here, we used cultured astrocytes from Synj1-deficient mice to investigate its role in astrocyte autophagy. We report that Synj1 is expressed in low levels in astrocytes and represses basal autophagosome formation. We demonstrate using cellular imaging that Synj1-deficient astrocytes exhibit hyperactive autophagosome formation, represented by an increase in the size and number of GFP-microtubule-associated protein 1A/1B-light chain 3 structures. Interestingly, Synj1 deficiency is also associated with an impairment in stress-induced autophagy clearance. We show, for the first time, that the Parkinsonism-associated R839C mutation impacts autophagy in astrocytes. The impact of this mutation on the phosphatase function of Synj1 resulted in elevated basal autophagosome formation that mimics Synj1 deletion. We found that the membrane expression of the astrocyte-specific glucose transporter GluT-1 was reduced in Synj1-deficient astrocytes. Consistently, AMP-activated protein kinase activity was elevated, suggesting altered glucose sensing in Synj1-deficient astrocytes. Expressing exogenous GluT-1 in Synj1-deficient astrocytes reversed the autophagy impairment, supporting a role for Synj1 in regulating astrocyte autophagy via disrupting glucose-sensing pathways. Thus, our work suggests a novel mechanism for Synj1-related Parkinsonism involving astrocyte dysfunction.
Collapse
Affiliation(s)
- Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Justin Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Asma Rizvi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Xinyu Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Hikari Tanaka
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
31
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
32
|
Lalo U, Pankratov Y. Astrocytes as Perspective Targets of Exercise- and Caloric Restriction-Mimetics. Neurochem Res 2021; 46:2746-2759. [PMID: 33677759 PMCID: PMC8437875 DOI: 10.1007/s11064-021-03277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Yuriy Pankratov
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia. .,School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
33
|
Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021; 10:100450. [PMID: 32817818 PMCID: PMC7426447 DOI: 10.1016/j.imr.2020.100450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A dramatic increase in aging populations and low birth rates rapidly drive aging societies and increase aging-associated neurodegenerative diseases. However, functional food or medicinal formulations to prevent geriatric brain disorders are not readily available. Panax ginseng is a candidate, since ginseng has long-been consumed as a rejuvenating agent. However, the underlying molecular mechanisms and the components of ginseng that are responsible for brain rejuvenation and human longevity are unknown. Accumulating evidence shows that gintonin is a candidate for the anti-aging ingredient of ginseng, especially in brain senescence. METHODS Gintonin, a glycolipoprotein complex, contains three lipid-derived G protein-coupled receptor ligands: lysophosphatidic acids (LPAs), lysophosphatidylinositols (LPIs), and linoleic acid (LA). LPA, LPI, and LA act on six LPA receptor subtypes, GPR55, and GPR40, respectively. These G protein-coupled receptors are distributed within the nervous and non-nervous systems of the human body. RESULTS Gintonin-enriched fraction (GEF) exhibits anti-brain senescence and effects against disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Oral administration of gintonin in animal models of d-galactose-induced brain aging, AD, HD, and PD restored cognitive and motor functions. The underlying molecular mechanisms of gintonin-mediated anti-brain aging and anti-neurodegenerative diseases include neurogenesis, autophagy stimulation, anti-apoptosis, anti-oxidative stress, and anti-inflammatory activities. This review describes the characteristics of gintonin and GEF, and how gintonin exerts its effects on brain aging and brain associated-neurodegenerative diseases. CONCLUSION Finally, we describe how GEF can be applied to improve the quality of life of senior citizens in aging societies.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Neurovascular Biology Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yoonjeong Cho
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Assessing Autophagy in Microglia: A Two-Step Model to Determine Autophagosome Formation, Degradation, and Net Turnover. Front Immunol 2021; 11:620602. [PMID: 33584716 PMCID: PMC7878397 DOI: 10.3389/fimmu.2020.620602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a complex process that encompasses the enclosure of cytoplasmic debris or dysfunctional organelles in membranous vesicles, the autophagosomes, for their elimination in the lysosomes. Autophagy is increasingly recognized as a critical process in macrophages, including microglia, as it finely regulates innate immune functions such as inflammation. A gold-standard method to assess its induction is the analysis of the autophagic flux using as a surrogate the expression of the microtubule-associated light chain protein 3 conjugated to phosphatidylethanolamine (LC3-II) by Western blot, in the presence of lysosomal inhibitors. Therefore, the current definition of autophagy flux actually puts the focus on the degradation stage of autophagy. In contrast, the most important autophagy controlling genes that have been identified in the last few years in fact target early stages of autophagosome formation. From a biological standpoint is therefore conceivable that autophagosome formation and degradation are independently regulated and we argue that both stages need to be systematically analyzed. Here, we propose a simple two-step model to understand changes in autophagosome formation and degradation using data from conventional LC3-II Western blot, and test it using two models of autophagy modulation in cultured microglia: rapamycin and the ULK1/2 inhibitor, MRT68921. Our two-step model will help to unravel the effect of genetic, pharmacological, and environmental manipulations on both formation and degradation of autophagosomes, contributing to dissect out the role of autophagy in physiology and pathology in microglia as well as other cell types.
Collapse
Affiliation(s)
- Ainhoa Plaza-Zabala
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Virginia Sierra-Torre
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
35
|
Huang X, Niu L, Meng L, Lin Z, Zhou W, Liu X, Huang J, Abbott D, Zheng H. Transcranial Low-Intensity Pulsed Ultrasound Stimulation Induces Neuronal Autophagy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:46-53. [PMID: 33017285 DOI: 10.1109/tuffc.2020.3028619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Autophagy, or cellular self-digestion, is an essential process for eliminating abnormal protein in mammalian cells. Accumulating evidence indicates that increased neuronal autophagy has a protective effect on neurodegenerative disorders. It has been reported that low-intensity pulsed ultrasound (LIPUS) can noninvasively modulate neural activity in the brain. Yet, the effect of LIPUS on neuronal autophagy is still unclear. The objective of this study was to examine whether LIPUS stimulation could induce neuronal autophagy. Primary neurons were treated by LIPUS with a frequency of 0.68 MHz, a pulse repetition frequency (PRF) of 500 Hz, a spatial peak temporal-average intensities ( [Formula: see text]) of 70 and 165 mW/cm2. Then, the immunofluorescent analysis of LC3B was carried out for evaluating neuronal autophagy. Furthermore, 0.5-MHz LIPUS was noninvasively delivered to the cortex and hippocampus of adult mice ( n = 16 ) with PRF of 500 Hz and [Formula: see text] of 235 mW/cm2. The LC3BII/LC3BI ratio and p62 (autophagic markers) were measured by western blot analysis. In the in vitro study, the expression of LC3B in primary neurons was statistically improved after LIPUS stimulation was implemented for 4 h ( ). With the increase in the irradiation duration or acoustic intensity of LIPUS stimulation, the expression of LC3B in primary neurons was increased. Furthermore, transcranial LIPUS stimulation increased the LC3BII/LC3BI ratio ( ) and decreased the expression of p62 ( ) in the cortex and hippocampus. We concluded that LIPUS provides a safe and capable tool for activating neuronal autophagy in vitro and in vivo.
Collapse
|
36
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
37
|
Huang Y, Liao Y, Zhang H, Li S. Lead exposure induces cell autophagy via blocking the Akt/mTOR signaling in rat astrocytes. J Toxicol Sci 2020; 45:559-567. [PMID: 32879255 DOI: 10.2131/jts.45.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is a main threat to human health due to its neurotoxicity and the astrocyte is known to be a common deposit site of lead in vivo. However, the detailed mechanisms related to lead exposure in the astrocytes were unclear. In order to deeply investigate this issue, we used Sprague-Dawley (SD) rats and astrocytes isolated from the hippocampus of SD rats to establish the lead-exposed animal and cell models through treating with lead acetate. The expression levels of GFAP, LC3, and p62 in the rat hippocampus were detected by immunofluorescence and Western blot after lead exposure. The effects of autophagy on lead-exposed astrocytes were studied by further autophagy inhibitor 3-methyladenine (3-MA) induction. Transmission electron microscopy was used to observe autophagosomes in astrocytes after lead acetate treatment, followed by assessing related autophagy protein markers. In addition, some inflammatory cytokines and oxidative stress markers were also evaluated after lead exposure and 3-MA administration. We found that lead exposure induced activation of astrocytes, as evidenced by increased GFAP levels and GFAP-positive staining cells in the rat hippocampus. Moreover, lead exposure induced autophagy in astrocytes, as evidenced by increased LC3II and Beclin 1 protein levels and decreased p62 expression in both the rat hippocampus and astrocytes, and it was confirmed that this autophagy was activated through blocking the downstream Akt/target of the rapamycin (mTOR) pathway in astrocytes. Furthermore, it was shown that treatment of lead acetate increased the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) in astrocytes, which could be alleviated by further 3-MA induction. Therefore, we conclude that lead exposure can induce the autophagy of astrocytes via blocking the Akt/mTOR pathway, leading to accelerated release of inflammatory factors and oxidative stress indicators in astrocytes.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Physiology, School of Life Sciences, China Medical University, China.,School of Nursing, Jinzhou Medical University, China
| | - Yingjun Liao
- Department of Physiology, School of Life Sciences, China Medical University, China
| | - Huijun Zhang
- School of Nursing, Jinzhou Medical University, China
| | - Shuyun Li
- School of Nursing, Jinzhou Medical University, China
| |
Collapse
|
38
|
Maysinger D, Zhang Q, Kakkar A. Dendrimers as Modulators of Brain Cells. Molecules 2020; 25:E4489. [PMID: 33007959 PMCID: PMC7582352 DOI: 10.3390/molecules25194489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nanostructured hyperbranched macromolecules have been extensively studied at the chemical, physical and morphological levels. The cellular structural and functional complexity of neural cells and their cross-talk have made it rather difficult to evaluate dendrimer effects in a mixed population of glial cells and neurons. Thus, we are at a relatively early stage of bench-to-bedside translation, and this is due mainly to the lack of data valuable for clinical investigations. It is only recently that techniques have become available that allow for analyses of biological processes inside the living cells, at the nanoscale, in real time. This review summarizes the essential properties of neural cells and dendrimers, and provides a cross-section of biological, pre-clinical and early clinical studies, where dendrimers were used as nanocarriers. It also highlights some examples of biological studies employing dendritic polyglycerol sulfates and their effects on glia and neurons. It is the aim of this review to encourage young scientists to advance mechanistic and technological approaches in dendrimer research so that these extremely versatile and attractive nanostructures gain even greater recognition in translational medicine.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Qiaochu Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
39
|
Wang QC, Sheng W, Yi CJ, Lv H, Cheng B. Retrobulbarly injecting nerve growth factor attenuates visual impairment in streptozotocin-induced diabetes rats. Int Ophthalmol 2020; 40:3501-3511. [PMID: 32776300 DOI: 10.1007/s10792-020-01537-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore whether retrobulbar administration of nerve growth factor (NGF) can restore visual function of streptozotocin-induced diabetes rats. METHODS A high-sucrose/high-fat diet and single injection of streptozotocin (STZ) were used in modeling diabetes. During week 13-15 after STZ injection, diabetic rats were received retrobulbar βNGF injection. On week 17 after STZ injection, the rats were tested with flash visual evoked potential (FVEP) to reflect visual function and with both optical coherence tomography (OCT) and hematoxylin and eosin (H&E) staining to show retinal morphological changes. Furthermore, periodic acid-Schiff (PAS) staining for retinal vascular digest preparations was performed to investigate retinal microvascular alterations, and immunofluorescences for slides of the optic nerve or retina were checked to assess astrocyte activation, autophagy level, and the unfolded protein response (UPR). RESULTS Retrobulbar βNGF injection significantly improved FVEP of diabetic rats. It also significantly alleviated retinal ganglion cell (RGC) loss and scarcely elicited other retinal/microvascular morphological changes, in OCT, H&E staining, and microvascular preparation. Moreover when diabetes rats treated with NGF, immunostaining of the optic nerve showed downregulation of complement 3d (C3d) and upregulations of glial fibrillary acidic protein (GFAP), S100-A10, microtubule-associated proteins 1A/1B light chain 3b (LC3b), and activating transcription factor 4 (ATF-4), while immunostaining of the retina showed upregulation of LC3b and no expression of ATF-4. CONCLUSION Our findings demonstrate that retrobulbar administration of βNGF reduces visual impairment with RGC-loss attenuation and without retinal-microvascular morphological alteration in diabetic rats. Furthermore, enhancements of A2 astrocyte activation, autophagy-protein expression, and ATF-4-mediated UPR may play crucial roles in the protective mechanism of NGF in diabetic visual-pathway neurodegeneration.
Collapse
Affiliation(s)
- Qi-Chang Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China. .,Changsha Xiangjiang, Aier Eye Hospital, Changsha, Hunan Province, 410015, China.
| | - Wang Sheng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.,Aier Eye Institute, Changsha, Hunan Province, 410015, China
| | - Cai-Jiao Yi
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.,Aier Eye Institute, Changsha, Hunan Province, 410015, China
| | - Han Lv
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.,Aier Eye Institute, Changsha, Hunan Province, 410015, China
| | - Bei Cheng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.,Aier Eye Institute, Changsha, Hunan Province, 410015, China
| |
Collapse
|
40
|
Yuan FY, Zhang MX, Shi YH, Li MH, Ou JY, Bai WF, Zhang MS. Bone marrow stromal cells-derived exosomes target DAB2IP to induce microglial cell autophagy, a new strategy for neural stem cell transplantation in brain injury. Exp Ther Med 2020; 20:2752-2764. [PMID: 32765770 PMCID: PMC7401953 DOI: 10.3892/etm.2020.9008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow stromal cells (MSCs) are a useful source of stem cells for the treatment of various brain injury diseases due to their abundant supply and fewer ethical problems compared with transplant treatment. However, the clinical application of MSCs is limited due to allograft rejection and immunosuppression in the process of MSCs transplantation. According to previous studies, microglial cell autophagy occurs following co-culture with MSCs. In the present study, exosomes were obtained from MSCs and subsequently characterized using transmission electron microscopy, atomic force microscopy and dynamic light scattering particle size analysis. The type of microRNAs (miRs) found in the exosomes was then analyzed via gene chip. The results demonstrated that microglial cell autophagy could be induced by exosomes. This mechanism was therefore investigated further via reverse transcription-quantitative PCR, western blotting and luciferase assays. These results demonstrated that exosomes from MSCs could induce microglial cell autophagy through the miR-32-mediated regulation of disabled homolog 2-interacting protein, thus providing a theoretical basis for the clinical application of miRs in MSCs.
Collapse
Affiliation(s)
- Feng-Ying Yuan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Ming-Xing Zhang
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Yi-Hua Shi
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Mei-Hui Li
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Yuan Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Fang Bai
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China.,Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong 510080, P.R. China
| | - Ming-Sheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
41
|
Iacobas DA, Iacobas S, Stout RF, Spray DC. Cellular Environment Remodels the Genomic Fabrics of Functional Pathways in Astrocytes. Genes (Basel) 2020; 11:genes11050520. [PMID: 32392822 PMCID: PMC7290327 DOI: 10.3390/genes11050520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
We profiled the transcriptomes of primary mouse cortical astrocytes cultured alone or co-cultured with immortalized precursor oligodendrocytes (Oli-neu cells). Filters between the cell types prevented formation of hetero-cellular gap junction channels but allowed for free exchange of the two culture media. We previously reported that major functional pathways in the Oli-neu cells are remodeled by the proximity of non-touching astrocytes and that astrocytes and oligodendrocytes form a panglial transcriptomic syncytium in the brain. Here, we present evidence that the astrocyte transcriptome likewise changes significantly in the proximity of non-touching Oli-neu cells. Our results indicate that the cellular environment strongly modulates the transcriptome of each cell type and that integration in a heterocellular tissue changes not only the expression profile but also the expression control and networking of the genes in each cell phenotype. The significant decrease of the overall transcription control suggests that in the co-culture astrocytes are closer to their normal conditions from the brain. The Oli-neu secretome regulates astrocyte genes known to modulate neuronal synaptic transmission and remodels calcium, chemokine, NOD-like receptor, PI3K-Akt, and thyroid hormone signaling, as well as actin-cytoskeleton, autophagy, cell cycle, and circadian rhythm pathways. Moreover, the co-culture significantly changes the gene hierarchy in the astrocytes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, RG Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Correspondence: ; Tel.: +1-936-261-9926
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - David C Spray
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
42
|
CRISPR/Cas9 Editing for Gaucher Disease Modelling. Int J Mol Sci 2020; 21:ijms21093268. [PMID: 32380730 PMCID: PMC7246564 DOI: 10.3390/ijms21093268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid β-glucosidase gene (GBA1). Besides causing GD, GBA1 mutations constitute the main genetic risk factor for developing Parkinson’s disease. The molecular basis of neurological manifestations in GD remain elusive. However, neuroinflammation has been proposed as a key player in this process. We exploited CRISPR/Cas9 technology to edit GBA1 in the human monocytic THP-1 cell line to develop an isogenic GD model of monocytes and in glioblastoma U87 cell lines to generate an isogenic GD model of glial cells. Both edited (GBA1 mutant) cell lines presented low levels of mutant acid β-glucosidase expression, less than 1% of residual activity and massive accumulation of substrate. Moreover, U87 GBA1 mutant cells showed that the mutant enzyme was retained in the ER and subjected to proteasomal degradation, triggering unfolded protein response (UPR). U87 GBA1 mutant cells displayed an increased production of interleukin-1β, both with and without inflammosome activation, α-syn accumulation and a higher rate of cell death in comparison with wild-type cells. In conclusion, we developed reliable, isogenic, and easy-to-handle cellular models of GD obtained from commercially accessible cells to be employed in GD pathophysiology studies and high-throughput drug screenings.
Collapse
|
43
|
Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front Cell Neurosci 2020; 14:44. [PMID: 32210766 PMCID: PMC7075811 DOI: 10.3389/fncel.2020.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes exist in most cells, where they participate in lipid metabolism, as well as scavenging the reactive oxygen species (ROS) that are produced as by-products of their metabolic functions. In certain tissues such as the liver and kidneys, peroxisomes have more specific roles, such as bile acid synthesis in the liver and steroidogenesis in the adrenal glands. In the brain, peroxisomes are critically involved in creating and maintaining the lipid content of cell membranes and the myelin sheath, highlighting their importance in the central nervous system (CNS). This review summarizes the peroxisomal lifecycle, then examines the literature that establishes a link between peroxisomal dysfunction, cellular aging, and age-related disorders that affect the CNS. This review also discusses the gap of knowledge in research on peroxisomes in the CNS.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Louise D. McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
44
|
Korolchuk VI, Sarkar S, Fanto M. Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2445-2448. [PMID: 32169483 DOI: 10.1016/j.jmb.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institut, London, SE5 9NU, UK.
| |
Collapse
|