1
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Yu X, Zhang D, Hu C, Yu Z, Li Y, Fang C, Qiu Y, Mei Z, Xu L. Combination of Diosmetin With Chrysin Against Hepatocellular Carcinoma Through Inhibiting PI3K/AKT/mTOR/NF-кB Signaling Pathway: TCGA Analysis, Molecular Docking, Molecular Dynamics, In Vitro Experiment. Chem Biol Drug Des 2024; 104:e70003. [PMID: 39448547 DOI: 10.1111/cbdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignant tumor. Hepatocellular carcinogenesis is closely linked to apoptosis, autophagy, and inflammation. Diosmetin and chrysin, are two flavonoid compounds, exhibit anti-inflammatory and anticancer properties. In this study, the TCGA database was utilized to identify differentially expressed genes between normal subjects and HCC patients. Molecular docking and molecular dynamics analyses were employed to assess the binding affinity of chrysin and diosmetin to key proteins in the PI3K/AKT/mTOR/NF-κB signaling pathway. Western blotting and RT-qPCR were used to measure the protein and gene expression within this pathway. The results indicated that HCC patients had elevated levels of PI3K, AKT, mTOR, and P65 proteins compared to normal subjects, which adversely affected patient survival. Molecular docking and dynamics studies demonstrated that diosmetin and chrysin are effectively bound to these four proteins. In vitro experiments revealed that the combination of diosmetin and chrysin could induce apoptosis, enhance autophagy, reduce inflammatory mediator production, and improve the tumor cell microenvironment by inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. Notably, the synergy score for the combination of diosmetin (25 μM) and chrysin (10 μM) was 16. Thus, the diosmetin-chrysin combination shows promise as an effective therapeutic approach for hepatocellular carcinoma due to its strong synergistic effect.
Collapse
Affiliation(s)
- Xiang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengming Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cheng Fang
- College of Medicine and Health, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Młynarska E, Budny E, Saar M, Wojtanowska E, Jankowska J, Marciszuk S, Mazur M, Rysz J, Franczyk B. Does the Composition of Gut Microbiota Affect Chronic Kidney Disease? Molecular Mechanisms Contributed to Decreasing Glomerular Filtration Rate. Int J Mol Sci 2024; 25:10429. [PMID: 39408756 PMCID: PMC11477184 DOI: 10.3390/ijms251910429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) is a very prevalent and insidious disease, particularly with initially poorly manifested symptoms that progressively culminate in the manifestation of an advanced stage of the condition. The gradual impairment of kidney function, particularly decreased filtration capacity, results in the retention of uremic toxins and affects numerous molecular mechanisms within the body. The dysbiotic intestinal microbiome plays a crucial role in the accumulation of protein-bound uremic toxins such as p-cresol (pC), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) through the ongoing fermentation process. The described phenomenon leads to an elevated level of oxidative stress and inflammation, subsequently resulting in tissue damage and complications, particularly an increase in cardiovascular risk, representing the predominant cause of mortality in chronic kidney disease (CKD). Therefore, exploring methods to reduce uremic toxins is currently a pivotal therapeutic strategy aimed at reducing the risk of organ damage in patients with chronic kidney disease (CKD). This review aims to summarize recent discoveries on modifying the composition of the intestinal microbiota through the introduction of special probiotic and synbiotic supplements for CKD therapy. The potential to connect the gut microbiota with CKD opens the possibility for further extensive research in this area, which could lead to the incorporation of synbiotics and probiotics into the fundamental treatment and prevention of CKD.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Ewa Wojtanowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Justyna Jankowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Szymon Marciszuk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Marcin Mazur
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| |
Collapse
|
4
|
Guo Y, Du X, Wang F, Fu Y, Guo X, Meng R, Ge K, Zhang S. Co-exposure of microcystin-LR and nitrite induced kidney injury through TLR4/NLRP3/GSDMD-mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116629. [PMID: 38917587 DOI: 10.1016/j.ecoenv.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The degradation of cyanobacterial blooms releases hazardous contaminants such as microcystin-LR (MC-LR) and nitrite, which may collectively exert toxicity on various bodily systems. To evaluate their individual and combined toxicity in the kidney, mice were subjected to different concentrations of MC-LR and/or nitrite over a 6-month period in this study. The results revealed that combined exposure to MC-LR and nitrite exacerbated renal pathological alterations and dysfunction compared to exposure to either compound alone. Specifically, the protein and mRNA expression of kidney injury biomarkers, such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), were notably increased in combined exposure group. Concurrently, co-exposure to MC-LR and nitrite remarkedly upregulated levels of proinflammatory cytokines TNF-α, IL-6 and IL-1β, while decreasing the anti-inflammatory cytokine IL-10. Notably, MC-LR and nitrite exhibited synergistic effects on the upregulation of renal IL-1β levels. Moreover, MC-LR combined with nitrite not only elevated mRNA levels of proinflammatory cytokines but also increased protein levels of pyroptosis biomarkers such as IL-1β, Gasdermin D (GSDMD), and Cleaved-GSDMD. Mechanistic investigations revealed that co-exposure to MC-LR and nitrite promoted pyroptosis both in vivo and in vitro, possibly through the activation of the TLR4/NLRP3/GSDMD pathway. Pretreatment with TLR4 inhibitor and NLRP3 inhibitor effectively suppressed pyroptosis induced by the co-exposure of these two toxins in HEK293T cells. These findings provide compelling evidence that MC-LR combined with nitrite synergistically induces pyroptosis in the kidney by activating the TLR4/NLRP3/GSDMD pathway. Overall, this study significantly enhances our comprehension of how environmental toxins interact and induce harm to the kidneys, offering promising avenues for identifying therapeutic targets to alleviate their toxic effects on renal health.
Collapse
Affiliation(s)
- Yao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Luohe, Henan, China.
| |
Collapse
|
5
|
Ageena SA, Bakr AG, Mokhlis HA, Abd-Ellah MF. Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03271-9. [PMID: 39028331 DOI: 10.1007/s00210-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1β levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1β, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.
Collapse
Affiliation(s)
- Saad A Ageena
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hamada A Mokhlis
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Kantara Branch, Sinai University, Cairo, Egypt
| | - Mohamed F Abd-Ellah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Duan S, Ding Z, Liu C, Wang X, Dai E. Icariin suppresses nephrotic syndrome by inhibiting pyroptosis and epithelial-to-mesenchymal transition. PLoS One 2024; 19:e0298353. [PMID: 38995910 PMCID: PMC11244770 DOI: 10.1371/journal.pone.0298353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2024] [Indexed: 07/14/2024] Open
Abstract
CONTEXT Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1β. Notably, treatment with icariin also inhibited the levels of TGF-β, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.
Collapse
Affiliation(s)
- Shuwen Duan
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhaoran Ding
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Can Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaohui Wang
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
8
|
Zhao T, Zhang X, Cui X, Su S, Li L, Chen Y, Wang N, Sun L, Zhao J, Zhang J, Han X, Cao J. Oridonin exerts anticonvulsant profile and neuroprotective activity in epileptic mice by inhibiting NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 134:112247. [PMID: 38759374 DOI: 10.1016/j.intimp.2024.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xuefei Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Songxue Su
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Li
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanan Chen
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Na Wang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Sun
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jiewen Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
9
|
Mansoure AN, Elshal M, Helal MG. Renoprotective effect of diacetylrhein on diclofenac-induced acute kidney injury in rats via modulating Nrf2/NF-κB/NLRP3/GSDMD signaling pathways. Food Chem Toxicol 2024; 187:114637. [PMID: 38582345 DOI: 10.1016/j.fct.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.
Collapse
Affiliation(s)
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
10
|
Ma Y, Xu P, Xing H, Zhang Y, Li T, Ding X, Liu L, Niu Q. Rutin mitigates fluoride-induced nephrotoxicity by inhibiting ROS-mediated lysosomal membrane permeabilization and the GSDME-HMGB1 axis involved in pyroptosis and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116195. [PMID: 38479315 DOI: 10.1016/j.ecoenv.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases(First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
11
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
12
|
Ma N, Lu H, Li N, Ni W, Zhang W, Liu Q, Wu W, Xia S, Wen J, Zhang T. CHOP-mediated Gasdermin E expression promotes pyroptosis, inflammation, and mitochondrial damage in renal ischemia-reperfusion injury. Cell Death Dis 2024; 15:163. [PMID: 38388468 PMCID: PMC10883957 DOI: 10.1038/s41419-024-06525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
In clinical practice, renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), often leading to acute renal failure or end-stage renal disease (ESRD). The current understanding of renal IRI mechanisms remains unclear, and effective therapeutic strategies and clear targets are lacking. Therefore, the need to find explicit and effective ways to reduce renal IRI remains a scientific challenge. The current study explored pyroptosis, a type of inflammation-regulated programmed cell death, and the role of Gasdermins E (GSDME)-mediated pyroptosis, mitochondrial damage, and inflammation in renal IRI. The analysis of human samples showed that the expression levels of GSDME in normal human renal tissues were higher than those of GSDMD. Moreover, our study demonstrated that GSDME played an important role in mediating pyroptosis, inflammation, and mitochondrial damage in renal IRI. Subsequently, GSDME-N accumulated in the mitochondrial membrane, leading to mitochondrial damage and activation of caspase3, which generated a feed-forward loop of self-amplification injury. However, GSDME knockout resulted in the amelioration of renal IRI. Moreover, the current study found that the transcription factor CHOP was activated much earlier in renal IRI. Inhibition of BCL-2 by CHOP leaded to casapse3 activation, resulting in mitochondrial damage and apoptosis; not only that, but CHOP positively regulated GSDME thereby causing pyroptosis. Therefore, this study explored the transcriptional mechanisms of GSDME during IRI development and the important role of CHOP/Caspase3/GSDME mechanistic axis in regulating pyroptosis in renal IRI. This axis might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Nannan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ning Li
- Department of Nephropathy, The Zhongda Affilicated Hospital of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Weijian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Pharmacy, Centre for Leading Medicine and Advanced Technologies of IHM, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, People's Republic of China
| | - Wenbo Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qiang Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shichao Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Seo JW, Jo SH, Kim SH, Choi BH, Cho H, Yoo JJ, Park SH. Application of Cartilage Extracellular Matrix to Enhance Therapeutic Efficacy of Methotrexate. Tissue Eng Regen Med 2024; 21:209-221. [PMID: 37837499 PMCID: PMC10825102 DOI: 10.1007/s13770-023-00587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Byeong-Hoon Choi
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA
- Research 151, Veterans Affairs Medical Center, Memphis, TN, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
14
|
Xia X, Chen Y, Qu H, Cao J, Wang H. The high-expression programming of SR-B1 mediates adrenal dysfunction in female offspring induced by prenatal caffeine exposure and its cholesterol accumulation mechanism. Food Funct 2024; 15:716-731. [PMID: 38113052 DOI: 10.1039/d3fo03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The cholesterol metabolism and homeostasis of adrenal are important for steroidogenesis. Our previous studies found that prenatal caffeine exposure (PCE) can inhibit adrenal steroidogenesis in offspring, but whether the mechanism is related to local imbalance of cholesterol metabolism remains unknown. Here, we found that PCE inhibited adrenal steroidogenesis and increased the expression of cell pyroptosis and inflammatory-related indicators (NLRP3, caspase-1 and IL-1β) in female adult offspring rats, and at the same time, the cholesterol levels in serum and adrenal gland also significantly increased. In vitro, the high level of cholesterol could inhibit adrenal corticosteroid synthesis through pyroptosis and an inflammatory response. It suggested that the low adrenal steroidogenesis in PCE female adult offspring is related to local cholesterol accumulation-mediated pyroptosis and inflammation. Furthermore, dating back to the intrauterine period, PCE increased the serum CORT level in female fetal rats, and increased the expression of the adrenal cholesterol intake gene SR-B1, which persisted after birth and even into adulthood. At the cellular level, silencing SR-B1 could reverse the increase of intracellular cholesterol content caused by high levels of cortisol in NCI-H295R cells. Finally, we confirmed that high concentrations of glucocorticoids increased the expression and H3K14ac level of the promoter region in SR-B1 by upregulating the GR/SREBP1/p300 pathway in vivo and in vitro. In conclusion, we clarified that the high-expression programming of SR-B1 mediates adrenal dysfunction in PCE female offspring and its cholesterol accumulation mechanism, which provided a favorable basis for finding novel targets to prevent and treat fetal-originated diseases.
Collapse
Affiliation(s)
- Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Jiangang Cao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
15
|
Yang J, Li B, Wang J, Fan W. Puerarin alleviates chronic renal failure-induced pyroptosis in renal tubular epithelial cells by targeting miR-342-3p/TGF-β/SMAD axis. Genes Genomics 2023; 45:1563-1573. [PMID: 37747643 DOI: 10.1007/s13258-023-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Chronic renal failure (CRF) is the result of kidney damage. Puerarin is a flavonoid with specific nephroprotective effect, but its effect on CRF needs further research. This study explored the effect of puerarin on CRF and the potential molecular mechanism. METHODS Adenine was used to establish an in vivo CRF model in rats, and rats were intragastrically administered with puerarin at a dose of 400 mg/kg body weight once a day from day 1 to day 28. Hematoxylin and eosin (HE) and Masson staining were used to observe the morphology and fibrosis of kidney tissue. Lipopolysaccharide (LPS) (400 ng/mL)/H2O2 (200 µM) was applied to human kidney 2 (HK-2) cells to construct an in vitro CRF model. Enzyme-linked immunosorbent assay (ELISA) was performed to validate interleukin (IL)-1β and IL-18 levels. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to detect microRNA (miR)-342-3p levels. Transforming growth factor beta (TGF-β)1, SMAD2, SMAD3, and pyroptosis marker proteins were detected by Western blot. The interaction between miR-342-3p and TGF-β/SMAD was determined by a dual-luciferase reporter gene assay. Cell Counting Kit-8 (CCK-8) assay was utilized to determine cell viability. RESULTS In the CRF model, puerarin alleviated renal injury and fibrosis and reduced creatinine (Cr) and blood urea nitrogen (BUN) levels. At the same time, miR-342-3p was downregulated, while the TGF-β/SMAD axis was activated and levels of IL-1β and IL-18 were increased. After treatment of CRF rats with puerarin, the expression level of miR-342-3p was increased, the TGF-β/SMAD axis was inhibited, and the secretion of IL-1β and IL-18 was decreased. MiR-342-3p directly bound to and negatively regulated the expression of TGF-β1, SMAD2, and SMAD3. In the in vitro CRF model, miR-342-3p inhibited HK-2 cell pyroptosis by inhibiting the TGF-β/SMAD axis. CONCLUSION Puerarin reduced renal injury and pyroptosis in CRF rats by targeting the miR-342-3p/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Baochao Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Jiangming Wang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
16
|
Luo X, Li Y, Wang B, Zhu S, Liu X, Liu X, Qi X, Wu Y. Carnosine alleviates cisplatin-induced acute kidney injury by targeting Caspase-1 regulated pyroptosis. Biomed Pharmacother 2023; 167:115563. [PMID: 37742605 DOI: 10.1016/j.biopha.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Sai Zhu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
17
|
Shi L, Li C, Wang J, Zhong H, Wei T, Fan W, Li Z. The intellectual base and global trends in inflammation of diabetic kidney disease: a bibliometric analysis. Ren Fail 2023; 45:2270061. [PMID: 37870857 PMCID: PMC11001326 DOI: 10.1080/0886022x.2023.2270061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). The literature on DKD inflammation research has experienced substantial growth. However, there is a lack of bibliometric analyses. This study aimed to examine the existing research on inflammation in DKD by analyzing articles published in the Web of Science Core Collection (WOSCC) over the past 30 years. We conducted a visualization analysis using several software, including CiteSpace and VOSviewer. We found that the literature on inflammation research in DKD has experienced substantial growth, indicating a rising interest in this developing area of study. In this field, Navarro-Gonzalez, JF is the most frequently cited author, Kidney International is the most frequently cited journal, China had the highest number of publications in the field of DKD inflammation, and Monash University emerged as the institution with the most published research. The research area on inflammation in DKD primarily centers around the investigation of 'Glycation end-products', 'chronic kidney disease', and 'diabetic nephropathy'. The emerging research trends in this field will focus on the 'Gut microbiota', 'NLRP3 inflammasome', 'autophagy', 'pyroptosis', 'sglt2 inhibitor', and 'therapeutic target'. Future research on DKD may focus on further exploring the inflammatory response, identifying specific therapeutic targets, studying biomarkers, investigating stem cell therapy and tissue engineering, and exploring gene therapy and gene editing. In summary, this study examines the main areas of study, frontiers, and trends in DKD inflammation, which have significant implications for future research.
Collapse
Affiliation(s)
- LuYao Shi
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - ChangYan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Wang
- The Second People’s Hospital of Baoshan City, Baoshan, China
| | - HuaChen Zhong
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Wei
- Kunming Medical University, Kunming, Yunnan Province, China
| | - WenXing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhen Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
18
|
Shao Y, Deng S, Tang W, Huang L, Xie Y, Yuan S, Tang L. Molecular mechanism of GSDMD mediated glomerular endothelial cells pyroptosis: An implying in the progression of diabetic nephropathy. Int Immunopharmacol 2023; 122:110632. [PMID: 37451013 DOI: 10.1016/j.intimp.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Diabetic nephropathy (DN), a chronic progressive kidney disease, is the most prevalent microvascular complication associated with diabetes which causes the end-stage renal disease. Glomerular endothelial cells (GECs) are one of the inherent cells of the glomerulus and are particularly susceptible to be damaged by glucose, lipids and inflammatory factors. Numerous studies indicated that GECs injury was a critical pathological event in the early stages of DN. Previous studies have shown that podocyte pyroptosis occurred through the classical caspase-1 pathway, leading to kidney injury. However, the occurrence of pyroptosis in GECs and the underlying mechanism remain unclear. In this study, we investigated the pyroptosis of GECs during DN and its underlying mechanism. Upon stimulation with high glucose (HG), we observed the upregulation of GSDMD and cleaved N-terminus, disruption of cell membrane integrity, and an increase in IL-18 inflammatory cytokines. Also, we found that the expression of caspase-11, GSDMD and GSDMD-N were increased in C57BL/6J mice induced by STZ combined with high sugar and fat. In addition, the pathological results of kidney showed a significant thickening of the glomerular basement membrane, abnormal increasement of extracellular matrix and hyperplasia with blurred boundaries of glomerulus. Furthermore, interfering the expression of GSDMD improved the pathological degree of kidney. These findings indicated that the pyroptosis of GECs during DN was facilitated by the non-classical pathway of caspase-11/GSDMD, ultimately leading to GECs injury and further aggravating the progression of DN. This work highlights the potential of GSDMD as a therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Yawen Shao
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Shujun Deng
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wei Tang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Lingzhi Huang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| |
Collapse
|
19
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
20
|
Chen Z, Li Y, Yuan Y, Lai K, Ye K, Lin Y, Lan R, Chen H, Xu Y. Single-cell sequencing reveals homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced AKI. Cell Death Dis 2023; 14:318. [PMID: 37169762 PMCID: PMC10175265 DOI: 10.1038/s41419-023-05830-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced acute kidney injury (AKI) are poorly understood. Here, we performed single-cell sequencing (scRNA) on mouse kidneys with five common AKI etiologies (CP-Cisplatin, IRI-Ischemia-reperfusion injury, UUO-Unilateral ureteral obstruction, FA-Folic acid, and SO-Sodium oxalate). We constructed a potent multi-model AKI scRNA atlas containing 20 celltypes with 80,689 high-quality cells. The data suggest that compared to IRI and CP-AKI, FA- and SO-AKI exhibit injury characteristics more similar to UUO-AKI, which may due to tiny crystal-induced intrarenal obstruction. Through scRNA atlas, 7 different functional proximal tubular cell (PTC) subtypes were identified, we found that Maladaptive PTCs and classical Havcr1 PTCs but not novel Krt20 PTCs affect the pro-inflammatory and pro-fibrotic levels in different AKI models. And cell death and cytoskeletal remodeling events are widespread patterns of injury in PTCs. Moreover, we found that programmed cell death predominated in PTCs, whereas apoptosis and autophagy prevailed in the remaining renal tubules. We also identified S100a6 as a novel AKI-endothelial injury biomarker. Furthermore, we revealed that the dynamic and active immune (especially Arg1 Macro_2 cells) -parenchymal cell interactions are important features of AKI. Taken together, our study provides a potent resource for understanding the pathogenesis of AKI and early intervention in AKI progression at single-cell resolution.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yujiao Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ruilong Lan
- Central laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
21
|
Ram C, Gairola S, Verma S, Mugale MN, Bonam SR, Murty US, Sahu BD. Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis. Antioxidants (Basel) 2023; 12:antiox12051052. [PMID: 37237918 DOI: 10.3390/antiox12051052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on the inflammatory response, nod-like receptor protein 3 (NLRP3) inflammasome activation, oxidative stress, and fibrosis in diabetic kidneys. A high-fat-diet/streptozotocin (HFD/STZ)-induced experimental model of diabetic nephropathy (DN) was established in Sprague Dawley rats, and in vitro studies were performed in high-glucose-induced renal tubular epithelial (NRK-52E) cells. Persistent hyperglycemia in diabetic rats was manifested by perturbation of renal function, marked histological alterations, and oxidative and inflammatory renal damage. Therapeutic intervention of BCA mitigated histological changes, improved renal function and antioxidant capacity, and suppressed phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear factor-kappa B inhibitor alpha (IκBα) proteins. Our in vitro data reveal excessive superoxide generation, apoptosis, and altered mitochondrial membrane potential in NRK-52E cells that were cultured in a high-glucose (HG) environment were subsided by BCA intervention. Meanwhile, the upregulated expressions of NLRP3 and its associated proteins, the pyroptosis-indicative protein gasdermin-D (GSDMD) in the kidneys, and HG-stimulated NRK-52E cells were significantly ameliorated by BCA treatment. Additionally, BCA blunted transforming growth factor (TGF)-β/Smad signaling and production of collagen I, collagen III, fibronectin, and alfa-smooth muscle actin (α-SMA) in diabetic kidneys. Our results indicate the plausible role of BCA in attenuating DN, presumably through modulation of the apoptotic cascade in renal tubular epithelial cells and the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Shobhit Verma
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
22
|
Zhang Y, Lv X, Chen F, Fan Q, Liu Y, Wan Z, Nibaruta J, Lv J, Han X, Wu L, Wang H, Leng Y. Role of microRNAs in programmed cell death in renal diseases: A review. Medicine (Baltimore) 2023; 102:e33453. [PMID: 37058073 PMCID: PMC10101263 DOI: 10.1097/md.0000000000033453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression involving kidney morphogenesis and cell proliferation, apoptosis, differentiation, migration, invasion, immune evasion, and extracellular matrix remodeling. Programmed cell death (PCD) is mediated and regulated by specific genes and a wealth of miRNAs, which participate in various pathological processes. Dysregulation of miRNAs can disrupt renal development and induce the onset and progression of various renal diseases. An in-depth understanding of how miRNAs regulate renal development and diseases is indispensable to comprehending how they can be used in new diagnostic and therapeutic approaches. However, the mechanisms are still insufficiently investigated. Hence, we review the current roles of miRNA-related signaling pathways and recent advances in PCD research and aim to display the potential crosstalk between miRNAs and PCD. The prospects of miRNAs as novel biomarkers and therapeutic targets are also described, which might provide some novel ideas for further studies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
- Nankai Eye Institute, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yongqiang Liu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Janvier Nibaruta
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Jipeng Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xuena Han
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Lin Wu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yufang Leng
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| |
Collapse
|
23
|
Li MZ, Zhao Y, Dai XY, Talukder M, Li JL. Lycopene ameliorates DEHP exposure-induced renal pyroptosis through the Nrf2/Keap-1/NLRP3/Caspase-1 axis. J Nutr Biochem 2023; 113:109266. [PMID: 36610486 DOI: 10.1016/j.jnutbio.2022.109266] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in plastic products, and due to its unique chemical composition, it frequently dissolves and enters the environment. Lycopene as a natural carotenoid has been shown to have powerful antioxidant capacity and strong kidney protection. This study aimed to investigate the role of the interplay between oxidative stress and the classical pyroptosis pathway in LYC alleviating DEHP-induced renal injury. ICR mice were given DEHP (500 mg/kg/d or 1000 mg/kg/d) and/or LYC (5 mg/kg/d) for 28 days to explore the underlying mechanisms of this hypothesis. Our results indicated that DEHP caused the shedding of renal tubular epithelial cells, increased the content of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the tissue, the decrease of antioxidant activity markers and the increase of oxidative stress indexes. It is gratifying that LYC alleviates DEHP-induced renal injury. The expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and its downstream target genes is improved in DEHP induced renal injury through LYC mediated protection. Meanwhile, LYC supplementation can inhibit DEHP-induced Caspase-1/NLRP3-dependent pyroptosis and inflammatory responses. Taken together, DEHP administration resulted in nephrotoxicity, but these changes ameliorated by LYC may through crosstalk between the Nrf2/Keap-1/NLRP3/Caspase-1 pathway. Our study provides new evidence that LYC protects against kidney injury caused by DEHP.
Collapse
Affiliation(s)
- Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barisha, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, Heilong Jiang, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China.
| |
Collapse
|
24
|
He YF, Hu XM, Khan MA, Yu BY, Sheng YC, Xiao XZ, Wan XX, Tan SP, Xiong K. HSF1 Alleviates Brain Injury by Inhibiting NLRP3-Induced Pyroptosis in a Sepsis Model. Mediators Inflamm 2023; 2023:2252255. [PMID: 36741074 PMCID: PMC9897924 DOI: 10.1155/2023/2252255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sepsis, which could cause a systemic inflammatory response, is a life-threatening disease with a high morbidity and mortality rate. There is evidence that brain injury may be related to severe systemic infection induced by sepsis. The brain injury caused by sepsis could increase the risk of mortality in septic patients, which seriously affects the septic patient's prognosis of survival. Although there remains a focus on sepsis research, clinical measures to prevent and treat brain injury in sepsis are not yet available, and the high mortality rate is still a big health burden. Therefore, it is necessary to investigate the new molecules or regulated pathways that can effectively inhibit the progress of sepsis. OBJECTIVE NLR family pyrin domain-containing 3 (NLRP3) increased in the procession of sepsis and functioned as the key regulator of pyroptosis. Heat shock factor 1 (HSF1) can protect organs from multiorgan dysfunction syndrome induced by lipopolysaccharides in mice, and NLRP3 could be inhibited by HSF1 in many organs. However, whether HSF1 regulated NLRP3 in sepsis-induced brain injury, as well as the detailed mechanism of HSF1 in brain injury, remains unknown in the sepsis model. In this research, we try to explore the relationship between HSF1 and NLRP3 in a sepsis model and try to reveal the mechanism of HSF1 inhibiting the process of brain injury. METHODS In this study, we used wild-type mice and hsf1 -/- mice for in vivo research and PC12 cells for in vitro research. Real-time PCR and Western blot were used to analyze the expression of HSF1, NLRP3, cytokines, and pyrolytic proteins. EthD-III staining was chosen to detect the pyroptosis of the hippocampus and PC12 cells. RESULTS The results showed that HSF1 is negatively related to pyroptosis. The pyroptosis in cells of brain tissue was significantly increased in the hsf1 -/- mouse model compared to hsf1 +/+ mice. In PC12 cells, hsf1 siRNA can upregulate pyroptosis while HSF1-transfected plasmid could inhibit the pyroptosis. HSF1 could negatively regulate the NLRP3 pathway in PC12 cells, while hsf1 siRNA enhanced the pyroptosis in PC12 cells, which could be reversed by nlrp3 siRNA. CONCLUSION These results imply that HSF1 could alleviate sepsis-induced brain injury by inhibiting pyroptosis through the NLRP3-dependent pathway in brain tissue and PC12 cells, suggesting HSF1 as a potential molecular target for treating brain injury in sepsis clinical studies.
Collapse
Affiliation(s)
- Yi-fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-min Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo-yao Yu
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi-cun Sheng
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xian-zhong Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Si-pin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
25
|
Pyroptosis and Its Role in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14235764. [PMID: 36497244 PMCID: PMC9739612 DOI: 10.3390/cancers14235764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, is characterized by the caspase-mediated pore formation of plasma membranes and the release of large quantities of inflammatory mediators. In recent years, the morphological characteristics, induction mechanism and action process of pyroptosis have been gradually unraveled. As a malignant tumor with high morbidity and mortality, cervical cancer is seriously harmful to women's health. It has been found that pyroptosis is closely related to the initiation and development of cervical cancer. In this review the mechanisms of pyroptosis and its role in the initiation, progression and treatment application of cervical cancer are summarized and discussed.
Collapse
|
26
|
Abd-Ellatif RN, Nasef NA, El-Horany HES, Emam MN, Younis RL, El Gheit REA, Elseady W, Radwan DA, Hafez YM, Eissa A, Aboalsoud A, Shalaby RH, Atef MM. Adrenomedullin Mitigates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Oxidative Stress, Inflammation, Apoptosis, and Pyroptosis. Int J Mol Sci 2022; 23:14570. [PMID: 36498902 PMCID: PMC9741179 DOI: 10.3390/ijms232314570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 μg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1β, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Biochemistry Department, College of Medicine, Ha’il University, Ha’il 2440, Saudi Arabia
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham Lotfy Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmad Eissa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania H. Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
27
|
The advances of calcium oxalate calculi associated drugs and targets. Eur J Pharmacol 2022; 935:175324. [DOI: 10.1016/j.ejphar.2022.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022]
|
28
|
Ding Z, Zhao J, Wang X, Li W, Chen C, Yong C, Zhu Y, Tian F, Liu L, Yu M, Zhou E, Gu L, Yao C, Gao K. Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling. Front Pharmacol 2022; 13:907980. [PMID: 36052125 PMCID: PMC9424722 DOI: 10.3389/fphar.2022.907980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: The incidence of uric acid (UA)-induced kidney injury is increasing owing to the high incidence of hyperuricemia in recent years. The flower of Abelmoschus manihot (Linneus) Medik is a traditional Chinese medicinal herb widely used in the treatment of some kidney diseases. In our previous study, we reported that the total extract of A. manihot L. flower (TEA) attenuated adriamycin-induced renal tubular cell injury. In this study, we aimed to evaluate the role of TEA in UA-induced tubular cell injury. Methods: Normal rat proximal epithelial NRK-52E cells were incubated with UA to mimic hyperuricemia conditions. The role of TEA in the renal tubular cells was also assessed. The cellular morphology was observed using phase-contrast microscopy, and cell viability was analyzed using the Cell Counting kit-8. Living and dead cells were stained using a Calcein-AM/PI double stain kit. The release of lactate dehydrogenase (LDH) was analyzed by LDH cytotoxicity Assay Kit. The expression of target proteins was analyzed using western blot analysis. Results: UA triggered NRK-52E cell injury, as evidenced by morphological changes, detachment of cells from the bottom, cell swelling, large bubbles blowing from cell membrane and loss of cell viability. UA increased release of LDH. UA induced the expression of p-ERK1/2 and the subsequent activation of caspase-8, caspase-3, and NLRP3 inflammasomes. Pyroptosis was elicited by UA after gasdermin E N-terminal (GSDME-NT) was cleaved from gasdermin E (GSDME). Z-DEVD-FMK, a caspase-3 inhibitor, suppressed the expression of both NLRP3 and GSDME-NT, but not that of caspase-8. INF39, an NLRP3 inhibitor, altered the expression of GSDME-NT expression, but not that caspase-3 and caspase-8. TEA alleviated UA-induced cell injury by suppressing ERK1/2/caspase-8/caspase-3/NLRP3/GSDME signaling. Conclusion: GSDME-mediated pyroptosis was involved in UA-induced renal tubular cell injury. This is the first study to report that TEA protects renal tubular epithelial cells against UA by inhibiting the ERK/1/2/caspase-8/caspase-3/NLRP3/GSDME pathway.
Collapse
Affiliation(s)
- Zhihui Ding
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Nephrology, Taizhou Second People’s Hospital, Taizhou, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xufang Wang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chong Chen
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiye Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Liu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Liubao Gu
- Division of Clinical Epidemiology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlei Yao
- Division of Nephrology, Taizhou Second People’s Hospital, Taizhou, China
- *Correspondence: Kun Gao, ; Chunlei Yao,
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Kun Gao, ; Chunlei Yao,
| |
Collapse
|
29
|
Wu Z, Deng J, Zhou H, Tan W, Lin L, Yang J. Programmed Cell Death in Sepsis Associated Acute Kidney Injury. Front Med (Lausanne) 2022; 9:883028. [PMID: 35655858 PMCID: PMC9152147 DOI: 10.3389/fmed.2022.883028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 01/15/2023] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is common in patients with severe sepsis, and has a high incidence rate and high mortality rate in ICU patients. Most patients progress to AKI before drug treatment is initiated. Early studies suggest that the main mechanism of SA-AKI is that sepsis leads to vasodilation, hypotension and shock, resulting in insufficient renal blood perfusion, finally leading to renal tubular cell ischemia and necrosis. Research results in recent years have shown that programmed cell death such as apoptosis, necroptosis, pyroptosis and autophagy play important roles. In the early stage of sepsis-related AKI, autophagy bodies form and inhibit various types of programmed cell death. With the progress of disease, programmed cell death begins. Apoptosis promoter represents caspase-8-induced apoptosis and apoptosis effector represents caspase-3-induced apoptosis, however, caspase-11 and caspase-1 regulate gasdermin D-mediated pyroptosis. Caspase-8 and receptor interacting kinase 1 bodies mediate necroptosis. This review focuses on the pathophysiological mechanisms of various programmed cell death in sepsis-related AKI.
Collapse
Affiliation(s)
- Zhifen Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhui Deng
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwen Zhou
- Department of Nephrology, Chongqing Liangping District People's Hospital, Chongqing, China
| | - Wei Tan
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Nobiletin Alleviates Ferroptosis-Associated Renal Injury, Inflammation, and Fibrosis in a Unilateral Ureteral Obstruction Mouse Model. Biomedicines 2022; 10:biomedicines10030595. [PMID: 35327397 PMCID: PMC8944974 DOI: 10.3390/biomedicines10030595] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Nobiletin (Nob), a critical active flavonoid of citrus fruits, has received attention for its superior physical functions, which have shown to improve the progression of diseases. Chronic kidney disease (CKD) is recognized as a global health problem, and its mortality and morbidity rates are worsened with an increased risk of accompanying disorders. In this study, we aimed to elucidate whether Nob treatment ameliorates kidney fibrosis and also to identify the potential signaling networks in a unilateral ureteral obstructive (UUO) mouse model, which was used to mimic the progression of CKD. Six-week-old C57BL/6J mice were orally treated with 50 mg/kg of Nob for 14 constitutive days after UUO surgery. We found that the administration of Nob diminished kidney fibrosis and the expression of EMT markers, ameliorated oxidative stress and ferroptosis-associated injury, and mitigated the inflammatory response in the kidneys of UUO mice. Our results suggested that Nob treatment has antiferroptosis, anti-inflammatory, and antifibrotic effects, improving the progression of CKD in UUO mice. Nob may serve as a potential therapeutic candidate for the improvement of progressive CKD in further studies.
Collapse
|
31
|
Hypothetical Mechanism of Exercise-Induced Acute Kidney Injury Associated with Renal Hypouricemia. Biomedicines 2021; 9:biomedicines9121847. [PMID: 34944661 PMCID: PMC8698656 DOI: 10.3390/biomedicines9121847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Renal hypouricemia (RHUC) is a hereditary disease that presents with increased renal urate clearance and hypouricemia due to genetic mutations in the urate transporter URAT1 or GLUT9 that reabsorbs urates in the renal proximal tubule. Exercise-induced acute kidney injury (EIAKI) is known to be a complication of renal hypouricemia. In the skeletal muscle of RHUC patients during exhaustive exercise, the decreased release of endothelial-derived hyperpolarization factor (EDHF) due to hypouricemia might cause the disturbance of exercise hyperemia, which might increase post-exercise urinary urate excretion. In the kidneys of RHUC patients after exhaustive exercise, an intraluminal high concentration of urates in the proximal straight tubule and/or thick ascending limb of Henle’s loop might stimulate the luminal Toll-like receptor 4–myeloid differentiation factor 88–phosphoinositide 3-kinase–mammalian target of rapamycin (luminal TLR4–MyD88–PI3K–mTOR) pathway to activate the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and may release interleukin-1β (IL-1β), which might cause the symptoms of EIAKI.
Collapse
|