1
|
Luo Y, Zhong JJ, Xiao H. Mechanism and engineering of endoplasmic reticulum-localized membrane protein folding in Saccharomyces cerevisiae. Metab Eng 2025; 90:43-56. [PMID: 40064436 DOI: 10.1016/j.ymben.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Correct folding of endoplasmic reticulum (ER)-localized membrane proteins, such as cytochrome P450, endows a synthetic biology host with crucial catalytic functions, which is of vital importance in the field of metabolic engineering and synthetic biology. However, due to complexed interaction with cellular membrane environment and other proteins (e.g., molecular chaperone) regulation, a substantial proportion of heterologous membrane proteins cannot be properly folded in the ER of Saccharomyces cerevisiae, a widely used synthetic biology host. In this review, we first introduce the four steps in membrane protein folding process and the affecting factors including the amino acid sequence of membrane protein, the folding process, molecular chaperones, quality control mechanism, and lipid environment in S. cerevisiae. Then, we summarize the metabolic engineering strategies to enhance the correct folding of ER-localized membrane proteins, such as by engineering and de novel design of membrane protein, regulation of the co-translational folding process, co-expression of molecular chaperones, modulation of ER quality, and lipids engineering. Finally, we discuss the limitations of current strategies and propose future research directions to address the key issues.
Collapse
Affiliation(s)
- Yuhuan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Nawaz S, Kulyar MF, Mo Q, Zhang Z, Quan C, Iqbal M, Imad EF, Li J. Thiram-induced ER stress promotes mitochondrial calcium signaling and NLRP3 inflammasome activation in a tissue specific manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118026. [PMID: 40080941 DOI: 10.1016/j.ecoenv.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Thiram, a broadly used dithiocarbamate fungicide, exaggerates endoplasmic reticulum (ER) stress and interferes with mitochondrial function, thus disrupting cellular homeostasis. Here, we intend to identify the molecular actions of thiram at the mitochondrial-associated ER membranes (MAMs) that lead to the induction of ER stress and mitochondrial calcium overload in both liver and bone tissues. Taken together, we show that thiram-induced remodelling of MAMs leads to huge ER stress and calcium dysregulation. Histological and immunohistochemical examinations revealed that thiram-induced hyperactivation of IP3R1 mediated the release of endoplasmic reticulum calcium, but mitochondrial calcium uptake was mediated by voltage-dependent anion channels VDAC1. This stress response was characterized by increased glucose regulated protein 78 (GRP78) expression in the liver and tibial growth plates (GP). In this respect, a new liver-bone axis was delineated for thiram-induced ER stress. More interestingly, the activation of NLRP3 inflammasome was very striking in tibial growth plates but not in liver tissues. Hence, the results highlight the systemic effects of thiram by identifying a critical metabolic junction that might play a role in metabolic disorders such as tibial dyschondroplasia and related bone disorders, e.g., osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - El Fatihi Imad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
3
|
Liu M, Xiao R, Li X, Zhao Y, Huang J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr Rev Food Sci Food Saf 2025; 24:e70078. [PMID: 39970011 DOI: 10.1111/1541-4337.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 02/21/2025]
Abstract
Biotechnology has significantly advanced the production of recombinant proteins (RPs). This review examines the latest advancements in protein production technologies, including CRISPR, genetic engineering, vector integration, and fermentation, and their implications for the food industry. This review delineates the merits and shortcomings of prevailing host systems for RP production, underscoring molecular and process strategies pivotal for amplifying yields and purity. It traverses the spectrum of RP applications, challenges, and burgeoning trends, highlighting the imperative of employing robust hosts and cutting-edge genetic engineering to secure high-quality, high-yield outputs while circumventing protein aggregation and ensuring correct folding for enhanced activity. Recombinant technology has paved the way for the food industry to produce alternative proteins like leghemoglobin and cytokines, along with enzyme preparations such as proteases and lipases, and to modify microbial pathways for synthesizing beneficial compounds, including pigments, terpenes, flavonoids, and functional sugars. However, scaling microbial production to industrial scales presents economic, efficiency, and environmental challenges that demand innovative solutions, including high-throughput screening and CRISPR/Cas9 systems, to bolster protein yield and quality. Although recombinant technology holds much promise, it must navigate high costs and scalability to satisfy the escalating global demand for RPs in therapeutics and food. The variability in ethical and regulatory hurdles across regions further complicates market acceptance, underscoring an urgent need for robust regulatory frameworks for genetically modified organisms. These frameworks are essential for safeguarding the production process, ensuring product safety, and upholding the efficacy of RPs in industrial applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Ran Xiao
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Jihong Huang
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, P. R. China
| |
Collapse
|
4
|
Liu Z, Ha DP, Lin LL, Qi L, Lee AS. Requirements for nuclear GRP78 transcriptional regulatory activities and interaction with nuclear GRP94. J Biol Chem 2025; 301:108369. [PMID: 40024475 DOI: 10.1016/j.jbc.2025.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
GRP78, a molecular chaperone primarily located in the endoplasmic reticulum (ER), has recently been discovered to translocate into the nucleus of stressed and cancer cells where it assumes a new function reprogramming the transcriptome. This study explores the requirements of GRP78 nuclear translocation and its transcriptional activity and investigates the role of ER-associated degradation in the process. We show that the ER-processed, mature form of GRP78 is the major form of nuclear GRP78 and is the form with transcriptional regulatory activity. In contrast, exogenously expressed GRP78 designed to lack its ER signal peptide, thus preventing it from entering the ER or undergoing any ER-related processing/modification, while able to enter the nucleus, lacks transcriptional regulatory activity toward E-Box containing target genes. Additionally, the ATP-binding and substrate-binding activities of GRP78 are critical for this transcriptional regulatory function. We further discover that GRP94, an ER chaperone that acts in concert with GRP78 on protein folding, can translocate to the nucleus and colocalize with nuclear GRP78 upon ER stress. These findings suggest that some form of ER processing of GRP78, in addition to cleavage of the ER signal peptide, is critical for its nuclear activity and that in stressed cells, ER chaperones may assume new functions in the nucleus yet to be explored.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
5
|
Huang T, Ma X, Zhao Z, Qin D, Qin W, Wang J, Chen B, He X. Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus. Mol Microbiol 2025. [PMID: 39935319 DOI: 10.1111/mmi.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/24/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. Cryphonectria parasitica, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses. CpCne was identified and characterized in this study, encoding the calnexin in C. parasitica. Strains with deletion or interference of the CpCne gene had a significant reduction in biomass and pathogenicity, and strains with overexpression of the CpCne gene had retarded growth and reduced pathogenicity. Transcriptome analysis showed that the △CpCne mutant had significant changes in the expression of genes related to carbohydrate metabolism, cell wall polysaccharide synthesis and degradation, indicating that CpCne may reduce virulence by affecting the cell wall. Additionally, the △CpCne mutant was sensitive to endoplasmic reticulum (ER) stress, suggesting that CpCne plays an important role in maintaining ER homeostasis. Furthermore, CpCne was also involved in the interaction between C. parasitica and the CHV1-EP713. Deletion or overexpression of the CpCne gene reduced viral RNA accumulation, and deletion of the CpCne gene altered the lipid and carboxylic acid metabolic pathways, thereby interfering with virus replication and assembly. Together, we demonstrated that the homeostasis of calnexin in C. parasitica (CpCne) is essential for hyphal growth and virulence, and revealed its role in viral replication and virulence.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiaoling Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ziqi Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Danna Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Weiye Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jinzi Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xipu He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Porter AW, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. Am J Physiol Renal Physiol 2025; 328:F173-F189. [PMID: 39556479 DOI: 10.1152/ajprenal.00192.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an acute kidney injury (AKI)-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.NEW & NOTEWORTHY Loss of the endoplasmic reticulum chaperone, GRP170, results in widespread kidney injury and induction of the unfolded protein response (UPR). We now show that sodium supplementation is able to at least partially restore electrolyte imbalance and reduce kidney injury markers in a sex-dependent manner.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah E Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
DiGuilio A, Cheng B, Zhong F, Jha R, Wan Y, Anghel S, Hu H, Shishkova E, Ji Z, Coon JJ, Keenan RJ. The prolyl isomerase FKBP11 is a secretory translocon accessory factor. Mol Biol Cell 2024; 35:ar135. [PMID: 39259761 PMCID: PMC11617091 DOI: 10.1091/mbc.e24-07-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Eukaryotic cells encode thousands of secretory and membrane proteins, many of which are cotranslationally translocated into the endoplasmic reticulum (ER). Nascent polypeptides entering the ER encounter a network of molecular chaperones and enzymes that facilitate their folding. A rate-limiting step for some proteins is the trans-to-cis isomerization of the peptide bond between proline and the residue preceding it. The human ER contains six prolyl isomerases, but the function, organization, and substrate range of these proteins is not clear. Here we show that the metazoan-specific, prolyl isomerase FKBP11 binds to ribosome-translocon complexes (RTCs) in the ER membrane, dependent on its single transmembrane domain and a conserved, positively charged region at its cytosolic C-terminus. High-throughput mRNA sequencing shows selective engagement with ribosomes synthesizing secretory and membrane proteins with long translocated segments, and functional analysis shows reduced stability of two such proteins, EpCAM and PTTG1IP, in cells depleted of FKBP11. We propose that FKBP11 is a translocon accessory factor that acts on a broad range of soluble secretory and transmembrane proteins during their synthesis at the ER.
Collapse
Affiliation(s)
- Amanda DiGuilio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Ben Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roshan Jha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yu Wan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
| | - S. Andrei Anghel
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Hong Hu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53515
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53506
| | - Robert J. Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
10
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
11
|
Mann MJ, Melendez-Suchi C, Vorndran HE, Sukhoplyasova M, Flory AR, Irvine MC, Iyer AR, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum function. Mol Biol Cell 2024; 35:ar59. [PMID: 38446639 PMCID: PMC11064666 DOI: 10.1091/mbc.e24-01-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Chris Melendez-Suchi
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Mary Carson Irvine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Anuradha R. Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|