1
|
Zhang J, Zhuang Y, Feng C, Li X, Chen K, Han L, Wang Y, Zhu X, Yang M, Yin G, Lin J, Zhang X. Inverse design of skull osteoinductive implants with multi-level pore structures through machine learning. J Mater Chem B 2024; 12:9991-10003. [PMID: 39246118 DOI: 10.1039/d4tb01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
How to accurately design a personalized matching implant that can induce skull regeneration is the focus of current research. However, the design space for the porous structure of implants is extensive, and the mapping relationships between these structures and their mechanical and osteogenic properties are complex. At present, the forward design of skull implants mainly relies on expert experience, leading to high cost and a lengthy process, while the existing inverse design approaches face challenges due to data dependence and manufacturing process errors. This study presents an efficient inverse design method for personalized multilevel structures of skull implants using a machine learning pipeline composed of a finite element method, topological optimization, and neural networks. Based on the mechanical response of the human body falls, this method can tailor multi-level structures for implants in various defect positions. The results show that the proposed method establishes a bidirectional relationship between topological parameters and mechanical properties, enabling the customization of mechanical behavior at low computational cost while accounting for manufacturing errors in the 3D printing process. Additionally, the design results are also mutually consistent with analytical relationships between lattice parameters and the elastic modulus obtained from experiments and finite element simulations. Thus, this study provides a general and practical approach to rapidly design skull osteoinductive implants.
Collapse
Affiliation(s)
- Jixin Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yan Zhuang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Cong Feng
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Xiangfeng Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Ke Chen
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Lin Han
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yilei Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xiangdong Zhu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Mingli Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jiangli Lin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Kornfellner E, Reininger S, Geier S, Schwentenwein M, Benca E, Scheiner S, Moscato F. Mechanical properties of additively manufactured lattice structures composed of zirconia and hydroxyapatite ceramics. J Mech Behav Biomed Mater 2024; 158:106644. [PMID: 39088941 DOI: 10.1016/j.jmbbm.2024.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 08/03/2024]
Abstract
Ceramic lattices hold great potential for bone scaffolds to facilitate bone regeneration and integration of native tissue with medical implants. While there have been several studies on additive manufacturing of ceramics and their osseointegrative and osteoconductive properties, there is a lack of a comprehensive examination of their mechanical behavior. Therefore, the aim of this study was to assess the mechanical properties of different additively manufactured ceramic lattice structures under different loading conditions and their overall ability to mimic bone tissue properties. Eleven different lattice structures were designed and manufactured with a porosity of 80% using two materials, hydroxyapatite (HAp) and zirconium dioxide (ZrO2). Six cell-based lattices with cubic and hexagonal base, as well as five Voronoi-based lattices were considered in this study. The samples were manufactured using lithography-based ceramic additive manufacturing and post-processed thermally prior to mechanical testing. Cell-based lattices with cubic and hexagonal base, as well as Voronoi-based lattices were considered in this study. The lattices were tested under four loading conditions: compression, four-point bending, shear and tension. The manufacturing process of the different ceramics leads to different deviations of the lattice geometry, hence, the elastic properties of one structure cannot be directly inferred from one material to another. ZrO2 lattices prove to be stiffer than HAp lattices of the same designed structure. The Young's modulus for compression of ZrO2 lattices ranges from 2 to 30GPa depending on the used lattice design and for HAp 200MPa to 3.8GPa. The expected stability, the load where 63.2% of the samples are expected to be destroyed, of the lattices ranges from 81 to 553MPa and for HAp 6 to 42MPa. For the first time, a comprehensive overview of the mechanical properties of various additively manufactured ceramic lattice structures is provided. This is intended to serve as a reference for designers who would like to expand the design capabilities of ceramic implants that will lead to an advancement in their performance and ability to mimic human bone tissue.
Collapse
Affiliation(s)
- Erik Kornfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Stefan Reininger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Institute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Vienna, Austria
| | | | | | - Emir Benca
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Scheiner
- Institute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
3
|
Bernard AR, Yalçın MM, ElSayed MSA. Crashworthiness Investigations for 3D-Printed Multi-Layer Multi-Topology Engineering Resin Lattice Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4844. [PMID: 39410413 PMCID: PMC11477953 DOI: 10.3390/ma17194844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
In comparison to monolithic materials, cellular solids have superior energy absorption capabilities. Of particular interest within this category are the periodic lattice materials, which offer repeatable and highly customizable behavior, particularly in combination with advances in additive manufacturing technologies. In this paper, the crashworthiness of engineering multi-layer, multi-topology (MLMT) resin lattices is experimentally examined. First, the response of a single- and three-layer single topology cubic and octet lattices, at a relative density of 30%, is investigated. Then, the response of MLMT lattices is characterized and compared to those single-topology lattices. Crashworthiness data were collected for all topology arrangements, finding that while the three-layer cubic and octet lattices were capable of absorbing 9.8 J and 7.8 J, respectively, up to their respective densification points, the unique MLMT lattices were capable of absorbing more: 19.0 J (octet-cube-octet) and 22.4 J (cube-octet-cube). These values are between 94% and 187% greater than the single-topology clusters of the same mass.
Collapse
Affiliation(s)
- Autumn R. Bernard
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.R.B.); (M.S.A.E.)
| | - Muhammet Muaz Yalçın
- Department of Mechanical Engineering, Sakarya University, 54050 Serdivan, Turkey
| | - Mostafa S. A. ElSayed
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.R.B.); (M.S.A.E.)
| |
Collapse
|
4
|
Breish F, Hamm C, Andresen S. Nature's Load-Bearing Design Principles and Their Application in Engineering: A Review. Biomimetics (Basel) 2024; 9:545. [PMID: 39329566 PMCID: PMC11430629 DOI: 10.3390/biomimetics9090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Biological structures optimized through natural selection provide valuable insights for engineering load-bearing components. This paper reviews six key strategies evolved in nature for efficient mechanical load handling: hierarchically structured composites, cellular structures, functional gradients, hard shell-soft core architectures, form follows function, and robust geometric shapes. The paper also discusses recent research that applies these strategies to engineering design, demonstrating their effectiveness in advancing technical solutions. The challenges of translating nature's designs into engineering applications are addressed, with a focus on how advancements in computational methods, particularly artificial intelligence, are accelerating this process. The need for further development in innovative material characterization techniques, efficient modeling approaches for heterogeneous media, multi-criteria structural optimization methods, and advanced manufacturing techniques capable of achieving enhanced control across multiple scales is underscored. By highlighting nature's holistic approach to designing functional components, this paper advocates for adopting a similarly comprehensive methodology in engineering practices to shape the next generation of load-bearing technical components.
Collapse
Affiliation(s)
- Firas Breish
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Christian Hamm
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Simone Andresen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| |
Collapse
|
5
|
Zhu A, Gao S, Huang L, Chen H, Zhang Q, Sun D, Gu Y. Effects of Fatigue and Unanticipated Factors on Knee Joint Biomechanics in Female Basketball Players during Cutting. SENSORS (BASEL, SWITZERLAND) 2024; 24:4759. [PMID: 39066155 PMCID: PMC11280919 DOI: 10.3390/s24144759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
(1) This study examined the impact of fatigue and unanticipated factors on knee biomechanics during sidestep cutting and lateral shuffling in female basketball players, assessing the potential for non-contact anterior cruciate ligament (ACL) injuries. (2) Twenty-four female basketball players underwent fatigue induction and unanticipated change of direction tests, and kinematic and kinetic parameters were collected before and after fatigue with a Vicon motion capture system and Kistler ground reaction force (GRF) sensor. (3) Analysis using two-way repeated-measures ANOVA showed no significant interaction between fatigue and unanticipated factors on joint kinematics and kinetics. Unanticipated conditions significantly increased the knee joint flexion and extension angle (p < 0.01), decreased the knee flexion moment under anticipated conditions, and increased the knee valgus moment after fatigue (p ≤ 0.05). One-dimensional statistical parametric mapping (SPM1d) results indicated significant differences in GRF during sidestep cutting and knee inversion and rotation moments during lateral shuffling post-fatigue. (4) Unanticipated factors had a greater impact on knee load patterns, raising ACL injury risk. Fatigue and unanticipated factors were independent risk factors and should be considered separately in training programs to prevent lower limb injuries.
Collapse
Affiliation(s)
- Aojie Zhu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (A.Z.); (S.G.); (L.H.)
| | - Shunxiang Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (A.Z.); (S.G.); (L.H.)
| | - Li Huang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (A.Z.); (S.G.); (L.H.)
| | - Hairong Chen
- Doctoral School on Safety and Security Sciences, Óbuda University, 1034 Budapest, Hungary; (H.C.); (Q.Z.)
- Faculty of Engineering, University of Szeged, 6724 Szeged, Hungary
| | - Qiaolin Zhang
- Doctoral School on Safety and Security Sciences, Óbuda University, 1034 Budapest, Hungary; (H.C.); (Q.Z.)
- Faculty of Engineering, University of Szeged, 6724 Szeged, Hungary
| | - Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (A.Z.); (S.G.); (L.H.)
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (A.Z.); (S.G.); (L.H.)
| |
Collapse
|
6
|
Arsentev M, Topalov E, Balabanov S, Sysoev E, Shulga I, Akhmatnabiev M, Sychov M, Skorb E, Nosonovsky M. Crystal-Inspired Cellular Metamaterials and Triply Periodic Minimal Surfaces. Biomimetics (Basel) 2024; 9:285. [PMID: 38786495 PMCID: PMC11117830 DOI: 10.3390/biomimetics9050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Triply periodic minimal surfaces (TPMSs) are found in many natural objects including butterfly wings, sea urchins, and biological membranes. They simultaneously have zero mean curvature at every point and a crystallographic group symmetry. A metamaterial can be created from such periodic surfaces or used as a reinforcement of a composite material. While a TPMS as a mathematical object has been known since 1865, only novel additive manufacturing (AM) technology made it possible to fabricate cellular materials with complex TPMS shapes. Cellular TPMS-based metamaterials have remarkable properties related to wetting/liquid penetration, shock absorption, and the absence of stress concentrators. Recent studies showed that TPMSs are also found in natural crystals when electron surfaces are considered. Artificial crystal-inspired metamaterials mimic such crystals including zeolites and schwarzites. These metamaterials are used for shock, acoustic waves, and vibration absorption, and as structural materials, heat exchangers, and for other applications. The choice of the crystalline cell of a material, as well as its microstructure, plays a decisive role in its properties. The new area of crystal-inspired materials has many common features with traditional biomimetics with models being borrowed from nature and adjusted for engineering applications.
Collapse
Affiliation(s)
- Maxim Arsentev
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St. Petersburg 191002, Russia; (M.A.); (E.S.)
| | - Eduard Topalov
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St. Petersburg 191002, Russia; (M.A.); (E.S.)
| | - Sergey Balabanov
- Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia (I.S.); (M.A.); (M.S.)
| | - Evgenii Sysoev
- Department of Micro- and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, Professor Popov Str. 5, St. Petersburg 197376, Russia
| | - Igor Shulga
- Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia (I.S.); (M.A.); (M.S.)
| | - Marsel Akhmatnabiev
- Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia (I.S.); (M.A.); (M.S.)
| | - Maxim Sychov
- Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia (I.S.); (M.A.); (M.S.)
| | - Ekaterina Skorb
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St. Petersburg 191002, Russia; (M.A.); (E.S.)
| | - Michael Nosonovsky
- Infochemistry Scientific Center (ISC), ITMO University, 9 Lomonosova St., St. Petersburg 191002, Russia; (M.A.); (E.S.)
- College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
7
|
Bernard AR, ElSayed MSA. Design, Manufacturing, and Analysis of Periodic Three-Dimensional Cellular Materials for Energy Absorption Applications: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2181. [PMID: 38793248 PMCID: PMC11122817 DOI: 10.3390/ma17102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Cellular materials offer industries the ability to close gaps in the material selection design space with properties not otherwise achievable by bulk, monolithic counterparts. Their superior specific strength, stiffness, and energy absorption, as well as their multi-functionality, makes them desirable for a wide range of applications. The objective of this paper is to compile and present a review of the open literature focusing on the energy absorption of periodic three-dimensional cellular materials. The review begins with the methodical cataloging of qualitative and quantitative elements from 100 papers in the available literature and then provides readers with a thorough overview of the state of this research field, discussing areas such as parent material(s), manufacturing methods, cell topologies, cross-section shapes for truss topologies, analysis methods, loading types, and test strain rates. Based on these collected data, areas of great and limited research are identified and future avenues of interest are suggested for the continued maturation and growth of this field, such as the development of a consistent naming and classification system for topologies; the creation of test standards considering additive manufacturing processes; further investigation of non-uniform and non-cylindrical struts on the performance of truss lattices; and further investigation into the performance of lattice materials under the impact of non-flat surfaces and projectiles. Finally, the numerical energy absorption (by mass and by volume) data of 76 papers are presented across multiple property selection charts, highlighting various materials, manufacturing methods, and topology groups. While there are noticeable differences at certain densities, the graphs show that the categorical differences within those groups have large overlap in terms of energy absorption performance and can be referenced to identify areas for further investigation and to help in the preliminary design process by researchers and industry professionals alike.
Collapse
Affiliation(s)
| | - Mostafa S. A. ElSayed
- Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Misra RDK, Misra KP. Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:630-640. [PMID: 37933821 DOI: 10.1080/21691401.2023.2278156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys via electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.
Collapse
Affiliation(s)
- R D K Misra
- Department of Metallurgical, Materials and Biomedical Engineering and Biomedical and Biomaterials Research Laboratory, Center for Structural and Functional Materials, University of Texas at El Paso, El Paso, Texas, USA
| | - K P Misra
- Department of Physics, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Gao H, Yang J, Jin X, Zhang D, Zhang S, Zhang F, Chen H. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:887-904. [PMID: 37886405 PMCID: PMC10599431 DOI: 10.1089/3dp.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Porous tantalum (Ta) scaffolds have been extensively used in the clinic for reconstructing bone tissues owing to their outstanding corrosion resistance, biocompatibility, osteointegration, osteoconductivity, and mechanical properties. Additive manufacturing (AM) has an advantage in fabricating patient-specific and anatomical-shape-matching bone implants with controllable and well-designed porous architectures through tissue engineering. The sharp angles of strut joints in porous structures can cause stress concentration, reducing mechanical properties of the structures. In this study, porous Ta scaffolds comprising rhombic dodecahedron lattice unit cells with optimized node radius and porosities of 65%, 75%, and 85% were designed and fabricated by AM. The porous architecture and microstructure were characterized. The compressive behavior and failure mechanism of the material were explored through experimental compression tests and finite element analysis (FEA). Morphological evaluations revealed that the Ta scaffolds are fully interconnected, and the struts are dense. No processing defects and fractures were observed on the surface of struts. The scaffolds exhibited compressive yield strength of 5.8-32.3 MPa and elastic modulus of 0.6-4.5 GPa, comparable to those of human cancellous and trabecular bone. The compressive stress-strain curves of all samples show ductile deformation behavior accompanied by a smooth plateau region. The AM-fabricated rhombic dodecahedron lattice Ta scaffolds exhibited excellent ductility and mechanical reliability and plastic failure due to bending deformation under compressive loading. Deformation and factures primarily occurred at the junctions of the rhombus-arranged struts in the longitudinal section. Moreover, the struts in the middle of the scaffolds underwent a larger deformation than those close to the loading ends. FEA revealed a smooth stress distribution on the rhombic dodecahedron lattice structure with optimized node radius and stress concentration at the junctions of rhombus-arranged struts in the longitudinal section, which is in good agreement with the experimental results. Thus, the AM-fabricated Ta scaffolds with optimized node radius are promising alternatives for bone repair and regeneration.
Collapse
Affiliation(s)
- Hairui Gao
- School of Mechanical & Automobile Engineering, Qingdao University of Technology, Qingdao, P.R. China
| | - Jingzhou Yang
- School of Mechanical & Automobile Engineering, Qingdao University of Technology, Qingdao, P.R. China
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, P.R. China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, P.R. China
| | - Xia Jin
- School of Mechanical & Automobile Engineering, Qingdao University of Technology, Qingdao, P.R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, P.R. China
| | - Dachen Zhang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, P.R. China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, P.R. China
| | - Shupei Zhang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, P.R. China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, P.R. China
| | - Faqiang Zhang
- School of Mechanical & Automobile Engineering, Qingdao University of Technology, Qingdao, P.R. China
| | - Haishen Chen
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, P.R. China
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding, P.R. China
| |
Collapse
|
10
|
Nemes-Károly I, Szebényi G. Reliable Methods for Classification, Characterization, and Design of Cellular Structures for Patient-Specific Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114146. [PMID: 37297280 DOI: 10.3390/ma16114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
In our research, our goal was to develop a characterization method that can be universally applied to periodic cell structures. Our work involved the accurate tuning of the stiffness properties of cellular structure components that can significantly reduce the number of revision surgeries. Up to date porous, cellular structures provide the best possible osseointegration, while stress shielding and micromovements at the bone-implant interface can be reduced by implants with elastic properties equivalent to bone tissue. Furthermore, it is possible to store a drug inside implants with a cellular structure, for which we have also prepared a viable model. In the literature, there is currently no established uniform stiffness sizing procedure for periodic cellular structures but also no uniform designation to identify the structures. A uniform marking system for cellular structures was proposed. We developed a multi-step exact stiffness design and validation methodology. The method consists of a combination of FE (Finite Element) simulations and mechanical compression tests with fine strain measurement, which are finally used to accurately set the stiffness of components. We succeeded in reducing the stiffness of test specimens designed by us to a level equivalent to that of bone (7-30 GPa), and all of this was also validated with FE simulation.
Collapse
Affiliation(s)
- István Nemes-Károly
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Szebényi
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Lendület Lightweight Polymer Composites Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
11
|
Bellini C, Borrelli R, Di Caprio F, Di Cocco V, Franchitti S, Iacoviello F, Sorrentino L. An Innovative Method to Analyse the Geometrical Accuracy of Ti6Al4V Octet-Truss Lattice Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2372. [PMID: 36984252 PMCID: PMC10054826 DOI: 10.3390/ma16062372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Metal lattice structures manufactured utilising additive techniques are attracting increasing attention thanks to the high structural efficiency they can offer. Although many studies exist on the characterisation of massive parts in Ti6Al4V processed by Electron Beam Melting (EBM), several investigations are necessary to characterise the Ti6Al4V lattice structures made by the EBM process. The objective of this paper is to develop a measurement method to assess the dimensional accuracy of Ti6Al4V octet truss lattice structures manufactured by EBM technology. Beam specimens with a 2 mm diameter and different growth orientations with respect to the build direction were analysed. The geometry differences between the designed and the manufactured beam specimens were highlighted. Two effects were identified: (i) The EBM-manufactured beams are generally thinner than the designed ones, and (ii) the shape of the section was found to be almost circular for the beam specimens oriented at 45° and 90°; on the contrary, the section of the horizontal beam (0°) cannot be considered circular.
Collapse
Affiliation(s)
- Costanzo Bellini
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, FR, Italy
| | - Rosario Borrelli
- CIRA—Italian Aerospace Research Centre, Via Maiorise, snc, 81043 Capua, CE, Italy
| | - Francesco Di Caprio
- CIRA—Italian Aerospace Research Centre, Via Maiorise, snc, 81043 Capua, CE, Italy
| | - Vittorio Di Cocco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, FR, Italy
| | - Stefania Franchitti
- CIRA—Italian Aerospace Research Centre, Via Maiorise, snc, 81043 Capua, CE, Italy
| | - Francesco Iacoviello
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, FR, Italy
| | - Luca Sorrentino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, FR, Italy
| |
Collapse
|
12
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
13
|
Kharin N, Bolshakov P, Kuchumov AG. Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:744. [PMID: 36676480 PMCID: PMC9864782 DOI: 10.3390/ma16020744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Prosthetic reconstructions provide anatomical reconstruction to replace bones and joints. However, these operations have a high number of short- and long-term complications. One of the main problems in surgery is that the implant remains in the body after the operation. The solution to this problem is to use biomaterial for the implant, but biomaterial does not have the required strength characteristics. The implant must also have a mesh-like structure so that the bone can grow into the implant. The additive manufacturing process is ideal for the production of such a structure. The study deals with the correlation between different prosthetic structures, namely, the relationship between geometry, mechanical properties and biological additivity. The main challenge is to design an endoprosthesis that will mimic the geometric structure of bone and also meet the conditions of strength, hardness and stiffness. In order to match the above factors, it is necessary to develop appropriate algorithms. The main objective of this study is to augment the algorithm to ensure minimum structural weight without changing the strength characteristics of the lattice endoprosthesis of long bones. The iterative augmentation process of the algorithm was implemented by removing low-loaded ribs. A low-loaded rib is a rib with a maximum stress that is less than the threshold stress. Values within the range (10, 13, 15, 16, 17, 18, 19 and 20 MPa) were taken as the threshold stress. The supplement to the algorithm was applied to the initial structure and the designed structure at threshold stresses σf = 10, 13, 15, 16, 17, 18, 19 and 20 MPa. A Pareto diagram for maximum stress and the number of ribs is plotted for all cases of the design: original, engineered and lightened structures. The most optimal was the designed "lightweight" structure under the condition σf = 17 MPa. The maximum stress was 147.48 MPa, and the number of ribs was 741. Specimens were manufactured using additive manufacturing and then tested for four-point bending.
Collapse
Affiliation(s)
- Nikita Kharin
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia
| | - Pavel Bolshakov
- Department Machines Science and Engineering Graphics, Tupolev Kazan National Research Technical University, 420111 Kazan, Russia
| | - Alex G. Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia
| |
Collapse
|
14
|
Zhang J, Yan Y, Li B. Selective Laser Melting (SLM) Additively Manufactured CoCrFeNiMn High-Entropy Alloy: Process Optimization, Microscale Mechanical Mechanism, and High-Cycle Fatigue Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238560. [PMID: 36500055 PMCID: PMC9736672 DOI: 10.3390/ma15238560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/12/2023]
Abstract
The equiatomic CoCrFeNiMn high-entropy alloy (HEA) possesses excellent properties including exceptional strength-ductility synergy, high corrosion resistance, and good thermal stability. Selective laser melting (SLM) additive manufacturing facilitates the convenient fabrication of the CoCrFeNiMn HEA parts with complex geometries. Here, the SLM process optimization was conducted to achieve a high relative density of as-built CoCrFeNiMn HEA bulks. The mechanisms of process-induced defects and process control were elucidated. The microscale mechanical behaviors were analyzed through in situ scanning electron microscopy observation during the compression tests on micro-pillars of the as-built HEA. The stress-strain characteristics by repeated slip and mechanism of "dislocation avalanche" during the compression of micro-pillars were discussed. The high-cycle fatigue tests of the as-built HEA were performed. It was found that a large number of nano-twins were induced by the fatigue, causing a non-negligible cycle softening phenomenon. The effects of promoted ductility due to the fatigue-induced nano-twins were illustrated. This work has some significance for the engineering application of the SLM additively manufactured CoCrFeNiMn HEA parts.
Collapse
Affiliation(s)
- Jianrui Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yabin Yan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for High-End Equipment Reliability, Shanghai 200237, China
| |
Collapse
|
15
|
Yu Z, Thakolkaran P, Shea K, Stanković T. Artificial neural network supported design of a lattice-based artificial spinal disc for restoring patient-specific anisotropic behaviors. Comput Biol Med 2022. [DOI: 10.1016/j.compbiomed.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kulcsár K, Buzgo M, Costa PF, Zsoldos I. Optimal microstructure and mechanical properties of open-cell porous titanium structures produced by selective laser melting. Front Bioeng Biotechnol 2022; 10:1022310. [PMID: 36267452 PMCID: PMC9578010 DOI: 10.3389/fbioe.2022.1022310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Three-dimensional printing technology enables the production of open cell porous structures. This has advantages but not only in terms of weight reduction. In implant structures, the process of osseointegration is improved, mechanical integration is better, the open cell porous structures resemble a trabecular structure that mimics bone tissue. In this work, we investigated titanium structures made porous by cutting spheres. Based on the patterns of different types of crystal models we created porosity with different strategies. We have shown that there are significant differences in mechanical properties between the porous structures formed with different strategies. We determined the structure that loses the least load-bearing capacity compared to the solid structure, with the same porosity levels and mechanical stresses. We characterized the possibility location and environment of becoming an open cell structure. We performed the calculations with mechanical simulations, which were validated experimentally. The quality of the three-dimensional printing of samples was checked by computed tomography reconstruction analysis.
Collapse
Affiliation(s)
- Klaudia Kulcsár
- Department of Materials Science and Technology, Szechenyi Istvan University, Gyor, Hungary
- Dent-Art Teknik Ltd., Gyor, Hungary
| | | | | | - Ibolya Zsoldos
- Department of Materials Science and Technology, Szechenyi Istvan University, Gyor, Hungary
- *Correspondence: Ibolya Zsoldos,
| |
Collapse
|
18
|
Jenkins D, Salhadar K, Ashby G, Mishra A, Cheshire J, Beltran F, Grunlan M, Andrieux S, Stubenrauch C, Cosgriff-Hernandez E. PoreScript: Semi-automated pore size algorithm for scaffold characterization. Bioact Mater 2022; 13:1-8. [PMID: 35224287 PMCID: PMC8843970 DOI: 10.1016/j.bioactmat.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
The scaffold pore size influences many critical physical aspects of tissue engineering, including tissue infiltration, biodegradation rate, and mechanical properties. Manual measurements of pore sizes from scanning electron micrographs using ImageJ/FIJI are commonly used to characterize scaffolds, but these methods are both time-consuming and subject to user bias. Current semi-automated analysis tools are limited by a lack of accessibility or limited sample size in their verification process. The work here describes the development of a new MATLAB algorithm, PoreScript, to address these limitations. The algorithm was verified using three common scaffold fabrication methods (e.g., salt leaching, gas foaming, emulsion templating) with varying pore sizes and shapes to demonstrate the versatility of this new tool. Our results demonstrate that the pore size characterization using PoreScript is comparable to manual pore size measurements. The PoreScript algorithm was further evaluated to determine the effect of user-input and image parameters (relative image magnification, pixel intensity threshold, and pore structure). Overall, this work validates the accuracy of the PoreScript algorithm across several fabrication methods and provides user-guidance for semi-automated image analysis and increased throughput of scaffold characterization. PoreScript is a semi-automated MATLAB algorithm to rapidly and accurately characterize scaffold pore size distribution. PoreScript was validated with multiple polymeric scaffolds of different fabrication methods and pore architectures. Guidance of key input variables provides users with a tool for rapid characterization to accelerate scaffold development.
Collapse
|
19
|
Graul LM, Liu S, Maitland DJ. Theoretical error of sectional method for estimation of shape memory polyurethane foam mass loss. J Colloid Interface Sci 2022; 625:237-247. [PMID: 35716618 DOI: 10.1016/j.jcis.2022.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Measuring in vivo degradation for polymeric scaffolds is critical for analysis of biocompatibility. Traditionally, histology has been used to estimate mass loss in scaffolds, allowing for simultaneous evaluation of mass loss and the biologic response to the implant. Oxidatively degradable shape memory polyurethane (SMP) foams have been implemented in two vascular occlusion devices: peripheral embolization device (PED) and neurovascular embolization device (NED). This work explores the errors introduced when using histological sections to evaluate mass loss. METHODS Models of the SMP foams were created to mimic the device geometry and the tetrakaidekahedral structure of the foam pore. These models were degraded in Blender for a wide range of possible degradation amounts and the mass loss was estimated using m sections. RESULTS As the number of sections (m) used to estimate mass loss for a volume increased the sampling error decreased and beyond m = 5, the decrease in error was insignificant. NED population and sampling errors were higher than for PED scenarios. When m ≥ 5, the averaged sampling error was below 1.5% for NED and 1% for PED scenarios. DISCUSSION/CONCLUSION This study establishes a baseline sampling error for estimating randomly degraded porous scaffolds using a sectional method. Device geometry and the stage of mass loss influence the sampling error. Future studies will use non-random degradation to further investigate in vivo mass loss scenarios.
Collapse
Affiliation(s)
- Lance M Graul
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Shuling Liu
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
20
|
Gao X, Zhao Y, Wang M, Liu Z, Liu C. Parametric Design of Hip Implant With Gradient Porous Structure. Front Bioeng Biotechnol 2022; 10:850184. [PMID: 35651549 PMCID: PMC9150022 DOI: 10.3389/fbioe.2022.850184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Patients who has been implanted with hip implant usually undergo revision surgery. The reason is that high stiff implants would cause non-physiological distribution loadings, which is also known as stress shielding, and finally lead to bone loss and aseptic loosening. Titanium implants are widely used in human bone tissues; however, the subsequent elastic modulus mismatch problem has become increasingly serious, and can lead to stress-shielding effects. This study aimed to develop a parametric design methodology of porous titanium alloy hip implant with gradient elastic modulus, and mitigate the stress-shielding effect. Four independent adjustable dimensions of the porous structure were parametrically designed, and the Kriging algorithm was used to establish the mapping relationship between the four adjustable dimensions and the porosity, surface-to-volume ratio, and elastic modulus. Moreover, the equivalent stress on the surface of the femur was optimized by response surface methodology, and the optimal gradient elastic modulus of the implant was obtained. Finally, through the Kriging approximation model and optimization results of the finite element method, the dimensions of each segment of the porous structure that could effectively mitigate the stress-shielding effect were determined. Experimental results demonstrated that the parameterized design method of the porous implant with gradient elastic modulus proposed in this study increased the strain value on the femoral surface by 17.1% on average. Consequently, the stress-shielding effect of the femoral tissue induced by the titanium alloy implant was effectively mitigated.
Collapse
Affiliation(s)
- Xiangsheng Gao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.,Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Yuhang Zhao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Ziyu Liu
- Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| |
Collapse
|
21
|
Karaman D, Ghahramanzadeh Asl H. Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis. Proc Inst Mech Eng H 2022; 236:794-810. [DOI: 10.1177/09544119221091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scaffolds provide a suitable environment for the bone tissue to maintain its self-healing ability and help new bone-cell formation by creating structures with similar mechanical properties to the surrounding tissue. In the modeling of the scaffolds, an optimum environment is tried to be provided by changing the geometrical properties of the cell architecture such as porosity, pore size, and specific surface area. For this purpose, different design approaches have been used in studies to change these properties. This study aims to determine whether scaffolds with similar porosities modeled by different design approaches exhibit distinct biomechanical behaviors or not. By using the Diamond lattice architecture, two different design approaches were constituted. The first approach has constant wall thickness and variable cell size, whereas the second approach contains variable wall thickness and constant cell size. The usage of different design approaches affected the amount of specific surface area in models with similar porosity. Mechanical compression tests were conducted via finite element analysis, while the permeability performance of configurations with similar porosities (50%, 60%, 70%, 80%, and 90%) was evaluated by using computational fluid dynamics. The mechanical results revealed that the structural strength decreased with increasing porosity. Since their higher specific surface area causes lower pressure drops, the second group exhibits better permeability. In addition, it was found that to evaluate the wall shear stresses occurring on the scaffold surfaces properly, it is essential to consider the stress distributions within the scaffold rather than the maximum values.
Collapse
Affiliation(s)
- Derya Karaman
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Hojjat Ghahramanzadeh Asl
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
22
|
Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A. Experimental Validation and Evaluation of the Bending Properties of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3447. [PMID: 35629475 PMCID: PMC9143386 DOI: 10.3390/ma15103447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
The availability of additive manufacturing enables the fabrication of cellular bone tissue engineering scaffolds with a wide range of structural and architectural possibilities. The purpose of bone tissue engineering scaffolds is to repair critical size bone defects due to extreme traumas, tumors, or infections. This research study presented the experimental validation and evaluation of the bending properties of optimized bone scaffolds with an elastic modulus that is equivalent to the young's modulus of the cortical bone. The specimens were manufactured using laser powder bed fusion technology. The morphological properties of the manufactured specimens were evaluated using both dry weighing and Archimedes techniques, and minor variations in the relative densities were observed in comparison with the computer-aided design files. The bending modulus of the cubic and diagonal scaffolds were experimentally investigated using a three-point bending test, and the results were found to agree with the numerical findings. A higher bending modulus was observed in the diagonal scaffold design. The diagonal scaffold was substantially tougher, with considerably higher energy absorption before fracture. The shear modulus of the diagonal scaffold was observed to be significantly higher than the cubic scaffold. Due to bending, the pores at the top side of the diagonal scaffold were heavily compressed compared to the cubic scaffold due to the extensive plastic deformation occurring in diagonal scaffolds and the rapid fracture of struts in the tension side of the cubic scaffold. The failure in struts in tension showed signs of ductility as necking was observed in fractured struts. Moreover, the fractured surface was observed to be rough and dull as opposed to being smooth and bright like in brittle fractures. Dimple fracture was observed using scanning electron microscopy as a result of microvoids emerging in places of high localized plastic deformation. Finally, a comparison of the mechanical properties of the studied BTE scaffolds with the cortical bone properties under longitudinal and transverse loading was investigated. In conclusion, we showed the capabilities of finite element analysis and additive manufacturing in designing and manufacturing promising scaffold designs that can replace bone segments in the human body.
Collapse
Affiliation(s)
- Mohammad O. Al-Barqawi
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| | - Benjamin Church
- Department of Material Science and Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| | - Mythili Thevamaran
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Dan J. Thoma
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Adeeb Rahman
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| |
Collapse
|
23
|
Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A. Design and Validation of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering. MATERIALS 2022; 15:ma15093310. [PMID: 35591643 PMCID: PMC9100147 DOI: 10.3390/ma15093310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Bone-related defects that cannot heal without significant surgical intervention represent a significant challenge in the orthopedic field. The use of implants for these critical-sized bone defects is being explored to address the limitations of autograft and allograft options. Three-dimensional cellular structures, or bone scaffolds, provide mechanical support and promote bone tissue formation by acting as a template for bone growth. Stress shielding in bones is the reduction in bone density caused by the difference in stiffness between the scaffold and the surrounding bone tissue. This study aimed to reduce the stress shielding and introduce a cellular metal structure to replace defected bone by designing and producing a numerically optimized bone scaffold with an elastic modulus of 15 GPa, which matches the human’s cortical bone modulus. Cubic cell and diagonal cell designs were explored. Strut and cell dimensions were numerically optimized to achieve the desired structural modulus. The resulting scaffold designs were produced from stainless steel using laser powder bed fusion (LPBF). Finite element analysis (FEA) models were validated through compression testing of the printed scaffold designs. The structural configuration of the scaffolds was characterized with scanning electron microscopy (SEM). Cellular struts were found to have minimal internal porosity and rough surfaces. Strut dimensions of the printed scaffolds were found to have variations with the optimized computer-aided design (CAD) models. The experimental results, as expected, were slightly less than FEA results due to structural relative density variations in the scaffolds. Failure of the structures was stretch-dominated for the cubic scaffold and bending-dominated for the diagonal scaffold. The torsional and bending stiffnesses were numerically evaluated and showed higher bending and torsional moduli for the diagonal scaffold. The study successfully contributed to minimizing stress shielding in bone tissue engineering. The study also produced an innovative metal cellular structure that can replace large bone segments anywhere in the human body.
Collapse
Affiliation(s)
- Mohammad O. Al-Barqawi
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
- Correspondence:
| | - Benjamin Church
- Department of Material Science and Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| | - Mythili Thevamaran
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Dan J. Thoma
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Adeeb Rahman
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| |
Collapse
|
24
|
Numerical Modeling and Experimental Investigation of Effective Elastic Properties of the 3D Printed Gyroid Infill. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A numerical homogenization approach is presented for the effective elastic moduli of 3D printed cellular infills. A representative volume element of the infill geometry is discretized using either shell or solid elements and analyzed using the finite element method. The elastic moduli of the bulk cellular material are obtained through longitudinal and shear deformations of a representative volume element under periodic boundary conditions. The method is used to analyze the elastic behavior of gyroid infills for varying infill densities. The approach is validated by comparing the Young’s modulus and Poisson’s ratio with those obtained from compression experiments. Results indicate that although the gyroid infill exhibits cubic symmetry, it is nearly isotropic with a low anisotropy index. The numerical predictions are used to develop semi-empirical equations of the effective elastic moduli of gyroid infills as a function of infill density in order to inform design and topology optimization workflows.
Collapse
|
25
|
Multi-Physics Inverse Homogenization for the Design of Innovative Cellular Materials: Application to Thermo-Elastic Problems. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2022. [DOI: 10.3390/mca27010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a new algorithm to design lightweight cellular materials with required properties in a multi-physics context. In particular, we focus on a thermo-elastic setting by promoting the design of unit cells characterized both by an isotropic and an anisotropic behavior with respect to mechanical and thermal requirements. The proposed procedure generalizes the microSIMPATY algorithm to a thermo-elastic framework by preserving all the good properties of the reference design methodology. The resulting layouts exhibit non-standard topologies and are characterized by very sharp contours, thus limiting the post-processing before manufacturing. The new cellular materials are compared with the state-of-art in engineering practice in terms of thermo-elastic properties, thus highlighting the good performance of the new layouts which, in some cases, outperform the consolidated choices.
Collapse
|
26
|
Ciliveri S, Bandyopadhyay A. Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. J Mech Behav Biomed Mater 2022; 126:105023. [PMID: 34999490 PMCID: PMC8792312 DOI: 10.1016/j.jmbbm.2021.105023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Mechanical properties of porous metal coatings in load-bearing implants play a critical role in determining the in vivo lifetime. However, there is a knowledge gap in measuring the shear strength of porous metal coatings at the porous-dense interface. This study evaluated pore morphology dependence and strut-size on compression, shear deformation, and in vitro response of additively manufactured porous Ti6Al4V structures. Selective laser melting (SLM)-based additive manufacturing (AM) technique was used to process two types of structures with honeycomb cell design-one with constant cell-size of ∼470 μm with mean strut-size varying from 92 to 134 μm, and denoted as strut-size variation (SSV); and the other with a constant strut-size of ∼135 μm with mean cell-size varying from 580 to 740 μm, denoted as cell-size variation (CSV). It was observed that under compressive loading, changes in elastic modulus were more sensitive to variations in strut-size over cell-size. Under shear loading at the porous-dense interface, strength enhancement and material hardening were observed in both SSV and CSV samples due to pore-collapsing. Our results show that for hexagonal cell designs, shear behavior is more sensitive to variations in cell-size over strut-size, although elastic modulus is more sensitive to changes in strut-size for porous metallic structures. From in vitro hFOB analysis, it was observed that pore size of 670 μm demonstrated the highest osteoblast cell viability among porous structures with evidence of pore-bridging by cells. P. aeruginosa bacterial culture showed that bacterial cell viability was higher for porous structures than dense Ti, with evidence of pore-bridging by bacterial cells.
Collapse
|
27
|
Huang G, Pan ST, Qiu JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces 2021; 210:112229. [PMID: 34875470 DOI: 10.1016/j.colsurfb.2021.112229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
Porous scaffolds have long been regarded as optimal substitute for bone tissue repairing. In order to explore the influence of unit cell structure and inherent material characteristics on the porous scaffolds in terms of mechanical and biological performance, selective laser melting (SLM) technology was used to fabricate porous tantalum (Ta) and titanium alloy (Ti6Al4V) with diamond (Di) or rhombic dodecahedron (Do) unit cell structure. The mechanical strength of all the porous scaffolds could match that of trabecular bone, while the biological performance of each scaffold was diverse from each other. Moreover, the ILK/ERK1/2/Runx2 signaling pathway had been verified to be involved in the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) cultured on those porous scaffolds. Unit cell structure and material characteristics of the porous Ta and Ti6Al4V scaffolds can synergistically modulate this axis and further impact on the osteogenic effects. Our results hence illustrate that porous Ta scaffold with diamond unit cell structure possesses excellent osteogenic effects and moderate mechanical strength and porous Ti6Al4V scaffold with rhombic dodecahedron unit cell structure has the highest mechanical strength and moderate osteogenic effects. Both porous Ta and Ti6Al4V can be applied in different settings requiring either better biological performance or higher mechanical demand.
Collapse
Affiliation(s)
- Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
28
|
Trunk S, Brix A, Freund H. Development and evaluation of a new particle tracking solver for hydrodynamic and mass transport characterization of porous media – A case study on periodic open cellular structures. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Huo Y, Lu Y, Meng L, Wu J, Gong T, Zou J, Bosiakov S, Cheng L. A Critical Review on the Design, Manufacturing and Assessment of the Bone Scaffold for Large Bone Defects. Front Bioeng Biotechnol 2021; 9:753715. [PMID: 34722480 PMCID: PMC8551667 DOI: 10.3389/fbioe.2021.753715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.
Collapse
Affiliation(s)
- Yi Huo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Lingfei Meng
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jiongyi Wu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Tingxiang Gong
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jia’ao Zou
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarus State University, Minsk, Belarus
| | - Liangliang Cheng
- Department of Orthopeadics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
30
|
Bolshakov P, Kharin N, Kashapov R, Sachenkov O. Structural Design Method for Constructions: Simulation, Manufacturing and Experiment. MATERIALS 2021; 14:ma14206064. [PMID: 34683671 PMCID: PMC8540678 DOI: 10.3390/ma14206064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
The development of additive manufacturing technology leads to new concepts for design implants and prostheses. The necessity of such approaches is fueled by patient-oriented medicine. Such a concept involves a new way of understanding material and includes complex structural geometry, lattice constructions, and metamaterials. This leads to new design concepts. In the article, the structural design method is presented. The general approach is based on the separation of the micro- and macro-mechanical parameters. For this purpose, the investigated region as a complex of the basic cells was considered. Each basic cell can be described by a parameters vector. An initializing vector was introduced to control the changes in the parameters vector. Changing the parameters vector according to the stress-strain state and the initializing vector leads to changes in the basic cells and consequently to changes in the microarchitecture. A medium with a spheroidal pore was considered as a basic cell. Porosity and ellipticity were used for the parameters vector. The initializing vector was initialized and depended on maximum von Mises stress. A sample was designed according to the proposed method. Then, solid and structurally designed samples were produced by additive manufacturing technology. The samples were scanned by computer tomography and then tested by structural loads. The results and analyses were presented.
Collapse
Affiliation(s)
- Pavel Bolshakov
- Department Machines Science and Engineering Graphics, Tupolev Kazan National Research Technical University, 420111 Kazan, Russia;
| | - Nikita Kharin
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia;
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia;
| | - Ramil Kashapov
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia;
| | - Oskar Sachenkov
- Department Machines Science and Engineering Graphics, Tupolev Kazan National Research Technical University, 420111 Kazan, Russia;
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia;
- Correspondence:
| |
Collapse
|
31
|
Simulated tissue growth in tetragonal lattices with mechanical stiffness tuned for bone tissue engineering. Comput Biol Med 2021; 138:104913. [PMID: 34619409 DOI: 10.1016/j.compbiomed.2021.104913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
Bone tissue engineering approaches have recently begun considering 3D printed lattices as viable scaffold solutions due to their highly tunable geometries and mechanical efficiency. However, scaffold design remains challenging due to the numerous biological and mechanical trade-offs related to lattice geometry. Here, we investigate novel tetragonal unit cell designs by independently adjusting unit cell height and width to find scaffolds with improved tissue growth while maintaining suitable scaffold mechanical properties for bone tissue engineering. Lattice tissue growth behavior is evaluated using a curvature-based growth model while elastic modulus is evaluated with finite element analysis. Computationally efficient modeling approaches are implemented to facilitate bulk analysis of lattice design trade-offs using design maps for biological and mechanical functionalities in relation to unit cell height and width for two contrasting unit cell topologies. Newly designed tetragonal lattices demonstrate higher tissue growth per unit volume and advantageous stiffness in preferred directions compared to cubically symmetric unit cells. When lattice beam diameter is fixed to 200 μm, Tetra and BC-Tetra lattices with elastic moduli of 200 MPa-400 MPa are compared for squashed, cubic, and stretched topologies. Squashed Tetra lattices demonstrated higher growth rates and growth densities compared to symmetrically cubic lattices. BC-Tetra lattices with the same range of elastic moduli show squashed lattices tend to achieve higher growth rates, whereas stretched lattices promote higher growth density. The results suggest tetragonal unit cells provide favorable properties for biological and mechanical tailoring, therefore enabling new strategies for diverse patient needs and applications in regenerative medicine.
Collapse
|
32
|
Polley C, Radlof W, Hauschulz F, Benz C, Sander M, Seitz H. Morphological and mechanical characterisation of three-dimensional gyroid structures fabricated by electron beam melting for the use as a porous biomaterial. J Mech Behav Biomed Mater 2021; 125:104882. [PMID: 34740017 DOI: 10.1016/j.jmbbm.2021.104882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 02/05/2023]
Abstract
Additive manufactured porous biomaterials based on triply periodic minimal surfaces (TPMS) are a highly discussed topic in the literature. With their unique properties in terms of open porosity, large surface area and surface curvature, they are considered to have bone mimicking properties and remarkable osteogenic potential. In this study, scaffolds of gyroid unit cells of different sizes consisting of a Ti6Al4V alloy were manufactured additively by electron beam melting (EBM). The scaffolds were analysed by micro-computed tomography (micro-CT) to determine their morphological characteristics and, subsequently, subjected to mechanical tests to investigate their quasi-static compressive properties and fatigue resistance. All scaffolds showed an average open porosity of 71-81%, with an average pore size of 0.64-1.41 mm, depending on the investigated design. The design with the smallest unit cell shows the highest quasi-elastic gradient (QEG) as well as the highest compressive offset stress and compression strength. Furthermore, the fatigue resistance of all unit cell size (UCS) variations showed promising results. In detail, the smallest unit cells achieved fatigue strength at 106 cycles at 45% of their compressive offset stress, which is comparatively good for additively manufactured porous biomaterials. In summary, it is demonstrated that the mechanical properties can be significantly modified by varying the unit cell size, thus enabling the scaffolds to be specifically tailored to avoid stress shielding and ensure implant safety. Together with the morphological properties of the gyroid unit cells, the fabricated scaffolds represent a promising approach for use as a bone substitute material.
Collapse
Affiliation(s)
- C Polley
- Chair of Microfluidics, University of Rostock, Rostock, Germany.
| | - W Radlof
- Institute of Structural Mechanics, University of Rostock, Rostock, Germany
| | - F Hauschulz
- Chair of Microfluidics, University of Rostock, Rostock, Germany
| | - C Benz
- Institute of Structural Mechanics, University of Rostock, Rostock, Germany
| | - M Sander
- Institute of Structural Mechanics, University of Rostock, Rostock, Germany
| | - H Seitz
- Chair of Microfluidics, University of Rostock, Rostock, Germany; Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
33
|
Influence of relative density on quasi-static and fatigue failure of lattice structures in Ti6Al4V produced by laser powder bed fusion. Sci Rep 2021; 11:19314. [PMID: 34588524 PMCID: PMC8481248 DOI: 10.1038/s41598-021-98631-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lattice structures produced by additive manufacturing have been increasingly studied in recent years due to their potential to tailor prescribed mechanical properties. Their mechanical performances are influenced by several factors such as unit cell topology, parent material and relative density. In this study, static and dynamic behaviors of Ti6Al4V lattice structures were analyzed focusing on the criteria used to define the failure of lattices. A modified face-centered cubic (FCCm) lattice structure was designed to avoid the manufacturing problems that arise in the production of horizontal struts by laser powder bed fusion. The Gibson-Ashby curves of the FCCm lattice were obtained and it was found that relative density not only affects stiffness and strength of the structures, but also has important implications on the assumption of macroscopic yield criterion. Regarding fatigue properties, a stiffness based criterion was analyzed to improve the assessment of lattice structure failure in load bearing applications, and the influence of relative density on the stiffness evolution was studied. Apart from common normalization of S-N curves, a more accurate fatigue failure surface was developed, which is also compatible with stiffness based failure criteria. Finally, the effect of hot isostatic pressing in FCCm structures was also studied.
Collapse
|
34
|
Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.
Collapse
|
35
|
Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021; 7:e06892. [PMID: 34027149 PMCID: PMC8120950 DOI: 10.1016/j.heliyon.2021.e06892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Additive Manufacturing (AM) or rapid prototyping technologies are presented as one of the best options to produce customized prostheses and implants with high-level requirements in terms of complex geometries, mechanical properties, and short production times. The AM method that has been more investigated to obtain metallic implants for medical and biomedical use is Electron Beam Melting (EBM), which is based on the powder bed fusion technique. One of the most common metals employed to manufacture medical implants is titanium. Although discovered in 1790, titanium and its alloys only started to be used as engineering materials for biomedical prostheses after the 1950s. In the biomedical field, these materials have been mainly employed to facilitate bone adhesion and fixation, as well as for joint replacement surgeries, thanks to their good chemical, mechanical, and biocompatibility properties. Therefore, this study aims to collect relevant and up-to-date information from an exhaustive literature review on EBM and its applications in the medical and biomedical fields. This AM method has become increasingly popular in the manufacturing sector due to its great versatility and geometry control.
Collapse
Affiliation(s)
- José A. Tamayo
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Mateo Riascos
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Carlos A. Vargas
- Grupo Materiales Avanzados y Energía (Matyer), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Libia M. Baena
- Grupo de Química Básica, Aplicada y Ambiente (Alquimia), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
36
|
Guerra Silva R, Salinas Estay C, Morales Pavez G, Zahr Viñuela J, Torres MJ. Influence of Geometric and Manufacturing Parameters on the Compressive Behavior of 3D Printed Polymer Lattice Structures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1462. [PMID: 33802697 PMCID: PMC8002545 DOI: 10.3390/ma14061462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Fused deposition modeling represents a flexible and relatively inexpensive alternative for the production of custom-made polymer lattices. However, its limited accuracy and resolution lead to geometric irregularities and poor mechanical properties when compared with the digital design. Although the link between geometric features and mechanical properties of lattices has been studied extensively, the role of manufacturing parameters has received little attention. Additionally, as the size of cells/struts nears the accuracy limit of the manufacturing process, the interaction between geometry and manufacturing parameters could be decisive. Hence, the influence of three geometric and two manufacturing parameters on the mechanical behavior was evaluated using a fractional factorial design of experiments. The compressive behavior of two miniature lattice structures, the truncated octahedron and cubic diamond, was evaluated, and multilinear regression models for the elastic modulus and plateau stress were developed. Cell size, unit cell type, and strut diameter had the largest impact on the mechanical properties, while the influence of feedstock material and layer thickness was very limited. Models based on factorial design, although limited in scope, could be an effective tool for the design of customized lattice structures.
Collapse
Affiliation(s)
- Rafael Guerra Silva
- School of Mechanical Engineering, Pontificia Universidad Católica de Valparaíso, Quilpué 2430000, Chile; (C.S.E.); (G.M.P.); (J.Z.V.); (M.J.T.)
| | | | | | | | | |
Collapse
|
37
|
Improving the Accuracy of Analytical Relationships for Mechanical Properties of Permeable Metamaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Permeable porous implants must satisfy several physical and biological requirements in order to be promising materials for orthopaedic application: they should have the proper levels of stiffness, permeability, and fatigue resistance approximately matching the corresponding levels in bone tissues. This can be achieved using designer materials, which exhibit exotic properties, commonly known as metamaterials. In recent years, several experimental, numerical, and analytical studies have been carried out on the influence of unit cell micro-architecture on the mechanical and physical properties of metamaterials. Even though experimental and numerical approaches can study and predict the behaviour of different micro-structures effectively, they lack the ease and quickness provided by analytical relationships in predicting the answer. Although it is well known that Timoshenko beam theory is much more accurate in predicting the deformation of a beam (and as a result lattice structures), many of the already-existing relationships in the literature have been derived based on Euler–Bernoulli beam theory. The question that arises here is whether or not there exists a convenient way to convert the already-existing analytical relationships based on Euler–Bernoulli theory to relationships based on Timoshenko beam theory without the need to rewrite all the derivations from the start point. In this paper, this question is addressed and answered, and a handy and easy-to-use approach is presented. This technique is applied to six unit cell types (body-centred cubic (BCC), hexagonal packing, rhombicuboctahedron, diamond, truncated cube, and truncated octahedron) for which Euler–Bernoulli analytical relationships already exist in the literature while Timoshenko theory-based relationships could not be found. The results of this study demonstrated that converting analytical relationships based on Euler–Bernoulli to equivalent Timoshenko ones can decrease the difference between the analytical and numerical values for one order of magnitude, which is a significant improvement in accuracy of the analytical formulas. The methodology presented in this study is not only beneficial for improving the already-existing analytical relationships, but it also facilitates derivation of accurate analytical relationships for other, yet unexplored, unit cell types.
Collapse
|
38
|
Yang X, Ma W, Gu W, Zhang Z, Wang B, Wang Y, Liu S. Multi-scale microstructure high-strength titanium alloy lattice structure manufactured via selective laser melting. RSC Adv 2021; 11:22734-22743. [PMID: 35480447 PMCID: PMC9034348 DOI: 10.1039/d1ra02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/04/2022] Open
Abstract
The tensile performance of Ti6Al4V alloy lattice structure was investigated. Firstly, a face center cubic unit cell with vertical struts (F2CCZ) lattice structure was designed. Then, the structures were fabricated by selective laser melting (SLM) with different aspect ratios. Subsequently, the SLM-ed alloys were subjected to double solution-aging to homogenize the microstructure and release residual stress. It is shown that there is only acicular α′ martensite with high dislocation density in the SLM-ed alloy, while the heat-treated alloy has α and β phases (there are multi-scale α laths and nano-scale β particles), and the orientation relationship between the two phases is: [113]β//[1210]α. The tensile strength of the HT-ed alloys presents a significant increase from 140 ± 18 MPa in the SLM-ed state to 229 ± 5.1 MPa with an aspect ratio of 4. It indicates that the special heat treatment regime can not only homogenize the microstructure of the SLM-ed alloy, but also improve the tensile strength. The tensile performance of Ti6Al4V alloy lattice structure was investigated.![]()
Collapse
Affiliation(s)
- Xin Yang
- College of Materials Science and Engineering
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Wenjun Ma
- College of Materials Science and Engineering
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Wenping Gu
- Electronic Science and Technology
- Chang'an University
- Xi'an 710061
- China
| | - Zhaoyang Zhang
- College of Materials Science and Engineering
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Ben Wang
- College of Materials Science and Engineering
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Yan Wang
- School of Metallurgical and Engineering
- Xi'an University of Architecture & Technology
- Xi'an 710055
- China
| | - Shifeng Liu
- School of Metallurgical and Engineering
- Xi'an University of Architecture & Technology
- Xi'an 710055
- China
| |
Collapse
|
39
|
Barber H, Kelly CN, Nelson K, Gall K. Compressive anisotropy of sheet and strut based porous Ti-6Al-4V scaffolds. J Mech Behav Biomed Mater 2020; 115:104243. [PMID: 33307487 DOI: 10.1016/j.jmbbm.2020.104243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/06/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Porous metallic scaffolds show promise in orthopedic applications due to favorable mechanical and biological properties. In vivo stress conditions on orthopedic implants are complex, often including multiaxial loading across off axis orientations. In this study, unit cell orientation was rotated in the XZ plane of a strut-based architecture, Diamond Crystal, and two sheet-based, triply periodic minimal surface (TPMS) architectures, Schwartz D and Gyroid. Sheet-based architectures exhibited higher peak compressive strength, yield strength and strain at peak stress than the strut-based architecture. All three topologies demonstrated an orientational dependence in mechanical properties. There was a greater degree of anisotropy (49%) in strut-based architecture than in either TPMS architectures (18-21%). These results support the superior strength and advantageous isotropic mechanical properties of sheet-based TPMS architectures relative to strut-based architectures, as well as highlighting the importance of considering anisotropic properties of lattice scaffolds for use in tissue engineering.
Collapse
Affiliation(s)
- Helena Barber
- Duke University School of Medicine, 8 Searle Center Dr, Durham, NC, 27710, USA.
| | - Cambre N Kelly
- Duke University Department of Mechanical Engineering and Materials Science, Durham, North Carolina, USA.
| | - Kaitlin Nelson
- Duke University Department of Mechanical Engineering and Materials Science, Durham, North Carolina, USA.
| | - Ken Gall
- Duke University Department of Mechanical Engineering and Materials Science, Durham, North Carolina, USA.
| |
Collapse
|
40
|
Zhang Y, Li F, Jia D. Lightweight design and static analysis of lattice compressor impeller. Sci Rep 2020; 10:18394. [PMID: 33110115 PMCID: PMC7592040 DOI: 10.1038/s41598-020-75330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Taking the compressor impeller as the research object and the lightweight design as the research goal, a lattice filled lattice cell suitable for the application of rotating periodic symmetric structure is designed. Its purpose is to make the rigidity and strength of impeller adjustable and reduce the mass of impeller on the premise of meeting the design requirements. The analysis and comparison of unfilled impeller, solid impeller and lattice filled impeller with different diameters were carried out under the limit condition of 80,000 r/min. The results showed that the average circumferential deformation of lattice impeller tip with beam diameter of 0.2 mm, 0.4 mm and 1 mm was 4.84%, 3.49% and 3.71% lower than that of solid impeller. For the impeller with a lattice beam diameter of 0.4 mm, its weight can be reduced by 22.68% compared with the solid impeller. The average circumferential deformation of the tip of the lattice impeller lies between the unfilled impeller and the solid impeller. The results show that the impeller with lattice filling hub can not only reduce the weight effectively, but also improve the efficiency of the compressor.
Collapse
Affiliation(s)
- Yuan Zhang
- Dalian Maritime University, 1 Linghai, Hightech Zone, Dalian, 116026, Liaoning, People's Republic of China
| | - Fanchun Li
- Dalian Maritime University, 1 Linghai, Hightech Zone, Dalian, 116026, Liaoning, People's Republic of China.
| | - Dejun Jia
- Dalian Maritime University, 1 Linghai, Hightech Zone, Dalian, 116026, Liaoning, People's Republic of China
| |
Collapse
|
41
|
Cosma C, Drstvensek I, Berce P, Prunean S, Legutko S, Popa C, Balc N. Physical-Mechanical Characteristics and Microstructure of Ti6Al7Nb Lattice Structures Manufactured by Selective Laser Melting. MATERIALS 2020; 13:ma13184123. [PMID: 32948067 PMCID: PMC7560298 DOI: 10.3390/ma13184123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
The demand of lattice structures for medical applications is increasing due to their ability to accelerate the osseointegration process, to reduce the implant weight and the stiffness. Selective laser melting (SLM) process offers the possibility to manufacture directly complex lattice applications, but there are a few studies that have focused on biocompatible Ti6Al7Nb alloy. The purpose of this work was to investigate the physical-mechanical properties and the microstructure of three dissimilar lattice structures that were SLM-manufactured by using Ti6Al7Nb powder. In particular, the strut morphology, the fracture characterization, the metallographic structure, and the X-ray phase identification were analyzed. Additionally, the Gibson-Ashby prediction model was adapted for each lattice topology, indicating the theoretical compressive strength and Young modulus. The resulted porosity of these lattice structures was approximately 56%, and the pore size ranged from 0.40 to 0.91 mm. Under quasi-static compression test, three failure modes were recorded. Compared to fully solid specimens, the actual lattice structures reduce the elastic modulus from 104 to 6-28 GPa. The struts surfaces were covered by a large amount of partial melted grains. Some solidification defects were recorded in struts structure. The fractographs revealed a brittle rupture of struts, and their microstructure was mainly α' martensite with columnar grains. The results demonstrate the suitability of manufacturing lattice structures made of Ti6Al7Nb powder having unique physical-mechanical properties which could meet the medical requirements.
Collapse
Affiliation(s)
- Cosmin Cosma
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.B.); (N.B.)
- Correspondence: ; Tel.: +40-762682150
| | - Igor Drstvensek
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Petru Berce
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.B.); (N.B.)
| | - Simon Prunean
- Faculty of Sciences, University of Southern Denmark, 5000 Odense, Denmark;
| | - Stanisław Legutko
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Catalin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania;
| | - Nicolae Balc
- Department of Manufacturing Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.B.); (N.B.)
| |
Collapse
|
42
|
Zhang L, Song B, Yang L, Shi Y. Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds. Acta Biomater 2020; 112:298-315. [PMID: 32504689 DOI: 10.1016/j.actbio.2020.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Porous metallic biomaterials developed from pentamode metamaterials (PMs) were rationally designed to mimic the topological, mechanical, and mass transport properties of human bones. Here, a series of diamond-based PMs with different strut parameters were fabricated from a Ti-6Al-4V powder by selective laser melting (SLM) technique. The morphological features, mechanical properties and permeability of PM samples were then characterized. In terms of morphology, the as-built PMs were well consistent with the as-designed ones, although the slight surface deviations were presented in overhanging areas. The PM scaffolds showed a switchable deformation pattern controlled by the slenderness ratio of struts. The double-cone strut topology increases the tortuosity and thereby accelerates the nutrients supply, waste removal, and cell migration to the whole scaffold region and circumambient bone tissue. The measured mechanical properties (i.e., E: 0.59-2.90 GPa, σy: 20.59-112.63 MPa) and computational permeability values (k: 9.87-49.19 × 10-9 m2) of PM scaffolds were all in accordance with those of trabecular bone. The experimental permeability values were linearly dependent on the results of simulations. This study showed the great potential of PMs as bone scaffolds. Moreover, we demonstrated that PM-based porous biomaterials can decouple the mass transport and mechanical properties of bone scaffolds, so as to achieve an unprecedented level of tailoring their multi-physics properties. STATEMENT OF SIGNIFICANCE: The topological diversity can significantly improve the adaptability of the implant to the primary bone tissue. Previous studies revealed that the mechanical and mass transport properties of porous biomaterials are correlated to the material types, porosities and lattice topologies but neglected effects of strut design. We show here the influence of strut morphology on the mechanical and mass transport properties which are independently tailored, that is, the mass transport properties can be markedly increased while maintaining the mechanical properties of mimicking specific bones, vice versa. This study emphasizes the importance of strut topological design in the development of AM porous biomaterials.
Collapse
|
43
|
Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Front Bioeng Biotechnol 2020; 8:609. [PMID: 32626698 PMCID: PMC7311579 DOI: 10.3389/fbioe.2020.00609] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
With the increasing application of orthopedic scaffolds, a dramatically increasing number of requirements for scaffolds are precise. The porous structure has been a fundamental design in the bone tissue engineering or orthopedic clinics because of its low Young's modulus, high compressive strength, and abundant cell accommodation space. The porous structure manufactured by additive manufacturing (AM) technology has controllable pore size, pore shape, and porosity. The single unit can be designed and arrayed with AM, which brings controllable pore characteristics and mechanical properties. This paper presents the current status of porous designs in AM technology. The porous structures are stated from the cellular structure and the whole structure. In the aspect of the cellular structure, non-parametric design and parametric design are discussed here according to whether the algorithm generates the structure or not. The non-parametric design comprises the diamond, the body-centered cubic, and the polyhedral structure, etc. The Voronoi, the Triply Periodic Minimal Surface, and other parametric designs are mainly discussed in parametric design. In the discussion of cellular structures, we emphasize the design, and the resulting biomechanical and biological effects caused by designs. In the aspect of the whole structure, the recent experimental researches are reviewed on uniform design, layered gradient design, and layered gradient design based on topological optimization, etc. These parts are summarized because of the development of technology and the demand for mechanics or bone growth. Finally, the challenges faced by the porous designs and prospects of porous structure in orthopedics are proposed in this paper.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Yang L, Han C, Wu H, Hao L, Wei Q, Yan C, Shi Y. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J Mech Behav Biomed Mater 2020; 109:103843. [PMID: 32543407 DOI: 10.1016/j.jmbbm.2020.103843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/12/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Schwartz diamond graded porous structures (SDGPSs), constructed by a triply-periodic-minimal-surface diamond unit cell topology, were developed with various unit cell sizes and printed by laser powder bed fusion (LPBF) from a commercially pure titanium powder for bone implant applications. The effect of unit cell size on the printability, strut dimensions, stress and strain distributions, mechanical properties and energy absorption capability of SDGPSs was investigated. The results indicate the good printability of SDGPSs via LPBF with multiple unit cell sizes from 3.5 mm to 5.5 mm through the three-dimensional reconstruction from micro-computed tomography. The unit cell size plays a critical role in both strut diameters and specific surface areas of SDGPSs. An increase in the unit cell size leads to a reduction in the experimental Young's modulus from 673.08 MPa to 518.71 MPa and compressive yield strength from 11.43 MPa to 7.73 MPa. The mechanical properties of LPBF-printed SDGPSs are higher than those predicted by the finite element method, which is attributed to the higher volume fractions of the printed SDGPSs than the designed values. Furthermore, a rise in unit cell size leads to the decrease of energy absorption capability from 6.06 MJ/mm3 to 4.32 MJ/mm3 and exhibits little influence on the absorption efficiency. These findings provide a good understanding and guidance to the optimization on the unit cell size of functionally graded porous structures for desirable properties.
Collapse
Affiliation(s)
- Lei Yang
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Changjun Han
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Hongzhi Wu
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Hao
- Gemological Institute, China University of Geosciences, Wuhan, 430074, China
| | - Qingsong Wei
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunze Yan
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| | - Yusheng Shi
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
45
|
Carter LN, Addison O, Naji N, Seres P, Wilman AH, Shepherd DE, Grover L, Cox S. Reducing MRI susceptibility artefacts in implants using additively manufactured porous Ti-6Al-4V structures. Acta Biomater 2020; 107:338-348. [PMID: 32119921 DOI: 10.1016/j.actbio.2020.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/28/2023]
Abstract
Magnetic Resonance Imaging (MRI) is critical in diagnosing post-operative complications following implant surgery and imaging anatomy adjacent to implants. Increasing field strengths and use of gradient-echo sequences have highlighted difficulties from susceptibility artefacts in scan data. Artefacts manifest around metal implants, including those made from titanium alloys, making detection of complications (e.g. bleeding, infection) difficult and hindering imaging of surrounding structures such as the brain or inner ear. Existing research focusses on post-processing and unorthodox scan sequences to better capture data around these devices. This study proposes a complementary up-stream design approach using lightweight structures produced via additive manufacturing (AM). Strategic implant mass reduction presents a potential tool in managing artefacts. Uniform specimens of Ti-6Al-4V structures, including lattices, were produced using the AM process, selective laser melting, with various unit cell designs and relative densities (3.1%-96.7%). Samples, submerged in water, were imaged in a 3T MRI system using clinically relevant sequences. Artefacts were quantified by image analysis revealing a strong linear relationship (RR2 = 0.99) between severity and relative sample density. Likewise, distortion due to slice selection errors showed a squared relationship (RR2 = 0.92) with sample density. Unique artefact features were identified surrounding honeycomb samples suggesting a complex relationship exists for larger unit cells. To demonstrate clinical utility, a honeycomb design was applied to a representative cranioplasty. Analysis revealed 10% artefact reduction compared to traditional solid material illustrating the feasibility of this approach. This study provides a basis to strategically design implants to reduce MRI artefacts and improve post-operative diagnosis capability. STATEMENT OF SIGNIFICANCE: MRI susceptibility artefacts surrounding metal implants present a clinical challenge for the diagnosis of post-operative complications relating to the implant itself or underlying anatomy. In this study for the first time we demonstrate that additive manufacturing may be exploited to create lattice structures that predictably reduce MRI image artefact severity surrounding titanium alloy implants. Specifically, a direct correlation of artefact severity, both total signal loss and distortion, with the relative material density of these functionalised materials has been demonstrated within clinically relevant MRI sequences. This approach opens the door for strategic implant design, utilising this structurally functionalised material, that may improve post-operative patient outcomes and compliments existing efforts in this area which focus on data acquisition and post-processing methods.
Collapse
|
46
|
Bolshakov P, Raginov I, Egorov V, Kashapova R, Kashapov R, Baltina T, Sachenkov O. Design and Optimization Lattice Endoprosthesis for Long Bones: Manufacturing and Clinical Experiment. MATERIALS 2020; 13:ma13051185. [PMID: 32155859 PMCID: PMC7085070 DOI: 10.3390/ma13051185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/03/2022]
Abstract
The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.
Collapse
Affiliation(s)
- Pavel Bolshakov
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia; (P.B.); (T.B.)
| | - Ivan Raginov
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia; (I.R.); (R.K.); (R.K.)
| | - Vladislav Egorov
- Federal Center for Toxicological, Radiation and Biological Safety, 420075 Kazan, Russia;
| | - Regina Kashapova
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia; (I.R.); (R.K.); (R.K.)
| | - Ramil Kashapov
- Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia; (I.R.); (R.K.); (R.K.)
| | - Tatyana Baltina
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia; (P.B.); (T.B.)
| | - Oskar Sachenkov
- Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia; (P.B.); (T.B.)
- Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia
- Correspondence: ; Tel.: +7-9503-171300
| |
Collapse
|
47
|
Cutolo A, Engelen B, Desmet W, Van Hooreweder B. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: On the effect of the load direction. J Mech Behav Biomed Mater 2020; 104:103656. [PMID: 32174413 DOI: 10.1016/j.jmbbm.2020.103656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
Abstract
Laser powder bed fusion (L-PBF) techniques have been increasingly adopted for the production of highly personalized and customized lightweight structures and bio-medical implants. L-PBF can be used with a multiplicity of materials including several grades of titanium. Due to its biocompatibility, corrosion resistance and low density-to-strength ratio, Ti-6Al-4V is one of the most widely used titanium alloys to be processed via L-PBF for the production of orthopedic implants and lightweight structures. Mechanical properties of L-PBF Ti-6Al-4V lattice structures have mostly been studied in uniaxial compression and lately, also in tension. However, in real-life applications, orthopedic implants or lightweight structures in general are subjected to more complex stress conditions and the load directions can be different from the principal axes of the unit cell. In this research, the mechanical behavior of Ti-6Al-4V diamond based lattice structures produced by L-PBF is investigated exploring the energy absorption and failure modes of these metamaterials when the loading directions are different from the principal axis of the unit cell. Moreover, the impact of a heat treatment (i.e. hot isostatic pressing) on the mechanical properties of the aforementioned lattice structures has been evaluated. Results indicate that the mechanical response of the lattice structures is significantly influenced by the direction of the applied load with respect to the unit cell reference system revealing the anisotropic behavior of the diamond unit cell.
Collapse
Affiliation(s)
- Antonio Cutolo
- KU Leuven Department of Mechanical Engineering, Celestijnenlaan 300, 3001, Leuven, Heverlee, Belgium.
| | - Bert Engelen
- 3DSystems Leuven, Grauwmeer 14, B-3001, Leuven, Belgium
| | - Wim Desmet
- KU Leuven Department of Mechanical Engineering, Celestijnenlaan 300, 3001, Leuven, Heverlee, Belgium; DMMS Core Lab, Flanders Make, 3001, Leuven, Heverlee, Belgium
| | - Brecht Van Hooreweder
- KU Leuven Department of Mechanical Engineering, Celestijnenlaan 300, 3001, Leuven, Heverlee, Belgium; Members Flanders Make, Leuven, Belgium
| |
Collapse
|
48
|
Percoco G, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Boccaccio A. Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E648. [PMID: 32024158 PMCID: PMC7041376 DOI: 10.3390/ma13030648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
In spite of the rather large use of the fused deposition modeling (FDM) technique for the fabrication of scaffolds, no studies are reported in the literature that optimize the geometry of such scaffold types based on mechanobiological criteria. We implemented a mechanobiology-based optimization algorithm to determine the optimal distance between the strands in cylindrical scaffolds subjected to compression. The optimized scaffolds were then 3D printed with the FDM technique and successively measured. We found that the difference between the optimized distances and the average measured ones never exceeded 8.27% of the optimized distance. However, we found that large fabrication errors are made on the filament diameter when the filament diameter to be realized differs significantly with respect to the diameter of the nozzle utilized for the extrusion. This feasibility study demonstrated that the FDM technique is suitable to build accurate scaffold samples only in the cases where the strand diameter is close to the nozzle diameter. Conversely, when a large difference exists, large fabrication errors can be committed on the diameter of the filaments. In general, the scaffolds realized with the FDM technique were predicted to stimulate the formation of amounts of bone smaller than those that can be obtained with other regular beam-based scaffolds.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70126 Bari, Italy; (G.P.); (A.E.U.); (M.F.); (M.G.); (V.M.M.)
| |
Collapse
|
49
|
Peng WM, Liu YF, Jiang XF, Dong XT, Jun J, Baur DA, Xu JJ, Pan H, Xu X. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J Zhejiang Univ Sci B 2020; 20:647-659. [PMID: 31273962 DOI: 10.1631/jzus.b1800622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of "reducing dimensions and designing layer by layer" was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%, (480±28) to (685±31) μm, and (263±28) to (265±28) μm, respectively. The compression results show that the Young's modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young's modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
Collapse
Affiliation(s)
- Wen-Ming Peng
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Yun-Feng Liu
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Xian-Feng Jiang
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Xing-Tao Dong
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Janice Jun
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dale A Baur
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jia-Jie Xu
- Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hui Pan
- Oral and Maxillofacial Surgery, Stomatology Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xu Xu
- Department of Stomatology, People's Hospital of Quzhou, Quzhou 324000, China
| |
Collapse
|
50
|
Velasco-Castro M, Hernández-Nava E, Figueroa IA, Todd I, Goodall R. The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti-6Al-4V lattices. Heliyon 2019; 5:e02813. [PMID: 31872099 PMCID: PMC6911884 DOI: 10.1016/j.heliyon.2019.e02813] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/19/2018] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
Additive manufacturing techniques such as Selective Laser Melting (SLM) can produce complex shapes with relatively thin sections and fine detail. However, common materials for the process, such as Ti–6Al–4V, have microstructure and properties that are sensitive to the pickup of interstitial impurities, such as oxygen, which the material will be exposed to during the process. This problem would be especially severe for parts with thin sections, where surface effects can be more significant, and where poor properties may coincide with locally-elevated stress. Here we explore the effects of oxygen level in thin sections with the use of lattice materials (materials which can be considered to consist exclusively of near-surface material). Oxygen levels are artificially raised using repeated melting passes to result in more pickup, leading to significantly reduced ductility and hence reduced strength measured in compression. A ductile to brittle transition in strut failure mechanism is found with increasing number of melting passes, with significant modification in chemistry and crystallographic structure, despite the presence of a similar fine plate-like microstructure throughout.
Collapse
Affiliation(s)
- M Velasco-Castro
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, México, DF, C.P. 04510, Mexico
| | - E Hernández-Nava
- Department of Material Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield, S13 JD, UK
| | - I A Figueroa
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, México, DF, C.P. 04510, Mexico
| | - I Todd
- Department of Material Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield, S13 JD, UK
| | - R Goodall
- Department of Material Science & Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield, S13 JD, UK
| |
Collapse
|