1
|
Savvopoulos F, Keeling MC, Carassiti D, Fogell NA, Patel MB, Naser J, Gavara N, de Silva R, Krams R. Assessment of the nano-mechanical properties of healthy and atherosclerotic coronary arteries by atomic force microscopy. J R Soc Interface 2024; 21:20230674. [PMID: 38320600 PMCID: PMC10846958 DOI: 10.1098/rsif.2023.0674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Nano-indentation techniques might be better equipped to assess the heterogeneous material properties of plaques than macroscopic methods but there are no bespoke protocols for this kind of material testing for coronary arteries. Therefore, we developed a measurement protocol to extract mechanical properties from healthy and atherosclerotic coronary artery tissue sections. Young's modulus was derived from force-indentation data. Metrics of collagen fibre density were extracted from the same tissue, and the local material properties were co-registered to the local collagen microstructure with a robust framework. The locations of the indentation were retrospectively classified by histological category (healthy, plaque, lipid-rich, fibrous cap) according to Picrosirius Red stain and adjacent Hematoxylin & Eosin and Oil-Red-O stains. Plaque tissue was softer (p < 0.001) than the healthy coronary wall. Areas rich in collagen within the plaque (fibrous cap) were significantly (p < 0.001) stiffer than areas poor in collagen/lipid-rich, but less than half as stiff as the healthy coronary media. Young's moduli correlated (Pearson's ρ = 0.53, p < 0.05) with collagen content. Atomic force microscopy (AFM) is capable of detecting tissue stiffness changes related to collagen density in healthy and diseased cardiovascular tissue. Mechanical characterization of atherosclerotic plaques with nano-indentation techniques could refine constitutive models for computational modelling.
Collapse
Affiliation(s)
- Fotios Savvopoulos
- Department of Bioengineering, Imperial College London, London SW3 6LR, UK
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael C. Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nicholas A. Fogell
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Miten B. Patel
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Jarka Naser
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona 08007, Spain
| | - Ranil de Silva
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
2
|
Jadidi M, Sherifova S, Sommer G, Kamenskiy A, Holzapfel GA. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater 2021; 121:461-474. [PMID: 33279711 PMCID: PMC8464405 DOI: 10.1016/j.actbio.2020.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Arterial mechanics plays an important role in vascular pathophysiology and repair, and advanced imaging can inform constitutive models of vascular behavior. We have measured the mechanical properties of 14 human superficial femoral arteries (SFAs) (age 12-70, mean 48±19 years) using planar biaxial extension, and determined the preferred collagen fiber direction and dispersion using multiphoton microscopy. The collagen fiber direction and dispersion were evaluated using second-harmonic generation imaging and modeled using bivariate von Mises distributions. The microstructures of elastin and collagen were assessed using two-photon fluorescence imaging and conventional bidirectional histology. The mechanical and structural data were used to describe the SFA mechanical behavior using two- and four-fiber family invariant-based constitutive models. Older SFAs were stiffer and mechanically more nonlinear than younger specimens. In the adventitia, collagen fibers were undulated and diagonally-oriented, while in the media, they were straight and circumferentially-oriented. The media was rich in collagen that surrounded the circumferentially-oriented smooth muscle cells, and the elastin was present primarily in the internal and external elastic laminae. Older SFAs had a more circumferential collagen fiber alignment, a decreased circumferential-radial fiber dispersion, but the same circumferential-longitudinal fiber dispersion as younger specimens. Both the two- and the four-fiber family constitutive models were able to capture the experimental data, and the fits were better for the four-fiber family formulation. Our data provide additional details on the SFA intramural structure and inform structurally-based constitutive models.
Collapse
|
3
|
Cebull HL, Rayz VL, Goergen CJ. Recent Advances in Biomechanical Characterization of Thoracic Aortic Aneurysms. Front Cardiovasc Med 2020; 7:75. [PMID: 32478096 PMCID: PMC7235347 DOI: 10.3389/fcvm.2020.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a focal enlargement of the thoracic aorta, but the etiology of this disease is not fully understood. Previous work suggests that various genetic syndromes, congenital defects such as bicuspid aortic valve, hypertension, and age are associated with TAA formation. Though occurrence of TAAs is rare, they can be life-threatening when dissection or rupture occurs. Prevention of these adverse events often requires surgical intervention through full aortic root replacement or implantation of endovascular stent grafts. Currently, aneurysm diameters and expansion rates are used to determine if intervention is warranted. Unfortunately, this approach oversimplifies the complex aortopathy. Improving treatment of TAAs will likely require an increased understanding of the biological and biomechanical factors contributing to the disease. Past studies have substantially contributed to our knowledge of TAAs using various ex vivo, in vivo, and computational methods to biomechanically characterize the thoracic aorta. However, any singular approach typically focuses on only material properties of the aortic wall, intra-aneurysmal hemodynamics, or in vivo vessel dynamics, neglecting combinatorial factors that influence aneurysm development and progression. In this review, we briefly summarize the current understanding of TAA causes, treatment, and progression, before discussing recent advances in biomechanical studies of TAAs and possible future directions. We identify the need for comprehensive approaches that combine multiple characterization methods to study the mechanisms contributing to focal weakening and rupture. We hope this summary and analysis will inspire future studies leading to improved prediction of thoracic aneurysm progression and rupture, improving patient diagnoses and outcomes.
Collapse
Affiliation(s)
- Hannah L Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 2020; 103:172-188. [PMID: 31877371 DOI: 10.1016/j.actbio.2019.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kaspars Maleckis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States.
| |
Collapse
|
5
|
Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, Weinbaum JS. Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs. Matrix Biol Plus 2019; 4:100014. [PMID: 33543011 PMCID: PMC7852215 DOI: 10.1016/j.mbplus.2019.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. Approach and results We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. Conclusion Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies. Stromal cells stimulate smooth muscle cells (SMC) using paracrine signals. Stimulated SMC make RNA for both elastin and associated proteins. After protein synthesis, new elastic fibers form that contain insoluble elastin. Stromal cell products could promote elastin production in vivo.
Collapse
Key Words
- AA, aortic aneurysm
- ACA, epsilon-amino caproic acid
- ASC, adipose-derived stromal cell
- ASC-SF, ASC secreted factors
- Aneurysm
- Aorta
- ECM, extracellular matrix
- Elastin
- Extracellular matrix
- FBS, fetal bovine serum
- LOX, lysyl oxidase
- LOXL-1, LOX-like 1
- LTBP, latent TGF-β binding protein
- NCM, non-conditioned media
- NT, no treatment
- PBS, phosphate buffered saline
- RT, reverse transcriptase
- SMC, smooth muscle cell
- TGF-β, transforming growth factor-β
- Vascular regeneration
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rachel E. Sides
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eoghan M. Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L. Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Leila M. Reines
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Corresponding author at: Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Suite 300, 300 Technology Drive, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
6
|
Li X, Chen L, Gao Z, Liu J, Chen W. [Experimental study on mechanical properties of the ventral and the dorsal tissues of porcine descending aorta]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2019; 36:596-603. [PMID: 31441260 PMCID: PMC10319513 DOI: 10.7507/1001-5515.201905005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 06/10/2023]
Abstract
The mechanical properties of the aorta tissue is not only important for maintaining the cardiovascular health, but also is closely related to the development of cardiovascular diseases. There are obvious differences between the ventral and dorsal tissues of the descending aorta. However, the cause of the difference is still unclear. In this study, a biaxial tensile approach was used to determine the parameters of porcine descending aorta by analyzing the stress-strain curves. The strain energy functions Gasser-Ogden-Holzapfel was adopted to characterize the orthotropic parameters of mechanical properties. Elastic Van Gieson (EVG) and Sirius red stain were used to observe the microarchitecture of elastic and collagen fibers, respectively. Our results showed that the tissue of descending aorta had more orthotropic and higher elastic modulus in the dorsal region compared to the ventral region in the circumferential direction. No significant difference was found in hyperelastic constitutive parameters between the dorsal and ventral regions, but the angle of collagen fiber was smaller than 0.785 rad (45°) in both dorsal and ventral regions. The arrangement of fiber was inclined to be circumferential. EVG and Sirius red stain showed that in outer-middle membrane of the descending aorta, the density of elastic fibrous layer of the ventral region was higher than that of the dorsal region; the amount of collagen fibers in dorsal region was more than that of the ventral region. The results suggested that the difference of mechanical properties between the dorsal and ventral tissues in the descending aorta was related to the microstructure of the outer membrane of the aorta. In the relatively small strain range, the difference in mechanical properties between the ventral and dorsal tissues of the descending aorta can be ignored; when the strain is higher, it needs to be treated differently. The results of this study provide data for the etiology of arterial disease (such as arterial dissection) and the design of artificial blood vessel.
Collapse
Affiliation(s)
- Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - Lingfeng Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - Zhipeng Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - Jiahe Liu
- College of Architecture, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024,
| |
Collapse
|
7
|
Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics. J Biomech 2018; 82:211-219. [PMID: 30415914 DOI: 10.1016/j.jbiomech.2018.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023]
Abstract
The contribution of glycosaminoglycans (GAGs) to the biological and mechanical functions of biological tissue has emerged as an important area of research. GAGs provide structural basis for the organization and assembly of extracellular matrix (ECM). The mechanics of tissue with low GAG content can be indirectly affected by the interaction of GAGs with collagen fibers, which have long been known to be one of the primary contributors to soft tissue mechanics. Our earlier study showed that enzymatic GAG depletion results in straighter collagen fibers that are recruited at lower levels of stretch, and a corresponding shift in earlier arterial stiffening (Mattson et al., 2016). In this study, the effect of GAGs on collagen fiber recruitment was studied through a structure-based constitutive model. The model incorporates structural information, such as fiber orientation distribution, content, and recruitment of medial elastin, medial collagen, and adventitial collagen fibers. The model was first used to study planar biaxial tensile stress-stretch behavior of porcine descending thoracic aorta. Changes in elastin and collagen fiber orientation distribution, and collagen fiber recruitment were then incorporated into the model in order to predict the stress-stretch behavior of GAG depleted tissue. Our study shows that incorporating early collagen fiber recruitment into the model predicts the stress-stretch response of GAG depleted tissue reasonably well (rms = 0.141); considering further changes of fiber orientation distribution does not improve the predicting capability (rms = 0.149). Our study suggests an important role of GAGs in arterial mechanics that should be considered in developing constitutive models.
Collapse
|
8
|
Mattson JM, Zhang Y. Structural and Functional Differences Between Porcine Aorta and Vena Cava. J Biomech Eng 2018; 139:2612941. [PMID: 28303272 DOI: 10.1115/1.4036261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Elastin and collagen fibers are the major load-bearing extracellular matrix (ECM) constituents of the vascular wall. Arteries function differently than veins in the circulatory system; however as a result from several treatment options, veins are subjected to sudden elevated arterial pressure. It is thus important to recognize the fundamental structure and function differences between a vein and an artery. Our research compared the relationship between biaxial mechanical function and ECM structure of porcine thoracic aorta and inferior vena cava. Our study suggests that aorta contains slightly more elastin than collagen due to the cyclical extensibility, but vena cava contains almost four times more collagen than elastin to maintain integrity. Furthermore, multiphoton imaging of vena cava showed longitudinally oriented elastin and circumferentially oriented collagen that is recruited at supraphysiologic stress, but low levels of strain. However in aorta, elastin is distributed uniformly, and the primarily circumferentially oriented collagen is recruited at higher levels of strain than vena cava. These structural observations support the functional finding that vena cava is highly anisotropic with the longitude being more compliant and the circumference stiffening substantially at low levels of strain. Overall, our research demonstrates that fiber distributions and recruitment should be considered in addition to relative collagen and elastin contents. Also, the importance of accounting for the structural and functional differences between arteries and veins should be taken into account when considering disease treatment options.
Collapse
Affiliation(s)
- Jeffrey M Mattson
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 e-mail:
| | - Yanhang Zhang
- Department of Mechanical Engineering, Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215 e-mail:
| |
Collapse
|
9
|
Biaxial loading of arterial tissues with 3D in situ observations of adventitia fibrous microstructure: A method coupling multi-photon confocal microscopy and bulge inflation test. J Mech Behav Biomed Mater 2017; 74:488-498. [DOI: 10.1016/j.jmbbm.2017.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022]
|
10
|
López-Guimet J, Andilla J, Loza-Alvarez P, Egea G. High-Resolution Morphological Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome. Sci Rep 2017; 7:1505. [PMID: 28473723 PMCID: PMC5431420 DOI: 10.1038/s41598-017-01620-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 12/04/2022] Open
Abstract
In Marfan syndrome, the tunica media is disrupted, which leads to the formation of ascending aortic aneurysms. Marfan aortic samples are histologically characterized by the fragmentation of elastic laminae. However, conventional histological techniques using transverse sections provide limited information about the precise location, progression and 3D extension of the microstructural changes that occur in each lamina. We implemented a method using multiphoton excitation fluorescence microscopy and computational image processing, which provides high-resolution en-face images of segmented individual laminae from unstained whole aortic samples. We showed that internal elastic laminae and successive 2nd laminae are injured to a different extent in murine Marfan aortae; in particular, the density and size of fenestrae changed. Moreover, microstructural injuries were concentrated in the aortic proximal and convex anatomical regions. Other parameters such as the waviness and thickness of each lamina remained unaltered. In conclusion, the method reported here is a useful, unique tool for en-face laminae microstructure assessment that can obtain quantitative three-dimensional information about vascular tissue. The application of this method to murine Marfan aortae clearly shows that the microstructural damage in elastic laminae is not equal throughout the thickness of the tunica media and in the different anatomical regions of the ascending aorta.
Collapse
Affiliation(s)
- Júlia López-Guimet
- Departament de Biomedicina, Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, Barcelona, Spain. .,Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Kermani G, Hemmasizadeh A, Assari S, Autieri M, Darvish K. Investigation of inhomogeneous and anisotropic material behavior of porcine thoracic aorta using nano-indentation tests. J Mech Behav Biomed Mater 2016; 69:50-56. [PMID: 28040607 DOI: 10.1016/j.jmbbm.2016.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
This study investigates the inhomogeneity and anisotropy of porcine descending thoracic aorta in three dimensions using a custom-made nano-indentation technique and a quasi-linear viscoelastic modeling approach. The indentation tests were conducted in axial, circumferential, and radial orientations with about 100 μm spatial resolution. The ratio of the elastic moduli obtained in different orientations was used to quantify the tissue local anisotropy. The distal sections were generally stiffer than the proximal ones in both axial and circumferential indentations. Four distinct layers were identified across the thickness with significantly different mechanical properties. The stiffness of the medial quadrant was significantly lower than all other quadrants in axial indentation. The anisotropic behavior of the tissue was more pronounced in the lateral quadrant of the distal sections. The results of this study can be used to better understand the mechanisms of aorta deformation and improve the spatial accuracy of computational models of aorta.
Collapse
Affiliation(s)
- Golriz Kermani
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, United States
| | - Ali Hemmasizadeh
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, United States
| | - Soroush Assari
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, United States
| | - Michael Autieri
- Department of Physiology, School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Kurosh Darvish
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, United States.
| |
Collapse
|