1
|
de Mello Innocentini M, Fuzatto Bueno BR, Urbaś A, Morawska-Chochół A. Microstructural, Fluid Dynamic, and Mechanical Characterization of Zinc Oxide and Magnesium Chloride-Modified Hydrogel Scaffolds. ACS Biomater Sci Eng 2024; 10:4791-4801. [PMID: 39012256 PMCID: PMC11322906 DOI: 10.1021/acsbiomaterials.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Scaffolds for the filling and regeneration of osteochondral defects are a current challenge in the biomaterials field, and solutions with greater functionality are still being sought. The novel approach of this work was to obtain scaffolds with biologically active additives possessing microstructural, permeability, and mechanical properties, mimicking the complexity of natural cartilage. Four types of scaffolds with a gelatin/alginate matrix modified with hydroxyapatite were obtained, and the relationship between the modifiers and substrate properties was evaluated. They differed in the type of second modifier used, which was hydrated MgCl2 in two proportions, ZnO, and nanohydroxyapatite. The samples were obtained by freeze-drying by using two-stage freezing. Based on microstructural observations combined with X-ray microanalysis, the microstructure of the samples and the elemental content were assessed. Permeability and mechanical tests were also performed. The scaffolds exhibited a network of interconnected pores and complex microarchitecture, with lower porosity at the surface (15 ± 7 to 29 ± 6%) and higher porosity at the center (67 ± 8 to 75 ± 8%). The additives had varying effects on the pore sizes and permeabilities of the samples. ZnO yielded the most permeable scaffolds (5.92 × 10-11 m2), whereas nanohydroxyapatite yielded the scaffold with the lowest permeability (1.18 × 10-11 m2), values within the range reported for trabecular bone. The magnesium content had no statistically significant effect on the permeability. The best mechanical parameters were obtained for ZnO samples and those containing hydrated MgCl2. The scaffold's properties meet the criteria for filling osteochondral defects. The developed scaffolds follow a biomimetic approach in terms of hierarchical microarchitecture and mechanical parameters as well as chemical composition. The obtained composite materials have the potential as biomimetic scaffolds for the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Murilo
Daniel de Mello Innocentini
- Course
of Chemical Engineering, University of Ribeirão
Preto, Avenida Costabile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
- Department
of Architecture and Civil Engineering, Centre for Regenerative Design
and Engineering for a Net Positive World (RENEW), University of Bath, Bath BA2 7AY, U.K.
| | - Bruno Ribeiro Fuzatto Bueno
- Course
of Chemical Engineering, University of Ribeirão
Preto, Avenida Costabile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Agnieszka Urbaś
- Faculty
of Electrical Engineering, Automatics, Computer Science and Biomedical
Engineering, AGH University of Krakow, 30-059 Kraków, Poland
| | - Anna Morawska-Chochół
- Faculty
of Materials Science and Ceramics, Department of Biomaterials and
Composites, AGH University of Krakow, 30-059 Kraków, Poland
| |
Collapse
|
2
|
Podgórski R, Wojasiński M, Małolepszy A, Jaroszewicz J, Ciach T. Fabrication of 3D-Printed Scaffolds with Multiscale Porosity. ACS OMEGA 2024; 9:29186-29204. [PMID: 39005818 PMCID: PMC11238315 DOI: 10.1021/acsomega.3c09035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces. Scaffolds included polycaprolactone (PCL) as the primary polymer, β-tricalcium phosphate (β-TCP) as the ceramic filler, and poly(ethylene glycol) (PEG) as a porogen. The pressurized filament extrusion gave flexible filaments composed of PCL, β-TCP, and PEG, which are ready to use in fused filament fabrication (FFF) 3D printers. Washing of 3D-printed scaffolds in ethanol solution removed PEG and revealed a microporous structure and ceramic particles on the scaffold's surfaces. Furthermore, 3D-printed materials exhibit good printing precision, no cytotoxic properties, and highly impact MG63 cell alignment. Although combining PCL, PEG, and β-TCP is quite popular, the presented method allows the production of porous scaffolds with a well-organized structure without advanced equipment, and the produced filaments can be used to 3D print scaffolds on a simple commercially available 3D printer.
Collapse
Affiliation(s)
- Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
3
|
Vigani B, Ianev D, Adami M, Valentino C, Ruggeri M, Boselli C, Icaro Cornaglia A, Sandri G, Rossi S. Porous Functionally Graded Scaffold prepared by a single-step freeze-drying process. A bioinspired approach for wound care. Int J Pharm 2024; 656:124119. [PMID: 38621616 DOI: 10.1016/j.ijpharm.2024.124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daiana Ianev
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
4
|
de Carvalho CES, Reis FDS, Silva ERDDFS, Bezerra DDO, Pacheco IKC, Fialho ACV, de Matos JME, de Melo WGG, Leite YKPDC, Argôlo NM, de Carvalho MAM. Characterization of Brazilian Buriti oil biomaterial: the influence on the physical, chemical properties and behaviour of Goat Wharton's jelly mesenchymal stem cells. Anim Reprod 2023; 20:e20230071. [PMID: 38148927 PMCID: PMC10750812 DOI: 10.1590/1984-3143-ar2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023] Open
Abstract
The Brazilian Buriti oil presents low extraction costs and relevant antioxidant properties. Thus, this work aimed to analyze Buriti oil biomaterial (BB), within its physicochemical properties, biocompatibility and cellular integration, with the purpose to the use as a growth matrix for Goat Wharton's jelly mesenchymal stem cells. Biomaterials were produced from Buriti oil polymer (Mauritia flexuosa), for it's characterization were performed Infrared Region Spectroscopy (FTIR) and Thermogravimetric Analysis (TG and DTG). The biointegration was analyzed by Scanning Electron Microscopy (SEM) and histological techniques. In order to investigate biocompatibility, MTT (3-(4,5-dimetil-2-tiazolil)-2,5-difenil-2H-tetrazólio) test and hemolytic activity tests were performed. The activation capacity of immune system cellswas measured by phagocytic capacity assay and nitric oxide synthesis . The BB presented an amorphous composition, with high thermal stability and high water expansion capacity, a surface with micro and macropores, and good adhesion of Wharton's jelly mesenchymal stem cells (MSCWJ). We verified the absence of cytotoxicity and hemolytic activity, in addition, BB did not stimulate the activation of macrophages. Proving to be a safe material for direct cultivation and also for manufacturing of compounds used for in vivo applications.
Collapse
Affiliation(s)
- Camila Ernanda Sousa de Carvalho
- Programa de Pós-graduação em Zootecnia Tropical, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Fernando da Silva Reis
- Programa de Pós-graduação em Ciências dos Materiais, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, PI, Brasil
| | | | - Dayseanny de Oliveira Bezerra
- Programa de Pós-graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, PI, Brasil
| | | | | | - José Milton Elias de Matos
- Programa de Pós-graduação em Ciências dos Materiais, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Wanderson Gabriel Gomes de Melo
- Programa de Pós-graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, PI, Brasil
| | | | - Napoleão Martins Argôlo
- Programa de Pós-graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Maria Acelina Martins de Carvalho
- Programa de Pós-graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, PI, Brasil
| |
Collapse
|
5
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
6
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
7
|
Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023; 12:313. [PMID: 36672248 PMCID: PMC9856925 DOI: 10.3390/cells12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Graham J. Hickman
- Imaging Suite, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Robert H. Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John A. Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- College of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
8
|
Bianchi M, Valentini F, Fredi G, Dorigato A, Pegoretti A. Thermo-Mechanical Behavior of Novel EPDM Foams Containing a Phase Change Material for Thermal Energy Storage Applications. Polymers (Basel) 2022; 14:polym14194058. [PMID: 36236006 PMCID: PMC9573468 DOI: 10.3390/polym14194058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper Ethylene Propylene Diene Monomer rubber (EPDM) foams were filled with different amounts of paraffin, a common phase change material (PCM) having a melting temperature at about 70 °C, to develop novel rubber foams with thermal energy storage (TES) capabilities. Samples were prepared by melt compounding and hot pressing, and the effects of three foaming methods were investigated. In particular, two series of samples were produced through conventional foaming techniques, involving physical (Micropearl® F82, MP, Lehvoss Italia s.r.l. Saronno, Italia) and chemical (Hostatron® P0168, H, Clariant GmbH, Ahrensburg, Germany) blowing agents, while the salt leaching method was adopted to produce another series of foams. Scanning electron microscopy (SEM) and density measurements showed that MP led to the formation of a closed-cell porosity, while a mixed closed-cell/open-cell morphology was detected for the H foamed samples. On the other hand, foams produced through salt leaching were mainly characterized by an open-cell porosity. The qualitative analysis of paraffin leakage revealed that at 90 °C only the foams produced through salt leaching suffered from significant PCM leakage. Consequently, the thermo-mechanical properties were investigated only in samples produced with H and MP. Differential Scanning Calorimetry (DSC) analysis revealed that EPDM/paraffin foams were endowed by good TES properties, especially at higher PCM contents (up to 145 J/g with a paraffin amount of 60 wt%). Tensile and compressive tests demonstrated the addition of the PCM increased the stiffness at 25 °C, while the opposite effect was observed above the melting temperature of paraffin. These results suggest that the EPDM foams produced with H and MP show an interesting potential for thermal management of electronic devices.
Collapse
|
9
|
Sorze A, Valentini F, Dorigato A, Pegoretti A. Salt leaching as a green method for the production of polyethylene foams for thermal energy storage applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandro Sorze
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Francesco Valentini
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| |
Collapse
|
10
|
Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:845-863. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diseases related to the lungs are among the most prevalent medical problems threatening human life. The treatment options and therapeutics available for these diseases are hindered by inadequate drug concentrations at pathological sites, a dearth of cell-specific targeting and different biological barriers in the alveoli or conducting airways. Nanostructured delivery systems for lung drug delivery have been significant in addressing these issues. The strategies used include surface engineering by altering the material structure or incorporation of specific ligands to reach prespecified targets. The unique characteristics of nanoparticles, such as controlled size and distribution, surface functional groups and therapeutic release triggering capabilities, are tailored to specific requirements to overcome the major therapeutic barriers in pulmonary diseases. In the present review, the authors intend to deliver significant up-to-date research in nanostructured therapies in inflammatory lung diseases with an emphasis on biocomposite-based nanoparticles.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- Department of Pharmaceutics, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| |
Collapse
|
11
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
12
|
Gradient Hydrogels-Overview of Techniques Demonstrating the Existence of a Gradient. Polymers (Basel) 2022; 14:polym14050866. [PMID: 35267689 PMCID: PMC8912830 DOI: 10.3390/polym14050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g., concentration gradient) than simple isotropic hydrogel. Gradient-structured hydrogels could be beneficial in, for example, understanding intercellular interactions. The fabrication of gradient hydrogels has been relatively deeply explored, but a comprehensive description of the physico-chemical techniques demonstrating the existence of a gradient structure is still missing. Here, we summarize the state-of-the-art available experimental techniques applicable in proving and/or describing in physico-chemical terms the inner gradient structure of hydrogels. The aim of this paper is to give the reader an overview of the existing database of suitable techniques for characterizing gradient hydrogels.
Collapse
|
13
|
Xu Z, Wang N, Ma Y, Dai H, Han B. Preparation and study of 3D printed dipyridamole/β-tricalcium phosphate/ polyvinyl alcohol composite scaffolds in bone tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112662. [DOI: 10.1016/j.msec.2022.112662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
|
15
|
McKenzie TJ, Smail S, Rost K, Rishi K, Beaucage G, Ayres N. Multi-layered polymerized high internal phase emulsions with controllable porosity and strong interfaces. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112248. [PMID: 34225887 DOI: 10.1016/j.msec.2021.112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning calorimetry and X-ray diffraction analyses. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the Kef coating. The water resistance of Kefiran coating in distilled water at 37 °C evaluated on both PLA/Kef and P-PLA/Kef was carried out by gravimetric and morphological analyses. Finally, cell culture assays with embryonic fibroblast cells were conducted on selected hybrid scaffolds to compare the cell proliferation, morphology, and collagen production with PLA and P-PLA electrospun scaffolds. Based on the results, we can demonstrate that direct coating of PLA from Kef/water solutions is an effective approach to prepare hybrid scaffolds with tunable properties and that the plasma pre-treatment enhances the affinity between PLA and Kefiran. In vitro tests demonstrated the great potential of PLA/Kef hybrid scaffolds for skin tissue engineering.
Collapse
|
17
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
18
|
Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers (Basel) 2020; 12:E2881. [PMID: 33271770 PMCID: PMC7760650 DOI: 10.3390/polym12122881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Murat Baidarbekov
- Research Institute of Traumatology and Orthopedics, Nur-Sultan 010000, Kazakhstan;
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| |
Collapse
|
19
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
20
|
Zonta E, Valentini F, Dorigato A, Fambri L, Pegoretti A. Evaluation of the salt leaching method for the production of ethylene propylene diene monomer rubber foams. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edoardo Zonta
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Francesco Valentini
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Luca Fambri
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| |
Collapse
|
21
|
Shalchy F, Lovell C, Bhaskar A. Hierarchical porosity in additively manufactured bioengineering scaffolds: Fabrication & characterisation. J Mech Behav Biomed Mater 2020; 110:103968. [PMID: 32745973 DOI: 10.1016/j.jmbbm.2020.103968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Biomedical scaffolds with a high degree of porosity are known to facilitate the growth of healthy functioning tissues. In this study, scaffolds with hierarchical porosity are manufactured and their mechanical and thermal properties are characterised. Multi-scale porosity is achieved in scaffolds fabricated by Fused Deposition Modelling (FDM) in a novel way. Random intrinsic porosity at micron length scale obtained from particulate leaching is combined with the structured extrinsic porosity at millimeter length scales afforded by controlling the spacing between the struts. Polylactic acid (PLA) is blended with Polyvinyl alcohol (PVA) and an inorganic sacrificial phase, sodium chloride (NaCl), to produce pores at length scales of up to two orders of magnitude smaller than the inter-filament voids within 3D printed lattices. The specific elastic modulus and specific strength are maximised by optimising the polymer blends. The porosity level and pore size distribution of the foamy filaments within lattices are quantified statistically. Compression tests are performed on the porous samples and the observed mechanical response is attributed to the microstructure and density. Simple cellular solid models that possess power law are used to explain the measured trends and the dependence is associated with various mechanisms of elastic deformation of the cell walls. The relationship between pore architecture, pore connectivity, the blend material composition, and mechanical response of produced foams is brought out. Foams obtained using the PLA:PVA:NaCl 42%-18%-40% material blends show relatively high specific elastic modulus, specific strength and strain at failure. A quadratic power law relating the Young's modulus with the relative density is experimentally obtained, which is consistent with theoretical models for open-cell foams. 3D printing with blends, followed by leaching, produces structures with cumulative intrinsic and extrinsic porosity as high as 80%, in addition to good mechanical integrity.
Collapse
Affiliation(s)
- Faezeh Shalchy
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| | | | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
22
|
Zinkovska N, Smilek J, Pekar M. Gradient Hydrogels-The State of the Art in Preparation Methods. Polymers (Basel) 2020; 12:E966. [PMID: 32326192 PMCID: PMC7240752 DOI: 10.3390/polym12040966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/18/2023] Open
Abstract
Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years. A variety of simple preparation methods are available, most of which can be relatively easily utilized in standard laboratories.
Collapse
Affiliation(s)
- Natalia Zinkovska
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, CZ-612 00 Brno, Czech Republic
| | - Jiri Smilek
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, CZ-612 00 Brno, Czech Republic
| | - Miloslav Pekar
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
23
|
Chhabra R, Peshattiwar V, Pant T, Deshpande A, Modi D, Sathaye S, Tibrewala A, Dyawanapelly S, Jain R, Dandekar P. In Vivo Studies of 3D Starch–Gelatin Scaffolds for Full-Thickness Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:2920-2929. [DOI: 10.1021/acsabm.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roha Chhabra
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Vaibhavi Peshattiwar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Tejal Pant
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Aparna Deshpande
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute For Research In Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Anil Tibrewala
- Consultant Plastic and Cosmetic Surgeon, P.D. Hinduja National Hospital and Medical Research Centre, Veer Sawarkar Marg, Asavari, Shivaji Park, Mumbai 400016, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
24
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
25
|
Lopresti F, Botta L, Scaffaro R, Bilello V, Settanni L, Gaglio R. Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Hu Q, Wu C, Zhang H. Preparation and Optimization of a Biomimetic Triple-Layered Vascular Scaffold Based on Coaxial Electrospinning. Appl Biochem Biotechnol 2019; 190:1106-1123. [PMID: 31705366 DOI: 10.1007/s12010-019-03147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Electrospinning is a promising method for preparing bionic vascular scaffolds. In particular, coaxial electrospinning can encapsulate polymer materials in biological materials and provide vascular scaffolds with good biomechanical properties. However, it is difficult to produce a stable Taylor cone during the coaxial electrospinning process. Moreover, glutaraldehyde cross-linked natural biomaterials are cytotoxic. To address these issues, a novel electrospinning process is proposed in this report. A non-ionic surfactant (Tween 80) was added to poly(lactic-co-glycolic acid) electrospinning solution and gelatin-collagen electrospinning solution, which prevented the interfacial effect of coaxial electrospinning due to different core/shell solutions. The as-prepared materials were then cross-linked with the non-toxic coupling agents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS). By comparing the biomechanical properties of EDC/NHS cross-linked vascular scaffold with glutaraldehyde vapor-cross-linked vascular scaffold, it was found that the fracture strain and biological performance of EDC/NHS cross-linked vascular scaffold were better than those of the glutaraldehyde cross-linked scaffold. Finally, a three-layer bionic vascular scaffold was prepared by the proposed electrospinning process. Biomechanical performance tests were carried out and the prepared scaffold was found to meet the requirements of tissue-engineered blood vessels. The research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Chuang Wu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China. .,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
27
|
Dulany K, Hepburn K, Goins A, Allen JB. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2019; 108:301-315. [PMID: 31606924 DOI: 10.1002/jbm.a.36816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Bone is the second most transplanted tissue in the world, resulting in increased demand for bone grafts leading to the fabrication of synthetic scaffold grafting alternatives. Fracture sites are under increased oxidative stress after injuries, affecting osteoblast function and hindering fracture healing and remodeling. To counter oxidative stress, free radical scavenging agents, such as cerium oxide nanoparticles, have gained traction in tissue engineering. Toward the goal of developing a functional synthetic system for bone tissue engineering, we characterized the biocompatibility of a porous, bioactive, free radical scavenging nanocomposite scaffold composed of poly(1,8 octanediol-co-citrate), beta-tricalcium phosphate, and cerium oxide nanoparticles. We studied cellular and tissue compatibility utilizing in vitro and in vivo models to assess nanocomposite interactions with both human osteoblast cells and rat subcutaneous tissue. We found the scaffolds were biocompatible in both models and supported cell attachment, proliferation, mineralization, and infiltration. Using hydrogen peroxide, we simulated oxidative stress to study the protective properties of the nanocomposite scaffolds via a reduction in cytotoxicity and recovered mineralization of osteoblast cells in vitro. We also found after implantation in vivo the scaffolds exhibited biocompatible properties essential for successful scaffolds for bone tissue engineering. Cells were able to infiltrate through the scaffolds, the surrounding tissues elicited a minimal immune response, and there were signs of scaffold degradation after 30 days of implantation. After the array of biological characterization, we had confirmed the development of a nanocomposite scaffold system capable of supporting bone-remodeling processes while providing a protective free radical scavenging effect.
Collapse
Affiliation(s)
- Krista Dulany
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Katie Hepburn
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Allison Goins
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Li J, Zheng H, Li X, Su J, Qin L, Sun Y, Guo C, Beck-Broichsitter M, Moehwald M, Chen L, Zhang Y, Mao S. Phospholipid-modified poly(lactide-co-glycolide) microparticles for tuning the interaction with alveolar macrophages: In vitro and in vivo assessment. Eur J Pharm Biopharm 2019; 143:70-79. [DOI: 10.1016/j.ejpb.2019.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
29
|
Unagolla JM, Jayasuriya AC. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:1-11. [PMID: 31146979 PMCID: PMC6546300 DOI: 10.1016/j.msec.2019.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
For tissue engineering applications, a porous scaffold with an interconnected network is essential to facilitate the cell attachment and proliferation in a three dimensional (3D) structure. This study aimed to fabricate the scaffolds by an extrusion-based 3D printer using a blend of polycaprolactone (PCL), and graphene oxide (GO) as a favorable platform for bone tissue engineering. The mechanical properties, morphology, biocompatibility, and biological activities such as cell proliferation and differentiation were studied concerning the two different pore sizes; 400 μm, and 800 μm, and also with two different GO content; 0.1% (w/w) and 0.5% (w/w). The compressive strength of the scaffolds was not significantly changed due to the small amount of GO, but, as expected scaffolds with 400 μm pores showed a higher compressive modulus in comparison to the scaffolds with 800 μm pores. The data indicated that the cell attachment and proliferation were increased by adding a small amount of GO. According to the results, pore size did not play a significant role in cell proliferation and differentiation. Alkaline Phosphate (ALP) activity assay further confirmed that the GO increase the ALP activity and further Elemental analysis of Calcium and Phosphorous showed that the GO increased the mineralization compared to PCL only scaffolds. Western blot analysis showed the porous structure facilitate the secretion of bone morphogenic protein-2 (BMP-2) and osteopontin at both day 7 and 14 which galvanizes the osteogenic capability of PCL and PCL + GO scaffolds.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA; Department of Orthopedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
30
|
Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications. Int J Biol Macromol 2019; 136:796-803. [PMID: 31226370 DOI: 10.1016/j.ijbiomac.2019.06.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
The aim of this study was to fabricate a novel bilayer scaffold containing cellulose nanofiber/poly (vinyl) alcohol (CNF/PVA) to evaluate its potential use in skin tissue engineering. Here, the scaffolds were fabricated using a novel one-step freeze-drying technique with two different concentrations of the aforementioned polymers. FE-SEM analysis indicated that the fabricated scaffolds had interconnected pores with two defined pore size in each layer of the bilayer scaffolds that can recapitulate the two layers of the dermis and epidermis of the skin. Lower concentration of polymers causes higher porosity with larger pore size and increased water uptake and decreased mechanical strength. FTIR proved the presence of functional groups and strong hydrogen bonding between the molecules of CNF/PVA and the efficient crosslinking. The MTT assay showed that these nanofibrous scaffolds meet the requirement as a biocompatible material for skin repair. Here, for the first time, we fabricated bilayer scaffold using a novel one-step freeze-drying technique only by controlling the polymer concentration with spending less time and energy.
Collapse
|
31
|
Sardelli L, Pacheco DP, Zorzetto L, Rinoldi C, Święszkowski W, Petrini P. Engineering biological gradients. J Appl Biomater Funct Mater 2019; 17:2280800019829023. [PMID: 30803308 DOI: 10.1177/2280800019829023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.
Collapse
Affiliation(s)
- L Sardelli
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - D P Pacheco
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - L Zorzetto
- 2 Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - C Rinoldi
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - W Święszkowski
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - P Petrini
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
32
|
Li W, Sun Q, Mu B, Luo G, Xu H, Yang Y. Poly(l-lactic acid) bio-composites reinforced by oligo(d-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int J Biol Macromol 2019; 131:495-504. [DOI: 10.1016/j.ijbiomac.2019.03.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
|
33
|
Electron beam treatment of polylactide at elevated temperature in nitrogen atmosphere. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Hu X, Li W, Li L, Lu Y, Wang Y, Parungao R, Zheng S, Liu T, Nie Y, Wang H, Song K. A biomimetic cartilage gradient hybrid scaffold for functional tissue engineering of cartilage. Tissue Cell 2019; 58:84-92. [PMID: 31133251 DOI: 10.1016/j.tice.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022]
Abstract
Osteochondral tissue has a complex layered structure that is not self-repairing after a cartilage defect. Therefore, constructing a biomimetic gradient scaffold that meets the specific structural requirements of osteochondral tissue is a major challenge in the field of cartilage tissue engineering. In this study, chitosan/Sodium β-glycerophosphate/Gelatin (Cs/GP/Gel) biomimetic gradient scaffolds were prepared by regulating the mass ratio of single layer raw materials. The same ratio of Cs/GP/Gel hybrid scaffold material was used as the control. Physical properties such as water absorption, porosity and the degradation rate of the material were compared to optimize the proportion of scaffold materials. P3 Bone Mesenchymal Stem Cells (BMSCs) were inoculated on the gradient and the control scaffolds to investigate its biocompatibility. Scanning electron microscopy (SEM) results show that 3:1:2, 6:1:3.5, 9:1:5, 12:1:6.5, 15:1:8 Cs/GP/Gel gradient scaffolds had excellent three-dimensional porous structures. Channels were also shown to have been interconnected, and the walls of the pores were folded. In the longitudinal dimension, gradient scaffolds had an obvious stratified structure and pore gradient gradualism, that effectively simulated the natural physiological stratified structure of real cartilage. The diameter of the pores in the control scaffold was uniform and without any pore gradient. Gradient scaffolds had good water absorption (584.24 ± 3.79˜677.47 ± 1.70%), porosity (86.34 ± 5.10˜95.20 ± 2.86%) and degradation (86.09 ± 2.46˜92.48 ± 3.86%). After considering the physical properties assessed, the Cs/GP/Gel gradient scaffold with a ratio of 9:1:5 was found to be the most suitable material to support osteochondral tissue. BMSCs were subsequently inoculated on the proportional gradient and hybrid scaffolds culture. These cells survived, distributed and extended well on the gradient and hybrid scaffold material. The biomimetic gradient scaffold designed and prepared in this study provides an important foundation for the development of new gradient composite biomedical materials for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanguo Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hongfei Wang
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
35
|
Long H, Wu Z, Dong Q, Shen Y, Zhou W, Luo Y, Zhang C, Dong X. Effect of polyethylene glycol on mechanical properties of bamboo fiber‐reinforced polylactic acid composites. J Appl Polym Sci 2019. [DOI: 10.1002/app.47709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haibo Long
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Zhiqiang Wu
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Qianqian Dong
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Yuting Shen
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Wuyi Zhou
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Ying Luo
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Chaoqun Zhang
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Xianming Dong
- Biomass 3D Printing Materials Research CenterCollege of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
36
|
Nashchekina Y, Yudintceva N, Nikonov P, Smagina L, Yudin V, Blinova M, Voronkina I. Protein expression by bone mesenchymal stem cells cultivated in PLLA scaffolds with different pore geometry. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1563081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuliya Nashchekina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Pavel Nikonov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Larisa Smagina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Vladimir Yudin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Miralda Blinova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Irina Voronkina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| |
Collapse
|
37
|
Jia S, Yu D, Wang Z, Zhang X, Chen L, Fu L. Morphologies, crystallization, and mechanical properties of PLA-based nanocomposites: Synergistic effects of PEG/HNTs. J Appl Polym Sci 2019. [DOI: 10.1002/app.47385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shikui Jia
- School of Science; Xi'an Jiaotong University; Xi'an 710049 China
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Demei Yu
- School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhong Wang
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Xianyong Zhang
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Ligui Chen
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| | - Lei Fu
- School of Materials Science and Engineering; Shaanxi University of Technology; Hanzhong 723000 China
| |
Collapse
|
38
|
Amani H, Mostafavi E, Arzaghi H, Davaran S, Akbarzadeh A, Akhavan O, Pazoki-Toroudi H, Webster TJ. Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomater Sci Eng 2018; 5:193-214. [PMID: 33405863 DOI: 10.1021/acsbiomaterials.8b00658] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Presently, clinical nanomedicine and nanobiotechnology have impressively demanded the generation of new organic/inorganic analogues of graphene (as one of the intriguing biomedical research targets) for stem-cell-based tissue engineering. Among different shapes of graphene, three-dimensional (3D) graphene foams (GFs) are highly promising candidates to provide conditions for mimicking in vivo environments, affording effective cell attachment, proliferation,and differentiation due to their unique properties. These include the highest biocompatibility among nanostructures, high surface-to-volume ratio, 3D porous structure (to provide a homogeneous/isotropic growth of tissues), highly favorable mechanical characteristics, and rapid mass and electron transport kinetics (which are required for chemical/physical stimulation of differentiated cells). This review aims to describe recent and rapid advances in the fabrication of 3D GFs, together with their use in tissue engineering and regenerative nanomedicine applications. Moreover, we have summarized a broad range of recent studies about the behaviors, biocompatibility/toxicity,and biodegradability of these materials, both in vitro and in vivo. Finally, the highlights and challenges of these 3D porous structures, compared to the current polymeric scaffold competitors, are discussed.
Collapse
Affiliation(s)
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Cui X, Xu S, Su W, Sun Z, Yi Z, Ma X, Chen G, Chen X, Guo B, Li X. Freeze-thaw cycles for biocompatible, mechanically robust scaffolds of human hair keratins. J Biomed Mater Res B Appl Biomater 2018; 107:1452-1461. [PMID: 30339743 DOI: 10.1002/jbm.b.34237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
The keratin-based scaffolds are getting more and more attention in the application of tissue engineering. Though various approaches have been considered to improve the physical properties of these scaffolds, few succeeded in achieving the enhanced properties of the pure keratin scaffolds. Due to the presence of -OH, -NH2 , >CO, and -SH on the extracted human hair keratin (HHK), the formation of hydrogen bonds and disulfide bridges could be triggered under certain conditions, leading to the self-cross-linking of HHK materials. Herein, a simple and green strategy was introduced, via freeze-thaw cycles of keratin solutions without addition of extraneous reagents, to obtain the mechanically robust HHK scaffolds. The comparative quantitation of residual -SH among the samples treated with 1, 5, and 9 cycles confirmed the oxidation in the thaw process for forming disulfide bonds. So, the equivalent thaw time was applied in this study, and three groups of the treated samples after 1, 5, and 9 cycles with an appropriate extension thaw time were prepared to solely investigate the effects of physical cross-linking networks, primarily by formation of hydrogen bonds, on the properties of the obtained scaffolds. The systematic assessments including swelling behavior, porosity, thermal analysis, compressive measurement, and microstructural observation confirmed that the repetitive freeze-thaw treatment contributed to mechanically robust scaffolds with good porous interconnectivity. The cell culturing experiments further verified that these HHK scaffolds had desirable cytocompatibility, permitting the proper proliferation, attachment, and infiltration. Accordingly, this study provided a simple and efficient method to obtain biocompatible, mechanically robust keratin scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1452-1461, 2019.
Collapse
Affiliation(s)
- Xinxing Cui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Songmei Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
40
|
Xie Y, Lan XR, Bao RY, Lei Y, Cao ZQ, Yang MB, Yang W, Wang YB. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:602-609. [DOI: 10.1016/j.msec.2018.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/13/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
|
41
|
Shepherd JH, Howard D, Waller AK, Foster HR, Mueller A, Moreau T, Evans AL, Arumugam M, Bouët Chalon G, Vriend E, Davidenko N, Ghevaert C, Best SM, Cameron RE. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials 2018; 182:135-144. [PMID: 30118981 DOI: 10.1016/j.biomaterials.2018.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Platelet transfusions are a key treatment option for a range of life threatening conditions including cancer, chemotherapy and surgery. Efficient ex vivo systems to generate donor independent platelets in clinically relevant numbers could provide a useful substitute. Large quantities of megakaryocytes (MKs) can be produced from human pluripotent stem cells, but in 2D culture the ratio of platelets harvested from MK cells has been limited and restricts production rate. The development of biomaterial cell supports that replicate vital hematopoietic micro-environment cues are one strategy that may increase in vitro platelet production rates from iPS derived Megakaryocyte cells. In this paper, we present the results obtained generating, simulating and using a novel structurally-graded collagen scaffold within a flow bioreactor system seeded with programmed stem cells. Theoretical analysis of porosity using micro-computed tomography analysis and synthetic micro-particle filtration provided a predictive tool to tailor cell distribution throughout the material. When used with MK programmed stem cells the graded scaffolds influenced cell location while maintaining the ability to continuously release metabolically active CD41 + CD42 + functional platelets. This scaffold design and novel fabrication technique offers a significant advance in understanding the influence of scaffold architectures on cell seeding, retention and platelet production.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Daniel Howard
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amie K Waller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Holly Rebecca Foster
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Annett Mueller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Thomas Moreau
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amanda L Evans
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Meera Arumugam
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Guénaëlle Bouët Chalon
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Eleonora Vriend
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Natalia Davidenko
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK.
| | - Serena M Best
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Ruth E Cameron
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
42
|
Fabrication of a Free Radical Scavenging Nanocomposite Scaffold for Bone Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0067-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Improvement of microstructures and properties of poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with polyoxymethylene. J Appl Polym Sci 2018. [DOI: 10.1002/app.46536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Kang Y, Chen P, Shi X, Zhang G, Wang C. Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility. RSC Adv 2018; 8:12933-12943. [PMID: 35541262 PMCID: PMC9079697 DOI: 10.1039/c8ra01305e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
For tissue engineering applications, it is essential that biodegradable scaffolds have accessible mechanical properties, high porosity, and good biocompatibility to support the formation of new tissues. In this study, we have prepared stereocomplex polylactide (sc-PLA) incorporated poly(butylene adipate-co-terephthalate) (PBAT) scaffolds by non-solvent induced phase separation (NIPS). Also, we have characterized and compared the morphology, thermal, mechanical, and wettability properties as well as preliminary biocompatibility of scaffolds. The developed sc-PLA/PBAT scaffolds possess high porosity (>94%), well-connected open microporous structures, accessible mechanical properties, and excellent water permeability. As the content of PBAT increased, the average diameter of the sc-PLA/PBAT scaffolds decreased while the mechanical properties improved. The tensile strength was improved to 3.8 MPa while the neat PLA scaffold was 0.3 MPa, and the elongation of the scaffold was six times higher than neat PLA scaffold. Fibroblasts cells seeded on the structure maintained phenotypic shape, and the developed scaffold structure was observed to be highly capable of supporting the cell attachment and proliferation. For tissue engineering applications, it is essential that biodegradable scaffolds have accessible mechanical properties, high porosity, and good biocompatibility to support the formation of new tissues.![]()
Collapse
Affiliation(s)
- Yuan Kang
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710129
- P. R. China
| | - Peng Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Xuetao Shi
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710129
- P. R. China
| | - Guangcheng Zhang
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710129
- P. R. China
| | - Chaoli Wang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| |
Collapse
|
45
|
Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Deng Y, Jiang C, Li C, Li T, Peng M, Wang J, Dai K. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci Rep 2017; 7:5588. [PMID: 28717129 PMCID: PMC5514115 DOI: 10.1038/s41598-017-05196-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Synthetic bone scaffolds have potential application in repairing large bone defects, however, inefficient vascularization after implantation remains the major issue of graft failure. Herein, porous β-tricalcium phosphate (β-TCP) scaffolds with calcium silicate (CS) were 3D printed, and pre-seeded with co-cultured human umbilical cord vein endothelial cells (HUVECs) and human bone marrow stromal cells (hBMSCs) to construct tissue engineering scaffolds with accelerated vascularization and better bone formation. Results showed that in vitro β-TCP scaffolds doped with 5% CS (5%CS/β-TCP) were biocompatible, and stimulated angiogenesis and osteogenesis. The results also showed that 5%CS/β-TCP scaffolds not only stimulated co-cultured cells angiogenesis on Matrigel, but also stimulated co-cultured cells to form microcapillary-like structures on scaffolds, and promoted migration of BMSCs by stimulating co-cultured cells to secrete PDGF-BB and CXCL12 into the surrounding environment. Moreover, 5%CS/β-TCP scaffolds enhanced vascularization and osteoinduction in comparison with β-TCP, and synergized with co-cultured cells to further increase early vessel formation, which was accompanied by earlier and better ectopic bone formation when implanted subcutaneously in nude mice. Thus, our findings suggest that porous 5%CS/β-TCP scaffolds seeded with co-cultured cells provide new strategy for accelerating tissue engineering scaffolds vascularization and osteogenesis, and show potential as treatment for large bone defects.
Collapse
Affiliation(s)
- Yuan Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chuan Jiang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cuidi Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tao Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mingzheng Peng
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
47
|
Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Scaffaro R, Lopresti F, Sutera A, Botta L, Fontana RM, Gallo G. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations. Colloids Surf B Biointerfaces 2017; 157:233-241. [PMID: 28599184 DOI: 10.1016/j.colsurfb.2017.05.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O2-plasma treated PLA membranes specifically promoted higher ACT production than not treated membranes.
Collapse
Affiliation(s)
- Roberto Scaffaro
- University of Palermo, Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Viale delle Scienze Ed. 6, RU INSTM, 90128 Palermo, Italy.
| | - Francesco Lopresti
- University of Palermo, Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Viale delle Scienze Ed. 6, RU INSTM, 90128 Palermo, Italy
| | - Alberto Sutera
- University of Palermo, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Luigi Botta
- University of Palermo, Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Viale delle Scienze Ed. 6, RU INSTM, 90128 Palermo, Italy
| | - Rosa Maria Fontana
- University of Palermo, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Giuseppe Gallo
- University of Palermo, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
49
|
Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017; 15:e107-e121. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Collapse
|
50
|
Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:794-801. [PMID: 28482592 DOI: 10.1016/j.msec.2017.03.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/15/2023]
Abstract
With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in the absence or in the presence of esterase from porcine liver. PHEA-PLA-MA scaffold that has shown homogeneous porosity and the best degradation profile has been further characterized to study its mechanical properties along with its capacity to incorporate and to control the release of dexamethasone. Finally, the ability to allow a three-dimensional culture of bovine articular chondrocytes have been also investigated.
Collapse
|