1
|
Moore ER, Konermann A. Investigating the Role of Primary Cilia and Bone Morphogenetic Protein Signaling in Periodontal Ligament Response to Orthodontic Strain In Vivo and In Vitro: A Pilot Study. Int J Mol Sci 2024; 25:12648. [PMID: 39684361 DOI: 10.3390/ijms252312648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontal ligament (PDL) cells are crucial for mechanosensation and mechanotransduction within the PDL, yet the role of primary cilia in orthodontic force transmission has not been examined. While bone morphogenetic protein (BMP) signaling significantly influences ciliary function, its effect on cellular responses to mechanical stress has not been investigated. This study aims to investigate whether primary cilia and BMP signaling are involved in the periodontal ligament's response to orthodontic tooth movement and the resultant mechanical strain. To visualize primary cilia, human PDL cells were cultured on glass-bottom dishes for five days, with a subset fixed daily, followed by immunostaining with anti-acetylated α-tubulin and Alexa Fluor 568 and imaging using a fluorescence microscope under 405 nm and 561 nm laser excitation. Human PDL cells were grown on Bioflex® culture plates and subsequently exposed to static tensile strains of 2.5%, 5%, 10%, 20%, on a FX-6000T™ Tension System for 24 h. RT-qPCR was performed to evaluate changes in expression of primary cilia via Ift88 expression, mechanotransduction via Cox2 expression, and BMP signaling-related genes. Histological specimens from orthodontically loaded and control human premolars were investigated for primary cilia and BMP signaling using immunohistochemistry and confocal microscopy. Primary cilia were observed in PDL cells from day one, with their incidence and length increasing over time alongside cell density. BMP signaling components, including upregulated genes such as Bmp7 (10.99-14.97 fold), Alk2 (3.19-5.45 fold), and Bmpr2 (1.64-8.40 fold), consistently responded to strain, while Cox2 and Ift88 showed differential regulation depending on strain intensity. In vivo, orthodontic movement activated BMP signaling and increased primary cilium incidence in the PDL. These findings indicate the potential role of primary cilia and BMP signaling in the mechanosensitivity of PDL cells under orthodontic forces. Further studies are required to understand the complex mechanotransduction mechanisms and role of these components in cellular adaptation during orthodontic tooth movement.
Collapse
Affiliation(s)
- Emily R Moore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Anna Konermann
- Department of Orthodontics, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
2
|
Pastille E, Konermann A. Exploring the role of innate lymphoid cells in the periodontium: insights into immunological dynamics during orthodontic tooth movement. Front Immunol 2024; 15:1428059. [PMID: 39021572 PMCID: PMC11251940 DOI: 10.3389/fimmu.2024.1428059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background The periodontal ligament (PDL) experiences considerable mechanical stresses between teeth and bone, vital for tissue adaptation, especially in orthodontic tooth movement (OTM). While recent research emphasizes the role of innate lymphoid cells (ILCs) in regulating sterile inflammation, their involvement in periodontal tissues during OTM remains largely unexplored. Methods In this study, PDL tissues from orthodontic patients (n = 8) were examined using flow cytometry to detect ILC subtypes. Transwell co-culture systems were used to expose PDL cells to mechanical strain, followed by measuring migration and ratios of sorted ILC subtypes. Statistical analyses were conducted using paired Student's t-test, Kruskal-Wallis test, Dunn's post-test and one-way/two-way ANOVA with Tukey's post-test (p≤ 0.05; **, p≤ 0.01; ***, p≤ 0.001). Results Our findings demonstrate a significant increase in CD127+ CD161+ ILC frequencies in PDL tissues during OTM, indicating ILC involvement in sterile inflammation induced by orthodontic forces. Co-culture assays show directed migration of ILC subsets towards PDL cells and substantial proliferation and expansion of ILCs. Conclusions This study is the first to comprehensively investigate the role of ILCs in sterile inflammation during OTM, revealing their presence and distribution within PDL tissues' innate immune response in vivo, and exploring their migratory and proliferative behavior in vitro. The results suggest a crosstalk between ILCs and PDL cells, potentially influencing the inflammatory response and tissue remodeling processes associated with OTM.
Collapse
Affiliation(s)
- Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Nicklisch N, Hinrichs C, Palaske L, Vach W, Alt KW. Variability in human tooth cementum thickness reflecting functional processes. J Periodontal Res 2024; 59:408-419. [PMID: 38126232 DOI: 10.1111/jre.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the thickness of acellular extrinsic fibre cementum (AEFC) at four root positions of anterior and posterior teeth with special focus on functional aspects. Furthermore, the correlations between cementum thickness and chronological age and sex are investigated. BACKGROUND While numerous studies confirm continuous cementum apposition with age, masticatory forces as well as physiological and orthodontically induced tooth movements also have the potential to affect tooth cementum thickness. MATERIALS AND METHODS Undecalcified teeth were embedded in resin and transverse-sectioned in the cervical third of the root. Two sections per root were selected, and digital images at four positions were obtained (mesial, distal, oral, and vestibular) using light microscopy. The AEFC thickness of 99 teeth (anterior = 66, posterior = 33, male = 54, female = 45) were measured in both sections. The differences in mean values between root positions and the association of root position variation with tooth type, age, sex, and subject as well as the overall effects of age and sex were analysed using a mixed model. RESULTS First incisors and canines showed the greatest mean AFEC thickness, in contrast to premolars which had the lowest values. Differences were found across the four root positions, with a pattern varying considerably between anterior and posterior teeth and between maxilla and mandible in the anterior teeth. An interaction between root position and subject pointed to the existence of an individual component in the variation of AEFC thickness across the four root positions. There was an age trend with an almost linear increase in cementum thickness of 1 μm per year. Overall, females tended to exhibit a significantly lesser AEFC thickness compared to males. CONCLUSIONS Distinct differences in the pattern of thickness values across the four root positions in anterior and posterior teeth support the assumption that the AEFC is strongly affected by functional processes. In addition to sex-specific differences and age-related trends, the root position variation of AEFC thickness varies from individual to individual.
Collapse
Affiliation(s)
- Nicole Nicklisch
- Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | - Lukas Palaske
- Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Werner Vach
- Institute of Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Kurt W Alt
- Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
- Institute of Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Bi S, Shi G. The crucial role of periodontal ligament's Poisson's ratio and tension-compression asymmetric moduli on the evaluation of tooth displacement and stress state of periodontal ligament. J Mech Behav Biomed Mater 2023; 148:106217. [PMID: 37931551 DOI: 10.1016/j.jmbbm.2023.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
The hydrostatic stress in the periodontal ligament (PDL) evaluated by finite element analysis is considered an important indicator for determining an appropriate orthodontic force. The computed result of the hydrostatic stress strongly depends on the PDL material model used in the orthodontic simulation. This study aims to investigate the effects of PDL Poisson's ratio and tension-compression asymmetric moduli on both the simulated tooth displacement and the PDL hydrostatic stress. Three tension-compression symmetric and two asymmetric PDL constitutive models were selected to simulate the tensile and compressive behavior of a PDL specimen under uniaxial loading, and the resulting numerical results were compared with the in-vitro PDL experimental results reported in the literature. Subsequently, a tooth model was established, and the selected constitutive models and parameters were employed to assess the hydrostatic stress state in the PDL under two distinct loading conditions. The simulated results indicate that PDL Poisson's ratio and tension-compression asymmetry exert substantial influences on the simulated PDL hydrostatic stress. Conversely, the elastic modulus exhibits minimal impact on the PDL stress state under the identical loading conditions. Furthermore, the PDL models with tension-compression asymmetric moduli and appropriate Poisson's ratio yield more realistic hydrostatic stress. Hence, it is imperative to employ suitable Poisson's ratio and tension-compression asymmetric moduli for the purpose of characterizing the biomechanical response of the PDL in orthodontic simulations.
Collapse
Affiliation(s)
- Shaoyang Bi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin, 300354, China.
| | - Guangyu Shi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin, 300354, China
| |
Collapse
|
5
|
Demir O, Uslan I, Buyuk M, Salamci MU. Development and validation of a digital twin of the human lower jaw under impact loading by using non-linear finite element analyses. J Mech Behav Biomed Mater 2023; 148:106207. [PMID: 37922761 DOI: 10.1016/j.jmbbm.2023.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Mandibular fractures are one of the most frequently observed injuries within craniofacial region mostly due to tumor-related problems and traumatic events, often related to non-linear effects like impact loading. Therefore, a validated digital twin of the mandible is required to develop the best possible patient-specific treatment. However, there is a need to obtain a fully compatible numerical model that can reflect the patients' characteristics, be available and accessible quickly, require an acceptable level of modeling efforts and knowledge to provide accurate, robust and fast results at the same time under highly non-linear effects. In this study, a validated simulation methodology is suggested to develop a digital twin of mandible, capable of predicting the non-linear response of the biomechanical system under impact loading, which then can be utilized to design treatment strategies even for multiple fractures of the mandibular system. Using Computed Tomography data containing cranial (skull) images of a patient, a 3-dimensional mandibular model, which consists cortical and cancellous bones, disks and fossa is obtained with high accuracy that is compatible with anatomical boundaries. A Finite Element Model (FEM) of the biomechanical system is then developed for a three-level validation procedure including (A) modal analysis, (B) dynamic loading and (C) impact loading. For the modal analysis stage: Free-free vibration modes and frequencies of the system are validated against cadaver test results. For the dynamic loading stage: Two different regions of the mandible are loaded, and maximum stress levels of the system are validated against finite element analyses (FEA) results, where the first loading condition (i) transfers a 2000 N force acting on the symphysis region and, the second loading condition (ii) transfers a 2000 N force acting on the left body region. In both cases, equivalent muscle forces dependent on time are applied. For the impact loading stage: Thirteen different human mandibular models with various tooth deficiencies are used under the effects of traumatic impact forces that are generated by using an impact hammer with different initial velocities to transfer the impulse and momentum, where contact forces and fracture patterns are validated against cadaver tests. Five different anatomical regions are selected as the impact site. The results of the analyzes (modal, dynamic and impact) performed to validate the digital twin model are compared with the similar FEA and cadaver test results published in the literature and the results are found to be compatible. It has been evaluated that the digital twin model and numerical models are quite realistic and perform well in terms of predicting the biomechanical behavior of the mandible. The three-level validation methodology that is suggested in this research by utilizing non-linear FEA has provided a reliable road map to develop a digital twin of a biomechanical system with enough confidence that it can be utilized for similar structures to offer patient-specific treatments and can help develop custom or tailor-made implants or prosthesis for best compliance with the patient even considering the most catastrophic effects of impact related trauma.
Collapse
Affiliation(s)
- Osman Demir
- Gulhane Medical Design and Manufacturing Application and Research Center-SBU-METUM, University of Health Sciences, 06010, Ankara, Turkey; Department of Mechanical Engineering, Gazi University, 06570, Ankara, Turkey.
| | | | - Murat Buyuk
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| | - Metin Uymaz Salamci
- Department of Mechanical Engineering, Gazi University, 06570, Ankara, Turkey; Additive Manufacturing Technologies Research and Application Center-EKTAM, Gazi University, 06980, Ankara, Turkey.
| |
Collapse
|
6
|
Hassouneh L, Matoug-Elwerfelli M, Al-Omari T, Setzer FC, Nagendrababu V. Assessment of biomechanical behavior of immature non-vital incisors with various treatment modalities by means of three-dimensional quasi-static finite element analysis. Sci Rep 2023; 13:17491. [PMID: 37840093 PMCID: PMC10577137 DOI: 10.1038/s41598-023-44609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
The objectives of this study were to evaluate the stress distribution and risk of fracture of a non-vital immature maxillary central incisor subjected to various clinical procedures using finite element analysis (FEA). A three-dimensional model of an immature central incisor was developed, from which six main models were designed: untreated immature tooth (C), standard apical plug (AP), resin composite (RC), glass-fibre post (GFP), regeneration procedure (RET), and regeneration with induced root maturation (RRM). Mineral trioxide aggregate (MTA) or Biodentine® were used as an apical or coronal plug. All models simulated masticatory forces in a quasi-static approach with an oblique force of 240 Newton at a 120° to the longitudinal tooth axis. The maximum principal stress, maximum shear stress, risk of fracture, and the strengthening percentage were evaluated. The mean maximum principal stress values were highest in model C [90.3 MPa (SD = 4.4)] and lowest in the GFP models treated with either MTA and Biodentine®; 64.1 (SD = 1.7) and 64.0 (SD = 1.6) MPa, respectively. Regarding the shear stress values, the dentine tooth structure in model C [14.4 MPa (SD = 0.8)] and GFP models [15.4 MPa (SD = 1.1)] reported significantly higher maximum shear stress values compared to other tested models (p < 0.001), while no significant differences were reported between the other models (p > 0.05). No significant differences between MTA and Biodentine® regarding maximum principal stress and maximum shear stress values for each tested model (p > 0.05). A maximum strain value of 4.07E-03 and maximum displacement magnitude of 0.128 mm was recorded in model C. In terms of strengthening percentage, the GFP models were associated with the highest increase (22%). The use of a GFP improved the biomechanical performance and resulted in a lower risk of fracture of a non-vital immature maxillary central incisor in a FEA model.
Collapse
Affiliation(s)
- Layla Hassouneh
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Taher Al-Omari
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Frank C Setzer
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkateshbabu Nagendrababu
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Dastgerdi AK, Bavil AY, Rouhi G. The effects of material and structural properties of the periodontal ligament in mechanical function of tooth-PDL-bone complex in dental trauma: A sensitivity study using finiteelement analysis. Proc Inst Mech Eng H 2023:9544119231162716. [PMID: 36939175 DOI: 10.1177/09544119231162716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Periodontal ligament (PDL) plays a crucial role in transferring load from tooth to its adjacent bone, and its role is more pronounced in case of trauma, due to its shock-absorbing character, which has not been fully understood yet. Different constitutive models have correlated mechanical function of PDL with its anisotropic, inhomogeneous, non-linear elastic nature, and it was variably modeled using Finite Element (FE) simulations of dental trauma. Furthermore, since capturing accurate dimension of PDL is difficult, various thicknesses were considered for PDL in FE reconstruction process. In this study, the sensitivity of FE analyses to variation in mechanical properties, including a large range of elastic properties for a linear elastic model, also a hyper-elastic material model, and various thicknesses of PDL was investigated by developing a CT-based FE model of tooth-PDL-bone complex. Results of this study highlighted the crucial role of PDL in absorption and dissipation of energy, as well as in stress distribution within alveolar bone during dental trauma. It was observed that as Young's modulus of PDL decreases and its thickness increases, its shock-absorbing capacity would be escalated. Moreover, it was found that inclusion of PDL reduces the maximum von Mises stress exerted on the alveolar bone by about 60% in some areas, compared to the case in which the PDL is absent. Results of this work underscore the need of presenting comprehensive constitutive models to describe mechanical behavior of PDL, with the goal of understanding the behavior of a tooth-PDL-bone complex in pathological conditions, such as trauma.
Collapse
Affiliation(s)
| | | | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Limjeerajarus N, Sratong-on P, Dhammayannarangsi P, Tompkins KA, Kamolratanakul P, Phannarus K, Osathanon T, Limjeerajarus CN. Determination of the compressive modulus of elasticity of periodontal ligament derived from human first premolars. Heliyon 2023; 9:e14276. [PMID: 36938472 PMCID: PMC10018569 DOI: 10.1016/j.heliyon.2023.e14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Purpose There are two commonly cited modulus of elasticity of the human periodontal ligament (EPDL), i.e., 6.89 ✕ 10-5 GPa (E1) and 6.89 ✕ 10-2 GPa (E2), which are exactly 1000-fold different from each other. This study aims to clarify the ambiguity of the two EPDL used for simulations and determine a more accurate EPDL value of human first premolars using experimental and simulation approaches. Methods Numerical simulations using finite element analysis were performed to analyze PDL deformation under an average Asian occlusal force. To confirm the results, simple and multi-component, true-scale 3D models of a human first premolar were used in the simulations. Finally, a compression test using a universal testing machine on PDL specimens was conducted to identify the compressive EPDL of human first premolars. Results The simulation results from both models revealed that E1 was inaccurate, because it resulted in excessive PDL deformation under the average occlusal force, which should not occur during mastication. Although the E2 did not lead to excessive PDL deformation, it was obtained by an error in unit conversion with no scientific backing. In contrast, the compression test results indicated that the compressive EPDL was 9.64 ✕ 10-4 GPa (E3). In the simulation, E3 did not cause excessive PDL deformation. Conclusion The simulation results demonstrated that both commonly cited EPDL values (E1 and E2) were incorrect. Based on the experimental and simulation results, the average compressive EPDL of 9.64 ✕ 10-4 GPa is proposed as a more accurate value for human first premolars. Clinical significance The proposed more accurate EPDL would contribute to more precise and reliable FEA simulation results and provide a better understanding of the stress distribution and deformation of dental materials, which will be beneficial to precision dentistry, orthodontics and restoration designs.
Collapse
Affiliation(s)
- Nuttapol Limjeerajarus
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Center for Advanced Energy Technology, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | - Pimpet Sratong-on
- Research Center for Advanced Energy Technology, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | | | - Kevin A. Tompkins
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Krisadi Phannarus
- Dental Department, Queen Sirikit National Institute of Child Health, Bangkok, 10400, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence in Genomics and Precision Dentistry and Department of Physiology, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Wang D, Akbari A, Jiang F, Liu Y, Chen J. The effects of different types of periodontal ligament material models on stresses computed using finite element models. Am J Orthod Dentofacial Orthop 2022; 162:e328-e336. [PMID: 36307342 PMCID: PMC9722581 DOI: 10.1016/j.ajodo.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Finite element (FE) method has been used to calculate stress in the periodontal ligament (PDL), which is crucial in orthodontic tooth movement. The stress depends on the PDL material property, which varies significantly in previous studies. This study aimed to determine the effects of different PDL properties on stress in PDL using FE analysis. METHODS A 3-dimensional FE model was created consisting of a maxillary canine, its surrounding PDL, and alveolar bone obtained from cone-beam computed tomography scans. One Newton of intrusion force was applied vertically to the crown. Then, the hydrostatic stress and the von Mises stress in the PDL were computed using different PDL material properties, including linear elastic, viscoelastic, hyperelastic, and fiber matrix. Young's modulus (E), used previously from 0.01 to 1000 MPa, and 3 Poisson's ratios, 0.28, 0.45, and 0.49, were simulated for the linear elastic model. RESULTS The FE analyses showed consistent patterns of stress distribution. The high stresses are mostly concentrated at the apical area, except for the linear elastic models with high E (E >15 MPa). However, the magnitude varied significantly from -14.77 to -127.58 kPa among the analyzed patients. The E-stress relationship was not linear. The Poisson's ratio did not affect the stress distribution but significantly influenced the stress value. The hydrostatic stress varied from -14.61 to -95.48 kPa. CONCLUSIONS Different PDL material properties in the FE modeling of dentition do not alter the stress distributions. However, the magnitudes of the stress significantly differ among the patients with the tested material properties.
Collapse
Affiliation(s)
- Dongcai Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Ind; Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Ind
| | - Amin Akbari
- Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Ind
| | - Feifei Jiang
- Soft Robotics Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Yunfeng Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Ind
| | - Jie Chen
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
11
|
Haravu PN, Abraha HM, Shang M, Iriarte-Diaz J, Taylor AB, Reid RR, Ross CF, Panagiotopoulou O. Macaca mulatta is a good model for human mandibular fixation research. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220438. [PMID: 36405636 PMCID: PMC9667141 DOI: 10.1098/rsos.220438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biomechanical and clinical studies have yet to converge on the optimal fixation technique for angle fractures, one of the most common and controversial fractures in terms of fixation approach. Prior pre-clinical studies have used a variety of animal models and shown abnormal strain environments exacerbated by less rigid (single-plate) Champy fixation and chewing on the side opposite the fracture (contralateral chewing). However, morphological differences between species warrant further investigation to ensure that these findings are translational. Here we present the first study to use realistically loaded finite-element models to compare the biomechanical behaviour of human and macaque mandibles pre- and post-fracture and fixation. Our results reveal only small differences in deformation and strain regimes between human and macaque mandibles. In the human model, more rigid biplanar fixation better approximated physiologically healthy global bone strains and moments around the mandible, and also resulted in less interfragmentary strain than less rigid Champy fixation. Contralateral chewing exacerbated deviations in strain, moments and interfragmentary strain, especially under Champy fixation. Our pre- and post-fracture fixation findings are congruent with those from macaques, confirming that rhesus macaques are excellent animal models for biomedical research into mandibular fixation. Furthermore, these findings strengthen the case for rigid biplanar fixation over less rigid one-plate fixation in the treatment of isolated mandibular angle fractures.
Collapse
Affiliation(s)
- Pranav N. Haravu
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Michelle Shang
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Jose Iriarte-Diaz
- Department of Biology, The University of the South, Sewanee, TN, USA
| | | | - Russell R. Reid
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Centre, Chicago, IL, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| |
Collapse
|
12
|
Bi S, Guo Z, Zhang X, Shi G. Anchorage effects of ligation and direct occlusion in orthodontics: A finite element analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107142. [PMID: 36156441 DOI: 10.1016/j.cmpb.2022.107142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE During orthodontic treatment, the figure-of-eight ligature and the physiological occlusion play an important role in providing anchorage effects. However, their effects on reaction forces of tooth and stress state in periodontal ligament (PDL) have not been quantitatively evaluated yet. In this study, we presented a finite element analysis process for simulating posterior molar ligature and direct occlusion during orthodontics in order to quantitatively assess their anchorage effects. METHODS A high precision 3D biomechanical model containing upper and lower teeth, PDL, brackets and archwire was generated from the images of computed tomographic scan and sophisticated modelling procedures. The orthodontic treatment of closing the extraction gap was simulated via the finite element method to evaluate the biomechanical response of the molars under the conditions with or without ligation. The simulations were divided into experimental and control groups. In the experimental group, orthodontic force of 1 N was first applied, then direct occlusal forces of 3 and 10 N were applied on each opposite tooth. While in the control group, occlusal forces were applied without orthodontic treatment. The tooth displacement, the stress state in the PDL and the directions of the resultant forces on each tooth were evaluated. RESULTS In the case of molars ligated, the maximum hydrostatic stress in the molars' PDL decreases by 60%. When an initial tooth displacement of several microns occurs in response to an orthodontic force, the direction of the occlusal force changes simultaneously. Even a moderate occlusal force (3 N per tooth) can almost completely offset the mesial forces on the maxillary teeth, thus to provide effective anchorage effect for the orthodontics. CONCLUSIONS The proposed method is effective for simulating ligation and direct occlusion. Figure-of-eight ligature can effectively disperse orthodontic forces on the posterior teeth, while a good original occlusal relationship provides considerable anchorage effects in orthodontics.
Collapse
Affiliation(s)
- Shaoyang Bi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin 300354, China.
| | - Ziyuan Guo
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Xizhong Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Guangyu Shi
- Department of Mechanics, Tianjin University, 135 Yaguan Road, Tianjin 300354, China
| |
Collapse
|
13
|
Ye ZY, Ye H, Yu XX, Wang Y, Wu LJ, Ding X. Timing selection for loosened tooth fixation based on degree of alveolar bone resorption: a finite element analysis. BMC Oral Health 2022; 22:328. [PMID: 35941612 PMCID: PMC9358908 DOI: 10.1186/s12903-022-02375-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This study aimed to evaluate timing of fixation to retard bone absorption using finite element analysis(FEA). Methods Volunteer CT images were used to construct four models of mandibles with varying degrees of alveolar bone resorption. By simulating occlusal force loading, biomechanical analysis was made on the periodontal membrane, tooth root and surrounding bone (both cancellous and cortical) of mandibular dentition. Results The von Mises stress value of the periodontal structures was positively related with the degree of alveolar bone resorption, and the von Mises stress at the interface between the periodontal membrane and tooth root was increased significantly in moderate to severe periodontitis models. The von Mises stress at the interface between the periodontal cortical bone and cancellous bone was increased significantly in the severe periodontitis model. And the von Mises stress value with oblique loading showed significantly higher than vertical loading. Conclusion Teeth with moderate to severe periodontitis, loosened tooth fixation can be used to retard bone absorption.
Collapse
Affiliation(s)
- Zhang-Yan Ye
- Department of Stomatology, Pingyang Hospital Affiliated to Wenzhou Medical University, Wenzhou, 325400, Zhejiang, People's Republic of China
| | - Hao Ye
- Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xi-Xi Yu
- Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yong Wang
- Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Li-Jun Wu
- Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xi Ding
- Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China. .,Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Lahoud P, Jacobs R, Boisse P, EzEldeen M, Ducret M, Richert R. Precision medicine using patient-specific modelling: state of the art and perspectives in dental practice. Clin Oral Investig 2022; 26:5117-5128. [PMID: 35687196 DOI: 10.1007/s00784-022-04572-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/30/2022] [Indexed: 12/25/2022]
Abstract
The dental practice has largely evolved in the last 50 years following a better understanding of the biomechanical behaviour of teeth and its supporting structures, as well as developments in the fields of imaging and biomaterials. However, many patients still encounter treatment failures; this is related to the complex nature of evaluating the biomechanical aspects of each clinical situation due to the numerous patient-specific parameters, such as occlusion and root anatomy. In parallel, the advent of cone beam computed tomography enabled researchers in the field of odontology as well as clinicians to gather and model patient data with sufficient accuracy using image processing and finite element technologies. These developments gave rise to a new precision medicine concept that proposes to individually assess anatomical and biomechanical characteristics and adapt treatment options accordingly. While this approach is already applied in maxillofacial surgery, its implementation in dentistry is still restricted. However, recent advancements in artificial intelligence make it possible to automate several parts of the laborious modelling task, bringing such user-assisted decision-support tools closer to both clinicians and researchers. Therefore, the present narrative review aimed to present and discuss the current literature investigating patient-specific modelling in dentistry, its state-of-the-art applications, and research perspectives.
Collapse
Affiliation(s)
- Pierre Lahoud
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Periodontology and Oral Microbiology, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philippe Boisse
- Laboratoire de Mécanique Des Contacts Et Structures, UMR 5259, CNRS/INSA, Villeurbanne, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Maxime Ducret
- Hospices Civils de Lyon, PAM d'Odontologie, Lyon, France.,Faculty of Odontology, Lyon 1 University, Lyon, France.,Laboratoire de Biologie Tissulaire Et Ingénierie Thérapeutique, UMR5305 CNRS/UCBL, Lyon, France
| | - Raphael Richert
- Laboratoire de Mécanique Des Contacts Et Structures, UMR 5259, CNRS/INSA, Villeurbanne, France. .,Hospices Civils de Lyon, PAM d'Odontologie, Lyon, France. .,Faculty of Odontology, Lyon 1 University, Lyon, France.
| |
Collapse
|
15
|
Houg KP, Camarillo AM, Doschak MR, Major PW, Popowics T, Dennison CR, Romanyk DL. Strain Measurement within an Intact Swine Periodontal Ligament. J Dent Res 2022; 101:1474-1480. [PMID: 35689395 PMCID: PMC9605999 DOI: 10.1177/00220345221100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The periodontal ligament (PDL) provides support, proprioception, nutrition, and protection within the tooth–PDL–bone complex (TPBC). While understanding the mechanical behavior of the PDL is critical, current research has inferred PDL mechanics from finite element models, from experimental measures on complete TPBCs, or through direct measurement of isolated PDL sections. Here, transducers are used in an attempt to quantify ex vivo PDL strain. In-fiber Bragg grating (FBG) sensors are small flexible sensors that can be placed within an intact TPBC and yield repeatable strain measurements from within the PDL space. The objective of this study was to determine: 1) if the FBG strain measured from the PDL space of intact swine premolars ex vivo was equivalent to physical PDL strains estimated through finite element analysis and 2) if a change in FBG strain could be linearly related to a change in finite element strain under variable tooth displacement, applied to an intact swine TPBC. Experimentally, individual TPBCs were subjected to 2 displacements (n = 14). The location of the FBG was determined from representative micro–computed tomography images. From a linear elastic finite element model of a TPBC, the strain magnitudes at the sensor locations were recorded. An experimental ratio (i.e., FBG strain at the first displacement divided by the FBG strain at the second displacement) and a finite element ratio (i.e., finite element strain at the first displacement divided by the finite element strain at the second displacement) were calculated. A linear regression model indicated a statistically significant relationship between the experimental and finite element ratio (P = 0.017) with a correlation coefficient (R2) of 0.448. It was concluded that the FBG sensor could be used as a measure for a change in strain and thus could be implemented in applications where the mechanical properties of an intact PDL are monitored over time.
Collapse
Affiliation(s)
- K P Houg
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - A M Camarillo
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - M R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - P W Major
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - T Popowics
- Department of Oral Health Science, University of Washington, Seattle, WA, USA
| | - C R Dennison
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - D L Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.,School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Morris PJR, Cox PG, Cobb SNF. The biomechanical significance of the elongated rodent incisor root in the mandible during incision. Sci Rep 2022; 12:3819. [PMID: 35264608 PMCID: PMC8907204 DOI: 10.1038/s41598-022-07779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/23/2022] [Indexed: 11/09/2022] Open
Abstract
Rodents are characterised by a distinctive masticatory apparatus which includes a single pair of enlarged and continually growing incisors. This morphology, termed diprotodonty, has also independently evolved in a number of other mammals, including the aye-aye. This study examined the functional significance of the internal "root" of the elongated rodent-like incisor. The mandibles of four rodents and an aye-aye were modelled to exhibit incrementally shorter incisor roots. Finite element analysis was used to predict stress and strain patterns across the jaw to determine whether the length of the incisor root contributes to the resistance of mechanical forces encountered in the mandible during incision. It was found that von Mises stresses increase in the region of the mandible local to where the incisor is removed, but that the stress distribution across the wider mandible is only minimally affected. Thus, the long internal incisor appears to play a small role in resisting bending forces close to the incisor alveolus, and may act with the arch-like mandibular shape to strengthen the mandible in this region. However, the impact across the whole mandible is relatively limited, suggesting the highly elongate incisor in diprotodont mammals may be principally driven by other factors such as rapid incisor wear.
Collapse
Affiliation(s)
| | - Philip G Cox
- Hull York Medical School and Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Samuel N F Cobb
- Hull York Medical School and Department of Archaeology, University of York, York, YO10 5DD, UK
| |
Collapse
|
17
|
Tian Y, Sadowsky SJ, Brunski JB, Yuan X, Helms JA. Effects of masticatory loading on bone remodeling around teeth vs. implants: insights from a preclinical model. Clin Oral Implants Res 2022; 33:342-352. [PMID: 35051302 DOI: 10.1111/clr.13894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Teeth connect to bone via a periodontal ligament whereas implants connect to bone directly. Consequently, masticatory loads are distributed differently to periodontal versus peri-implant bone. Our objective was to determine how masticatory loading of an implant versus a tooth affected peri-implant versus periodontal bone remodeling. Our hypothesis was that strains produced by functional loading of an implant would be elevated compared to the strains around teeth, and that this would stimulate a greater degree of bone turnover around implants versus in periodontal bone. MATERIALS AND METHODS Sixty skeletally mature mice were divided into two groups. In the Implant group, maxillary first molars (mxM1) were extracted, and after socket healing, titanium alloy implants were positioned sub-occlusally. After osseointegration, implants were exposed, resin crowns were placed, and masticatory loading was initiated. In a Control group the dentition was left intact. Responses of peri-implant and periodontal bone were measured using micro-CT, histology, bone remodeling assays, and quantitative histomorphometry while bone strains were estimated using finite element (FE) analyses. CONCLUSIONS When a submerged osseointegrated implant is exposed to masticatory forces peri-implant strains are elevated, and peri-implant bone undergoes significant remodeling that culminates in new bone accrual. The accumulation of new bone functions to reduce both peri-implant strains and bone remodeling activities, equivalent to those observed around the intact dentition.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, 94305, USA
| | - Steven J Sadowsky
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, 94305, USA
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, 94305, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, 94305, USA
| |
Collapse
|
18
|
Usmanova Z, Sunbuloglu E. An in-silico approach to modeling orthodontic tooth movement using stimulus-induced external bone adaptation. J Mech Behav Biomed Mater 2021; 124:104827. [PMID: 34563810 DOI: 10.1016/j.jmbbm.2021.104827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Abstract
Bone remodeling process has been used in orthodontics to treat malposition of teeth in patients by applying stimuli outside of usual everyday loads to promote tooth movement by affecting equilibrium state of the surrounding bone tissue. Accurate modeling of long term orthodontic tooth movement (OTM) is crucial in the field of dental biomechanical research since it allows to predict the behavior and interaction of bone-tooth environment in a non-destructive way, and helps to gain more insight on how exactly tooth motion progresses over time. Existence of such predictive tools might help to avoid the adverse effects of OTM on teeth and the surrounding tissues during this clinical procedure. In this study a new numerical approach to simulating long-term OTM is proposed, that involves external bone adaptation with strain energy density of the bone taken as the stimulus parameter and bone adaptation modeled by nodal movements at the bone-tooth interface using Abaqus UMESHMOTION subroutine. Contrary to conventional re-meshing algorithms, where the mesh of resorbed-apposed bone region is constantly updated and element deletion/creation is performed for each increment, the proposed method only moves nodes without changing the initial mesh topology. For this study, a 3D model of right central maxillary incisor tooth and its surrounding maxillary bone was used for the modeling of OTM for a duration of 1 week. Two test cases were performed and the results from induced tooth motion were investigated. Results indicate tooth movement values that were quite close to clinical values provided in the literature and this method is easily applicable to validate various postulates of OTM via adapting the stimulus-adaption rate relation and patient-specific planning of orthodontic patients as well.
Collapse
Affiliation(s)
- Zumrat Usmanova
- Istanbul Technical University, Faculty of Mechanical Engineering, Inonu Cad. No:65 34437, Gumussuyu, Beyoglu - ISTANBUL, Turkey
| | - Emin Sunbuloglu
- Istanbul Technical University, Faculty of Mechanical Engineering, Inonu Cad. No:65 34437, Gumussuyu, Beyoglu - ISTANBUL, Turkey.
| |
Collapse
|
19
|
Akabane C, Pabisch S, Wagermaier W, Roschger A, Tobori N, Okano T, Murakami S, Fratzl P, Weinkamer R. The effect of aging on the nanostructure of murine alveolar bone and dentin. J Bone Miner Metab 2021; 39:757-768. [PMID: 33839951 DOI: 10.1007/s00774-021-01227-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Alveolar bone, dentin, and cementum provide a striking example of structurally different collagen-based mineralized tissues separated only by periodontal ligament. While alveolar bone is strongly remodeled, this does not hold for dentin and cementum. However, additional dentin can be deposited on the inner surface of the pulp chamber also in older age. By investigating alveolar bone and molar of mice, the aim of our study is to detect changes in the mineral nanostructure with aging. MATERIALS AND METHODS Buccal-lingual sections of the mandible and first molar from C57BL/6 mice of three different age groups (young 5 weeks, adult 22 weeks and old 23 months) were characterized using synchrotron small and wide-angle X-ray scattering. Local average thickness and length of the apatite particles were mapped with several line scans covering the alveolar bone and the tooth. RESULTS In alveolar bone, a spatial gradient was seen to develop with age with the thickest and longest particles in the distal part of the bone. The mineral particles in dentin were found to be become thicker, but then decrease of average length from adult to old animals. The mineral particle characteristics of dentin close to the pulp chamber were not only different to the rest of the tooth, but also when comparing the different age groups and even between individual animals in the same age group. CONCLUSIONS These results indicated that mineral particle characteristics were found to evolve differently between molar and alveolar bone as a function of age.
Collapse
Affiliation(s)
- Chika Akabane
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan.
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Silvia Pabisch
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Physics of Materials, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Norio Tobori
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Tomomichi Okano
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
20
|
Ovy EG, Romanyk DL, Flores Mir C, Westover L. Modelling and evaluating periodontal ligament mechanical behaviour and properties: A scoping review of current approaches and limitations. Orthod Craniofac Res 2021; 25:199-211. [PMID: 34355507 DOI: 10.1111/ocr.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
This scoping review is intended to synthesize the techniques proposed to model the tooth-periodontal ligament-bone complex (TPBC), while also evaluating the suggested periodontal ligament (PDL) material properties. It is concentrated on the recent advancements on the PDL and TPBC models, while identifying the advantages and limitations of the proposed approaches. Systematic searches were conducted up to December 2020 for articles that proposed PDL models to assess orthodontic tooth movement in Compendex, Web of Science, EMBASE, MEDLINE, PubMed, ScienceDirect, Google Scholar and Scopus databases. Although there have been many studies focused on the evaluation of PDL material properties through numerous modelling approaches, only a handful of approaches have been identified to investigate the interface properties of the PDL as a complete dynamical system (TPBC models). Past reviews on the analytical and experimental determination of the PDL properties already show a concerning range in reported output values-some nearly six orders of magnitude in difference-that strongly suggested the need for further investigation. Surprisingly, it has not yet been possible to determine a narrower range of values for the PDL material properties. Moreover, very few scientific approaches address the TPBC as an integrated complex system model. In consequence, current methods for capturing the PDL material behaviour in a clinical setting are limited and inconclusive. This synthesis encourages more systematic, pragmatic and phenomenological research in this area.
Collapse
Affiliation(s)
- Enaiyat Ghani Ovy
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Dan L Romanyk
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Flores Mir
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
JOKAR HOSSEIN, ROUHI GHOLAMREZA, ABOLFATHI NABIOLLAH. THE ROLE OF PDL-CEMENTUM ENTHESIS IN PROTECTING PDL UNDER MASTICATORY LOADING: A FINITE ELEMENT INVESTIGATION. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The function of periodontal ligament (PDL)-cementum enthesis (PCE) in transferring the mechanical stimuli within the tooth–periodontium (PDT)–bone complex was not made clear yet. This study aimed to evaluate the effects of PCE on the mechanical stimuli distribution within the PDL and alveolar bone in the tooth–PDT–bone complex under occlusal forces using the finite element method. Methods: A computed tomography-based model of alveolar bone and second premolar of mandible was constructed, in which the PDT was considered at the interface of alveolar bone and tooth. Under a 3 MPa distributed occluso-apical masticatory load, applied over the uppermost surface of crown, the von Mises strain (vMST) and strain energy density (SED) within PDL, and von Mises stress (vMSR) and SED within alveolar bone were calculated in two situations: 1. When the PCE was absent; and 2. When the PCE was present between the PDL and cementum. Results: PCE levels-off SED and vMST within PDL up to 59% and 27%, respectively, compared to the model with no PCE. Moreover, in the alveolar bone, SEDs and vMSR increased up to 28% and 30%, respectively, compared to the model without PCE. Conclusion: By including PCE in the tooth–PDT–bone model, the mechanical stimuli shifted from PDL to its surrounding alveolar bone. Thus, it can be speculated that the tooth–PDT–bone complex has the capability of reducing the risk of PDL damage, through shifting excess mechanical stimuli from PDL toward the alveolar bone, during prolonged cyclic masticatory loading, as well as while one applies nonphysiologic and therapeutic loads, such as in orthodontic tooth movement.
Collapse
Affiliation(s)
- HOSSEIN JOKAR
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - GHOLAMREZA ROUHI
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - NABIOLLAH ABOLFATHI
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
22
|
Zhong J, Pierantoni M, Weinkamer R, Brumfeld V, Zheng K, Chen J, Swain MV, Weiner S, Li Q. Microstructural heterogeneity of the collagenous network in the loaded and unloaded periodontal ligament and its biomechanical implications. J Struct Biol 2021; 213:107772. [PMID: 34311076 DOI: 10.1016/j.jsb.2021.107772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a highly heterogeneous fibrous connective tissue and plays a critical role in distributing occlusal forces and regulating tissue remodeling. Its mechanical properties are largely determined by the extracellular matrix, comprising a collagenous fiber network interacting with the capillary system as well as interstitial fluid containing proteoglycans. While the phase-contrast micro-CT technique has portrayed the 3D microscopic heterogeneity of PDL, the topological parameters of its network, which is crucial to understanding the multiscale constitutive behavior of this tissue, has not been characterized quantitatively. This study aimed to provide new understanding of such microscopic heterogeneity of the PDL with quantifications at both tissue and collagen network levels in a spatial manner, by combining phase-contrast micro-CT imaging and a purpose-built image processing algorithm for fiber analysis. Both variations within a PDL and among the PDL with different shapes, i.e. round-shaped and kidney-shaped PDLs, are described in terms of tissue thickness, fiber distribution, local fiber densities, and fiber orientation (namely azimuthal and elevation angles). Furthermore, the tissue and collagen fiber network responses to mechanical loading were evaluated in a similar manner. A 3D helical alignment pattern was observed in the fiber network, which appears to regulate and adapt a screw-like tooth motion under occlusion. The microstructural heterogeneity quantified here allows development of sample-specific constitutive models to characterize the PDL's functional and pathological loading responses, thereby providing a new multiscale framework for advancing our knowledge of this complex limited mobility soft-hard tissue interface.
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Maria Pierantoni
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Keke Zheng
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Computational biomechanical modelling of the rabbit cranium during mastication. Sci Rep 2021; 11:13196. [PMID: 34162932 PMCID: PMC8222361 DOI: 10.1038/s41598-021-92558-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, the rabbit is a particularly interesting species due to its uniquely fenestrated rostrum, the mechanical function of which is debated. In addition, the rabbit processes food through incisor and molar biting within a single bite cycle, and the potential influence of these bite modes on skull biomechanics remains unknown. This study combined the in silico methods of multi-body dynamics and finite element analysis to compute musculoskeletal forces associated with a range of incisor and molar biting, and to predict the associated strains. The results show that the majority of the cranium, including the fenestrated rostrum, transmits masticatory strains. The peak strains generated over all bites were found to be attributed to both incisor and molar biting. This could be a consequence of a skull shape adapted to promote an even strain distribution for a combination of infrequent incisor bites and cyclic molar bites. However, some regions, such as the supraorbital process, experienced low peak strain for all masticatory loads considered, suggesting such regions are not designed to resist masticatory forces.
Collapse
|
24
|
Moshfeghi M, Mitani Y, Choi B, Emamy P. Finite element simulations of the effects of an extraoral device, RAMPA, on anterosuperior protraction of the maxilla and comparison with gHu-1 intraoral device. Angle Orthod 2021; 91:804-814. [PMID: 34111243 DOI: 10.2319/020521-106.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To investigate the effects of an extraoral device, right-angle maxillary protraction appliance (RAMPA), combined with a semi-rapid maxillary expansion intraoral device (gHu-1) on the anterosuperior protraction of maxillary bone. MATERIALS AND METHODS The finite element (FE) model included craniofacial bones and all sutures. The linear assumption was assumed for the FE simulations and the material properties of bones and sutures. The gHu-1 was simulated under screw activations equal to Δx = 0.25 and 0.5 mm in the lateral direction with and without RAMPA under a set of external forces {F1 = 2.94, F2 = 1.47, F3 = 4.44} N. RESULTS Displacement contours, nodal displacements of 12 landmarks, and von Mises stresses were compared. Combining RAMPA and gHu-1 (with Δx = 0.25 mm) resulted in changes in the displacement of the front part of the maxilla near the mid-palatal suture from (0.02, -0.1, -0.02) mm to (0.02, 0.3, 0.8) mm. For gHu-1 with Δx = 0.5 mm, the displacement of the same part changed from (0.04, -0.04, -0.2) mm to (0.04, 0.3, 0) mm. Similar trends were found in other locations. CONCLUSIONS The findings are in agreement with the previous cephalometric clinical data of an 8-year-old patient and prove the positive effects of RAMPA on the anterosuperior protraction of the maxilla when it is combined with the intraoral device gHu-1. In addition, RAMPA does not interfere with the lateral expansion generated by the intraoral device.
Collapse
|
25
|
Gulabivala K, Azam I, Mahdavi-Izadi S, Palmer G, Georgiou G, Knowles JC, Y-L N. Effect of root canal irrigant (sodium hypochlorite & saline) delivery at different temperatures and durations on pre-load and cyclic-loading surface-strain of anatomically different premolars. J Mech Behav Biomed Mater 2021; 121:104640. [PMID: 34126506 DOI: 10.1016/j.jmbbm.2021.104640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/25/2022]
Abstract
AIM To evaluate the effect of NaOCl (5%) and saline (control) irrigant delivery at different temperatures and durations on pre-load and cyclic-loading tooth-surface-strain (TSS) on anatomically different premolars. METHODOLOGY Single-rooted premolars (n = 36), root-canal-prepared in standard manner, were randomly allocated to six irrigation groups: (A1) NaOCl-21 °C; (A2) NaOCl-60 °C; (A3) saline-21 °C then NaOCl-21 °C; (A4) saline-60 °C then NaOCl-21 °C; (A5) saline-21 °C then NaOCl-60 °C; (A6) saline-60 °C then NaOCl-60 °C. A1-2 received nine 10-min irrigation periods (IP) with NaOCl; A3-6 received nine 10-min IP with saline, followed by 9 IP with NaOCl at different temperature combinations. Premolars (n = 56) with single, fused or double roots prepared by standard protocol, were stratified and randomly allocated to: (B1) saline-21 °C; (B2) saline-80 °C; (B3) NaOCl-21 °C; (B4) NaOCl-80 °C. TSS (μє) was recorded pre-irrigation, post-irrigation and pre-load for each IP and during cyclic loading 2 min after each IP, over 30-274 min, using strain-gauges. Generalised linear mixed models were used for analysis. RESULTS Baseline TSS in double-rooted premolars was significantly (p=0.001) lower than in single/fused-rooted-premolars; and affected by mesial-wall-thickness (p=0.005). There was significant increase in loading-TSS (μє) after NaOCl-21 °C irrigation (p=0.01) but decrease after NaOCl-60 °C irrigation (p=0.001). TSS also increased significantly (p = 0.005) after Saline-80 °C irrigation. Pre-load "strain-shift" was noted only upon first saline delivery but every-time with NaOCl. Strain-shift negatively influenced loading-TSS after saline or NaOCl irrigation (A3-6) but was only significant for saline-21 °C. CONCLUSIONS Tooth anatomy significantly affected its strain characteristics, exhibiting limits within which strain changes occurred. Intra-canal introduction of saline or NaOCl caused non-random strain shifts without loading. Irrigation with NaOCl-21 °C increased loading tooth strain, as did saline-80 °C or NaOCl-80 °C but NaOCl-60 °C decreased it. A "chain-link" model was proposed to explain the findings and tooth biomechanics.
Collapse
Affiliation(s)
- K Gulabivala
- Unit of Endodontology, Division of Restorative Dental Science, UK.
| | - I Azam
- Unit of Endodontology, Division of Restorative Dental Science, UK
| | - S Mahdavi-Izadi
- Unit of Endodontology, Division of Restorative Dental Science, UK
| | - G Palmer
- Division of Biomaterials & Tissue Engineering; UCL Eastman Dental Institute, UK
| | - G Georgiou
- Division of Biomaterials & Tissue Engineering; UCL Eastman Dental Institute, UK
| | - J C Knowles
- Division of Biomaterials & Tissue Engineering; UCL Eastman Dental Institute, UK; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, 518-10, Anseo-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Ng Y-L
- Unit of Endodontology, Division of Restorative Dental Science, UK
| |
Collapse
|
26
|
Houg KP, Armijo L, Doschak MR, Major PW, Popowics T, Dennison CR, Romanyk DL. Experimental repeatability, sensitivity, and reproducibility of force and strain measurements from within the periodontal ligament space during ex vivo swine tooth loading. J Mech Behav Biomed Mater 2021; 120:104562. [PMID: 33971497 DOI: 10.1016/j.jmbbm.2021.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The Periodontal Ligament (PDL) is a complex connective tissue that anchors a tooth to the surrounding alveolar bone. The small size and complex geometry of the PDL space within an intact tooth-PDL-bone complex (TPBC) limits strain measurements. An in-fiber Bragg grating (FBG) sensor offers potential for such measurements due to its small size. This work defines an experimental procedure where strain and force were measured during quasi-static, apically directed, displacement-controlled tests on swine premolar crowns. Specifically, the: inter-TPBC, intra-TPBC, and long-term repeatability after a preconditioned state was objectively identified; sensitivity to preload magnitude, TPBC alignment, and sensor depth; and reproducibility within a TPBC was determined. Data clustering was used to determine the appropriate number of preconditioning trials, ranging from one to seven. Strain and force measurements showed intra-TPBC repeatability with average adjusted root mean square from the median of 28.9% of the peak strain and 4.5% of the peak force measurement. A Mann-Whitney U test generally found statistically significant differences in peak strain and force measurements between the left and right sides, suggesting a lack of inter-TPBC repeatability. Using a Friedman test, it was shown that peak strain measures were sensitive to the TPBC alignment and sensor depth, while peak force measures were sensitive to the preload and TPBC alignment. A Friedman test suggested reproducible strain and force measurements when the FBG was replaced within the same TPBC and the preload, alignment, and sensor depth were controlled.
Collapse
Affiliation(s)
- Kathryn P Houg
- Department of Mechanical Engineering, University of Alberta, 4-17 Mechanical Engineering Building, North Campus, Edmonton, T6G 2G8, AB, Canada.
| | - Leigh Armijo
- Department of Orthodontics, University of Washington School of Dentistry, 1959 NE Pacific St B307, Seattle, 98195, WA, USA.
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 2-020J Katz Centre for Pharmacy & Health Research, 11361 - 87 Avenue NW, Edmonton, T6G 2E1, AB, Canada.
| | - Paul W Major
- School of Dentistry, University of Alberta, 5-478 Edmonton Clinic Health Academy, 1405 - 87 Avenue NW, T6G 1C0, Edmonton, AB, Canada.
| | - Tracy Popowics
- Dept. of Oral Health Sciences, University of Washington School of Dentistry, Box 357475, Seattle, WA, 98195, USA.
| | - Christopher R Dennison
- Department of Mechanical Engineering, University of Alberta, 10-372 Donadeo Innovation Centre for Engineering, 9211 - 116 Street NW, Edmonton, AB, T6G 2H5, Canada.
| | - Dan L Romanyk
- Department of Mechanical Engineering and School of Dentistry, University of Alberta, 10-354 Donadeo Innovation Centre for Engineering, 9211 - 116 Street NW, Edmonton, AB, T6G 2H5, Canada.
| |
Collapse
|
27
|
Cattaneo PM, Cornelis MA. Orthodontic Tooth Movement Studied by Finite Element Analysis: an Update. What Can We Learn from These Simulations? Curr Osteoporos Rep 2021; 19:175-181. [PMID: 33538966 DOI: 10.1007/s11914-021-00664-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW To produce an updated overview of the use of finite element (FE) analysis for analyzing orthodontic tooth movement (OTM). Different levels of simulation complexity, including material properties and level of morphological representation of the alveolar complex, will be presented and evaluated, and the limitations will be discussed. RECENT FINDINGS Complex formulations of the PDL have been proposed, which might be able to correctly predict the behavior of the PDL both when chewing forces and orthodontic forces are simulated in FE models. The recent findings do not corroborate the simplified view of the classical OTM theories. The use of complex and biologically coherent FE models can help understanding the mechanisms leading to OTM as well as predicting the risk of root resorption related to specific force systems and magnitudes.
Collapse
Affiliation(s)
- Paolo M Cattaneo
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia.
| | - Marie A Cornelis
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia
| |
Collapse
|
28
|
Cementum thickening leads to lower whole tooth mobility and reduced root stresses: An in silico study on aging effects during mastication. J Struct Biol 2021; 213:107726. [PMID: 33781897 DOI: 10.1016/j.jsb.2021.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022]
Abstract
In the course of a lifetime the crowns of teeth wear off, cementum thickens and the pulp closes-in or may stiffen. Little is known about how these changes affect the tooth response to load. Using a series of finite element models of teeth attached to the jawbone, and by comparing these to a validated model of a 'young' pig 3-rooted tooth, the effects of these structural changes were studied. Models of altered teeth show a stiffer response to mastication even when material properties used are identical to those found in 'young' teeth. This stiffening response to occlusal loads is mostly caused by the thicker cementum found in 'old' teeth. Tensile stresses associated with bending of dentine in the roots fall into a narrower distribution range with lower peak values. It is speculated that this is a possible protective adaptation mechanism of the aging tooth to avoid fracture. The greatest reduction in lateral motion was seen in the bucco-lingual direction. We propose that greater tooth motion during mastication is typical for the young growing animal. This motion is reduced in adulthood, favoring less off-axis loading, possibly to counteract natural bone resorption and consequent compromised anchoring.
Collapse
|
29
|
Gauthier R, Jeannin C, Attik N, Trunfio-Sfarghiu AM, Gritsch K, Grosgogeat B. Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications. J Biomech Eng 2021; 143:030801. [PMID: 33067629 DOI: 10.1115/1.4048810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/08/2022]
Abstract
The periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament (PDL), its mechanical behavior is very dependent on the type of loading (compressive versus tensile loading; static versus cyclic loading; uniaxial versus multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the PDL make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases. This review aims to describe the structural and biomechanical properties of the PDL. Particular importance is placed in the close interrelationship that exists between structure and biomechanics: the PDL structural organization is specific to its biomechanical environment, and its biomechanical properties are specific to its structural arrangement. This balance between structure and biomechanics can be explained by a mechanosensitive periodontal cellular activity. These specifications have to be considered in the further tissue engineering strategies for the development of an efficient biomaterial for periodontal tissues regeneration.
Collapse
Affiliation(s)
- R Gauthier
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | - Christophe Jeannin
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - N Attik
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | | | - K Gritsch
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - B Grosgogeat
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| |
Collapse
|
30
|
Bemmann M, Schulz-Kornas E, Hammel JU, Hipp A, Moosmann J, Herrel A, Rack A, Radespiel U, Zimmermann E, Kaiser TM, Kupczik K. Movement analysis of primate molar teeth under load using synchrotron X-ray microtomography. J Struct Biol 2020; 213:107658. [PMID: 33207268 DOI: 10.1016/j.jsb.2020.107658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Mammalian teeth have to sustain repetitive and high chewing loads without failure. Key to this capability is the periodontal ligament (PDL), a connective tissue containing a collagenous fibre network which connects the tooth roots to the alveolar bone socket and which allows the teeth to move when loaded. It has been suggested that rodent molars under load experience a screw-like downward motion but it remains unclear whether this movement also occurs in primates. Here we use synchroton micro-computed tomography paired with an axial loading setup to investigate the form-function relationship between tooth movement and the morphology of the PDL space in a non-human primate, the mouse lemur (Microcebus murinus). The loading behavior of both mandibular and maxillary molars showed a three-dimensional movement with translational and rotational components, which pushes the tooth into the alveolar socket. Moreover, we found a non-uniform PDL thickness distribution and a gradual increase in volumetric proportion of the periodontal vasculature from cervical to apical. Our results suggest that the PDL morphology may optimize the three-dimensional tooth movement to avoid high stresses under loading.
Collapse
Affiliation(s)
- Maximilian Bemmann
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Ellen Schulz-Kornas
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany; Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Alexander Hipp
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Alexander Rack
- ESRF The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Thomas M Kaiser
- Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
31
|
Wu J, Liu Y, Li B, Wang D, Dong X, Sun Q, Chen G. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: a case study. Clin Oral Investig 2020; 25:1569-1577. [PMID: 32951122 DOI: 10.1007/s00784-020-03467-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar to determine tooth movements during orthodontic treatment using hydrostatic stress and logarithmic strain on the periodontal ligament (PDL) as indicators by numerical simulations. MATERIAL AND METHODS Teeth, PDL and alveolar bone numerical models were constructed as analytical objects based on computed tomography (CT) images. Teeth were assumed to be rigid bodies, and rotational moments ranging from 1.0 to 4.0 Nmm were exerted on the crowns. PDL was defined as a hyperelastic-viscoelastic material with a uniform thickness of 0.25 mm. The alveolar bone model was constructed using a non-uniform material with varied mechanical properties determined based on Hounsfield unit (HU) values calculated using CT images, and its bottom was fixed completely. The optimal range values of PDL compressive and tensile stress were set as 0.47-12.8 and 18.8-51.2 kPa, respectively, whereas that of PDL logarithmic strain was set as 0.15-0.3%. RESULTS The rotational tendency of PDL was around the long axis of teeth when loaded. The optimal range values of rotational moment for the mandibular lateral incisor, canine and first premolar were 2.2-2.3, 3.0-3.1 and 2.8-2.9 Nmm, respectively, referring to the biomechanical responses of loaded PDL. Primarily, the optimal range of rotational moment was quadratically dependent on the area of PDL internal surface (i.e. area of PDL internal surface was used to indicate PDL size), as described by the fitting formula. CONCLUSIONS Biomechanical responses of PDL can be used to estimate the optimal range of rotational moment for teeth. These rotational moments were not consistent for all teeth, as demonstrated by numerical simulations. CLINICAL RELEVANCE The quantitative relationship between the area of PDL internal surface and the optimal orthodontic moment can help orthodontists to determine a more reasonable moment and further optimise clinical treatment.
Collapse
Affiliation(s)
- Jianlei Wu
- Sino-German Institute of Intelligent Manufacturing, Ningbo Polytechnic, Ningbo, 315800, China.,Seal R&D Department, Jianxin Zhao Group Co., Ltd, Ningbo, 315600, China
| | - Yunfeng Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China. .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Boxiu Li
- Department of Orthodontics of Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, China
| | - Dongcai Wang
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xingtao Dong
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Qianli Sun
- Sino-German Institute of Intelligent Manufacturing, Ningbo Polytechnic, Ningbo, 315800, China
| | - Gang Chen
- Sino-German Institute of Intelligent Manufacturing, Ningbo Polytechnic, Ningbo, 315800, China
| |
Collapse
|
32
|
Connizzo BK, Naveh GRS. In situ AFM-based nanoscale rheology reveals regional non-uniformity in viscoporoelastic mechanical behavior of the murine periodontal ligament. J Biomech 2020; 111:109996. [PMID: 32861150 DOI: 10.1016/j.jbiomech.2020.109996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) is a critical player in the maintenance of tooth health, acting as the primary stabilizer of tooth position. Recent studies have identified two unique regions within the PDL, the 'dense collar' region and the 'furcation' region, which exhibit distinct structural and compositional differences. However, specific functional differences between these regions have yet to be investigated. We adapted an AFM-based nanoscale rheology method to regionally assess mechanical properties and poroelasticity in the mouse PDL while minimizing the disruption of the 3-dimensional native boundary conditions, and then explored tissue mechanical function in four different regions within the dense collar as well as in the furcation region. We found significant differences between the collar and furcation regions, with the collar acting as a stabilizing ligamentous structure and the furcation acting as both a compressive cushion for vertical forces and a conduit for nutrient transport. While this finding supports our hypothesis, based on previous studies investigating structural and compositional differences, we also found surprising inhomogeneity within the collar region itself. This inhomogeneity supports previous findings of a tilting movement in the buccal direction of mandibular molar teeth and the structural adaptation to prevent lingual movement. Future work will aim to understand how different regions of the PDL change functionally during biological or mechanical perturbations, such as orthodontic tooth movement, development, or aging, with the ultimate goal of better understanding the mechanobiology of the PDL function in health and disease.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Gili R S Naveh
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| |
Collapse
|
33
|
Lin GSS, Ghani NRNA, Ismail NH, Singbal K, Murugeshappa DG, Mamat N. Fracture strength of endodontically treated lateral incisors restored with new zirconia reinforced rice husk nanohybrid composite. J Clin Exp Dent 2020; 12:e762-e770. [PMID: 32913574 PMCID: PMC7474937 DOI: 10.4317/jced.56864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to compare the fracture strength, fracture pattern and type of fracture of endodontically treated maxillary lateral incisors restored with new zirconia reinforced rice husk nanohybrid composite.
Material and Methods Eighty mature permanent maxillary lateral incisors from patients age range of 30-60 years with single canal were selected and randomly divided into: Group 1 – RCT + nanofilled composite (Filtek), Group 2 – RCT + microhybrid composite (Zmack), Group 3 – RCT + new nanohybrid composite (Zr-Hybrid) and Group 4 - Intact teeth (control). Standardized mesio-palatal-distal cavity was prepared, and endodontic treatment was carried out using crown-down technique until size 30, tapered 0.04. Obturation was completed using single cone technique with gutta-percha and AH plus sealer. Cavity access was restored with respective composite resins. Next, teeth were stored in incubator for 24 hours and subdivided into aged and unaged subgroups. Teeth in aged subgroups were subjected to 2500 thermal cycles for 5ºC, 37ºC and 55ºC with 30 seconds dwell time and 5 seconds transfer time. After that, root surfaces of teeth were covered with silicone-based material and placed in boxes filled with acrylic until the cemento-enamel-junction (CEJ) level. They were then tested under Universal Testing Machine until fracture occurred. Samples were then viewed under Leica microscope to determine the fracture pattern and type of fracture. Data analyzed using One-way ANOVA complimented by post hoc Tukey HSD and paired sample T test for fracture strength. Fracture pattern and type of fracture were analyzed using Chi-square test. Level of significance was set at p<0.05.
Results Significant differences were observed (p<0.05) with Group 3 demonstrating the highest fracture strength followed by Group 4, Group 1 and lastly Group 2 in both aged and unaged subgroups respectively. A significant decreased in fracture strength was noted in Group 1 and Group 2 (p<0.05) as number of thermocycle increased but no significant differences were noted in Group 3 and Group 4 (p>0.05). Besides, Group 3 and Group 4 showed higher rate of favorable fracture pattern, followed by Group 1 and lastly Group 2. Most favorable fracture pattern was noted to exhibit horizontal fracture type (86.36%), whereas most unfavorable fracture pattern exhibited vertical fracture type (77.78%).
Conclusions Endodontically treated teeth restored with new zirconia reinforced rice husk nanohybrid composite (Zr-Hybrid) demonstrated higher fracture strength than commercialized composite resins especially after artificial ageing. Zr-Hybrid showed similar fracture pattern to those of intact teeth with higher rate of horizontal fracture type. Key words:Fracture strength, fracture pattern, composite resin, rice husk, Zirconia.
Collapse
Affiliation(s)
- Galvin-Sim-Siang Lin
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Nik-Rozainah-Nik-Abdul Ghani
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Noor-Huda Ismail
- Prosthodontic Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Kiran Singbal
- Department of Restorative Dentistry, Faculty of Dentistry, Mahsa University, Bandar Saujana Putra, 42610, Selangor, Malaysia
| | | | - Noraida Mamat
- Paediatric Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
34
|
Karimi Dastgerdi A, Rouhi G, Dehghan MM, Farzad-Mohajeri S, Barikani HR. Linear Momenta Transferred to the Dental Implant-Bone and Natural Tooth-PDL-Bone Constructs Under Impact Loading: A Comparative in-vitro and in-silico Study. Front Bioeng Biotechnol 2020; 8:544. [PMID: 32596223 PMCID: PMC7303479 DOI: 10.3389/fbioe.2020.00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
During dental trauma, periodontal ligament (PDL) contributes to the stability of the tooth-PDL-bone structure. When a dental implant is inserted into the bone, the dental implant-bone construct will be more prone to mechanical damage, caused by impact loading, than the tooth-PDL-bone construct. In spite of the prevalence of such traumas, the behavioral differences between these two constructs have not been well-understood yet. The main goal of this study was to compare the momentum transferred to the tooth-PDL-bone and dental implant-bone constructs under impact loading. First, mechanical impact tests were performed on six canine mandibles of intact (N = 3) and implanted (N = 3) specimens using a custom-made drop tower apparatus, from release heights of 1, 2, and 3 cm. Next, computed tomography-based finite element models were developed for both constructs, and the transferred momenta were calculated. The experimental results indicated that, for the release heights of 1, 2, and 3 cm, the linear momenta transferred to the dental implant-bone construct were 33.1, 31.0, and 27.5% greater than those of the tooth-PDL-bone construct, respectively. Moreover, results of finite element simulations were in agreement with those of the experimental tests (error <7.5%). This work tried to elucidate the effects of impact loading on the dental implant-bone and tooth-PDL-bone constructs using both in-vitro tests and validated in-silico simulations. The findings can be employed to modify design of the current generation of dental implants, based on the lessons one can take from the biomechanical behavior of a natural tooth structure.
Collapse
Affiliation(s)
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | | | - Hamid Reza Barikani
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone 2020; 133:115250. [PMID: 31981754 PMCID: PMC7383936 DOI: 10.1016/j.bone.2020.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.
Collapse
Affiliation(s)
- Peter Varga
- AO Research Institute Davos, Davos, Switzerland.
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Fleck C, Burke M, Ganzosch G, Müller C, Currey JD, Zaslansky P. Breaking crown dentine in whole teeth: 3D observations of prevalent fracture patterns following overload. Bone 2020; 132:115178. [PMID: 31816420 DOI: 10.1016/j.bone.2019.115178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Teeth with intact crowns rarely split or fracture, despite decades of cyclic loading and occasional unexpected overload. This is largely attributed to the presence of dentine, since cracking and fracture of enamel have been frequently reported. Dentine is similar to bone, comprising mineralised collagen fibres as a main constituent. Unlike cortical bone, however, where microcracking and damage arrest are essential for re/modelling and healing, dentine can neither remodel nor regenerate. This raises questions regarding the evolutionary benefits of toughening, leading to uncertainty whether cracks actually appear in dentine in situ. Here we study the notion that circumpulpal dentine is usually protected against, rather than damaged by severe overloads, even though it is not much more massive or stronger than it needs to be. To address this, we examined hydrated teeth still within whole jawbones of freshly-slaughtered skeletally mature pigs, mechanically loaded until fracture. Force displacement curves, optical and electron microscopy combined with 3D microstructural analysis by conventional micro-computed tomography (μCT) revealed mostly brittle fracture paths in circumpulpal crown dentine. Once overload cracks reach this mass of dentine they propagate rapidly along straight paths often parallel to the enamel flanks of the oblong shovel shaped premolars. We find infrequent signs of active toughening mechanisms with minimal crack diversion, ligament bridging and microcracking. When such toughening is seen, it mainly appears in softer dentine in the root, or near the dentine-enamel-junction (DEJ) in mantle dentine. We observed shear bands in overloaded circumpulpal dentine, due to mutual gliding of upper and lower segments. These shear bands are formed as periodic arrays of rotated dentine fragments. The 3D data consistently demonstrate the importance of the layered tooth structure, containing a stiff outer enamel shell, a soft sub-DEJ interlayer and a stiff circumpulpal dentine bulk, for deflecting cracks from splitting the tooth.
Collapse
Affiliation(s)
- Claudia Fleck
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany.
| | - Martin Burke
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department for Operative and Preventive Dentistry, Aßmannshauser Str. 4-6, 14297 Berlin, Germany
| | - Gregor Ganzosch
- Technische Universität Berlin, Institute of Mechanics, Chair of Continuum Mechanics and Materials Theory, Einsteinufer 5 - Sekr. MS2, 10587 Berlin, Germany
| | - Cecilia Müller
- Technische Universität Berlin, Chair of Materials Science and Engineering, Institute of Materials Science and Technologies, Str. des 17. Juni 136 - Sekr. EB13, 10623 Berlin, Germany
| | - John D Currey
- The University of York, Department of Biology, Wentworth Way, York YO10 5DD, United Kingdom
| | - Paul Zaslansky
- Charité - Universitätsmedizin Berlin, Department for Operative and Preventive Dentistry, Aßmannshauser Str. 4-6, 14297 Berlin, Germany.
| |
Collapse
|
37
|
Ortún-Terrazas J, Cegoñino J, Pérez Del Palomar A. In silico study of cuspid' periodontal ligament damage under parafunctional and traumatic conditions of whole-mouth occlusions. A patient-specific evaluation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105107. [PMID: 31629157 DOI: 10.1016/j.cmpb.2019.105107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Although traumatic loading has been associated with periodontal ligament (PDL) damage and therefore with several oral disorders, the damage phenomena and the traumatic loads involved are still unclear. The complex composition and extremely thin size of the PDL make experimentation difficult, requiring computational studies that consider the macroscopic loading conditions, the microscopic composition and fine detailed geometry of the tissue. In this study, a new methodology to analyse the damage phenomena in the collagen network and the extracellular matrix of the PDL caused by parafunctional and traumatic occlusal forces was proposed. METHODS The entire human mandible and a portion thereof containing a full cuspid tooth were separately modelled using finite element analysis based on computed tomography and micro-computed tomography images, respectively. The first model was experimentally validated by occlusion analysis and subjected to the muscle loads produced during hard and soft chewing, traumatic cuspid occlusion, grinding, clenching, and simultaneous grinding and clenching. The occlusal forces computed by the first model were subsequently applied to the single tooth model to evaluate damage to the collagen network and the extracellular matrix of the PDL. RESULTS Early occlusal contact on the left cuspid tooth guided the mandible to the more occluded side (16.5% greater in the right side) and absorbed most of the lateral load. The intrusive occlusal loads on the posterior teeth were 0.77-13.3% greater than those on the cuspid. According to our findings, damage to the collagen network and the extracellular matrix of the PDL could occur in traumatic and grinding conditions, mainly due to fibre overstretching (>60%) and interstitial fluid overpressure (>4.7 kPa), respectively. CONCLUSIONS Our findings provide important biomechanical insights into the determination of damage mechanisms which are caused by mechanical loading and the key role of the porous-fibrous behaviour of the PDL in parafunctional and traumatic loading scenarios. Besides, the 3D loading conditions computed from occlusal contacts will help future studies in the design of new orthodontics appliances and encourage the application of computing methods in medical practice.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
38
|
Mehari Abraha H, Iriarte-Diaz J, Ross CF, Taylor AB, Panagiotopoulou O. The Mechanical Effect of the Periodontal Ligament on Bone Strain Regimes in a Validated Finite Element Model of a Macaque Mandible. Front Bioeng Biotechnol 2019; 7:269. [PMID: 31737614 PMCID: PMC6831558 DOI: 10.3389/fbioe.2019.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
The primary anatomical function of the periodontal ligament (PDL) is to attach teeth to their sockets. However, theoretical and constitutive mechanical models have proposed that during mastication the PDL redistributes local occlusal loads and reduces the jaw's resistance to torsional deformations. These hypotheses imply that accurately modeling the PDL's material properties and geometry in finite element analysis (FEA) is a prerequisite to obtaining precise strain and deformation data. Yet, many finite element studies of the human and non-human primate masticatory apparatus exclude the PDL or model it with simplicity, in part due to limitations in μCT/CT scan resolution and material property assignment. Previous studies testing the sensitivity of finite element models (FEMs) to the PDL have yielded contradictory results, however a major limitation of these studies is that FEMs were not validated against in vivo bone strain data. Hence, this study uses a validated and subject specific FEM to assess the effect of the PDL on strain and deformation regimes in the lower jaw of a rhesus macaque (Macaca mulatta) during simulated unilateral post-canine chewing. Our findings demonstrate that the presence of the PDL does influence local and global surface strain magnitudes (principal and shear) in the jaw. However, the PDL's effect is limited (diff. ~200-300 με) in areas away from the alveoli. Our results also show that varying the PDL's Young's Modulus within the range of published values (0.07-1750 MPa) has very little effect on global surface strains. These findings suggest that the mechanical importance of the PDL in FEMs of the mandible during chewing is dependent on the scope of the hypotheses being tested. If researchers are comparing strain gradients across species/taxa, the PDL may be excluded with minimal effect on results, but, if researchers are concerned with absolute strain values, sensitivity analysis is required.
Collapse
Affiliation(s)
- Hyab Mehari Abraha
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose Iriarte-Diaz
- Department of Biology, The University of the South, Sewanee, TN, United States
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Andrea B. Taylor
- Department of Basic Science, Touro University, Vallejo, CA, United States
| | - Olga Panagiotopoulou
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Schmidt F, Lapatki BG. Effect of variable periodontal ligament thickness and its non-linear material properties on the location of a tooth's centre of resistance. J Biomech 2019; 94:211-218. [PMID: 31427090 DOI: 10.1016/j.jbiomech.2019.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
In orthodontics, the 3D translational and rotational movement of a tooth is determined by the force-moment system applied and the location of the tooth's centre of resistance (CR). Because of the practical constraints of in-vivo experiments, the finite element (FE) method is commonly used to determine the CR. The objective of this study was to investigate the geometric model details required for accurate CR determination, and the effect of material non-linearity of the periodontal ligament (PDL). A FE model of a human lower canine derived from a high-resolution µCT scan (voxel size: 50 µm) was investigated by applying four different modelling approaches to the PDL. These comprised linear and non-linear material models, each with uniform and realistic PDL thickness. The CR locations determined for the four model configurations were in the range 37.2-45.3% (alveolar margin: 0%; root apex: 100%). We observed that a non-linear material model introduces load-dependent results that are dominated by the PDL regions under tension. Load variation within the range used in clinical orthodontic practice resulted in CR variations below 0.3%. Furthermore, the individualized realistic PDL geometry shifted the CR towards the alveolar margin by 2.3% and 2.8% on average for the linear and non-linear material models, respectively. We concluded that for conventional clinical therapy and the generation of representative reference data, the least sophisticated modelling approach with linear material behaviour and uniform PDL thickness appears sufficiently accurate. Research applications that require more precise treatment monitoring and planning may, however, benefit from the more accurate results obtained from the non-linear constitutive law and individualized realistic PDL geometry.
Collapse
Affiliation(s)
- Falko Schmidt
- Department of Orthodontics, Centre of Dentistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Bernd Georg Lapatki
- Department of Orthodontics, Centre of Dentistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
40
|
Limjeerajarus N, Dhammayannarangsi P, Phanijjiva A, Tangsripongkul P, Jearanaiphaisarn T, Pittayapat P, Limjeerajarus CN. Comparison of ultimate force revealed by compression tests on extracted first premolars and FEA with a true scale 3D multi-component tooth model based on a CBCT dataset. Clin Oral Investig 2019; 24:211-220. [PMID: 31079245 DOI: 10.1007/s00784-019-02919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to develop a new method for creating a multi-component and true scale 3-dimensional (3D) model of a human tooth based on cone-beam computed tomography (CBCT) images. MATERIALS AND METHODS First maxillary premolar tooth model was reconstructed from a patient's CBCT images. The 2D serial sections were used to create the 3D model. This model was used for finite element analysis (FEA). Model validation was performed by comparing the ultimate compressive force (UF) obtained experimentally using a universal testing machine and from simulation. The simulations of three component-omitting models (silicone, cementum, and omitting both) were performed to analyze the maximum (max.) principal stress and stress distribution. RESULTS The simulation-based UF indicating tooth fracture was 637 N, while the average UF in the in vitro loading was 651 N. The discrepancy between the simulation-based UF and the experimental UF was 2.2%. From the simulation, the silicone-omitting models showed a significant change in max. principal stress, resulting in a UF error of 26%, whereas there was no notable change in the cementum-omitting model. CONCLUSION This study, for the first time, developed a true scale multi-component 3D model from CBCT for predicting stress distribution in a human tooth. CLINICAL RELEVANCE This study proposed a method to create 3D modeling from CBCT in a true scale and multi-component manner. The PDL-like component-omitting simulation led to a higher error value of UF, indicating the importance of multi-component tooth modeling in FEA. Tooth 3D modeling could help determine mechanical failure in dental treatments in a more precise manner.
Collapse
Affiliation(s)
- Nuttapol Limjeerajarus
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | - Phetcharat Dhammayannarangsi
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | - Anon Phanijjiva
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | - Pavita Tangsripongkul
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanomsuk Jearanaiphaisarn
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pisha Pittayapat
- Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
41
|
Madeira S, Mesquita-Guimarães J, Ribeiro P, Fredel M, Souza JCM, Soares D, Silva FS, Henriques B. Y-TZP/porcelain graded dental restorations design for improved damping behavior - A study on damping capacity and dynamic Young's modulus. J Mech Behav Biomed Mater 2019; 96:219-226. [PMID: 31055212 DOI: 10.1016/j.jmbbm.2019.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/12/2023]
Abstract
The development of dental restorative materials that mimic tooth-like properties provided by graded structures, aesthetics and properties such as strength, damping capacity and the ability for a continuous remodeling according to the biomechanical solicitation is a great challenge. In this work, damping capacity and dynamic Young's modulus of Y-TZP/porcelain composites for all-ceramic dental restorations were studied. These mechanical properties were assessed by dynamic mechanical analyses (DMA) at frequencies of 1, 5 and 10 Hz, over a temperature ranging from 0 to 60 °C, simulating extreme conditions when a cold or hot drink is experienced. The results showed that porcelain and porcelain-matrix composites exhibited higher damping capacity while Y-TZP and Y-TZP-matrix composites presented higher dynamic Young's modulus. Furthermore, while damping capacity is strongly influenced by the temperature, no significant difference in dynamic Young's modulus was found. For both damping and modulus properties, no significant influence of frequency was found for the tested materials. Based on the obtained results and also on the known advantages of the graded Y-TZP/porcelain structures over traditional bi-layer solutions (e.g., improved bending strength, enhanced mechanical and thermal stress distribution), a novel design of all-ceramic restoration with damping capacity has been proposed at the end of this study. A positive impact on the long-term performance of these all-ceramic restorations may be expected.
Collapse
Affiliation(s)
- S Madeira
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
| | - J Mesquita-Guimarães
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
| | - P Ribeiro
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - M Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil
| | - J C M Souza
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - D Soares
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - F S Silva
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Bruno Henriques
- Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil; School of Dentistry (DODT), Post-Graduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
42
|
Ortún-Terrazas J, Cegoñino J, Santana-Penín U, Santana-Mora U, Pérez Del Palomar A. A porous fibrous hyperelastic damage model for human periodontal ligament: Application of a microcomputerized tomography finite element model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3176. [PMID: 30628171 DOI: 10.1002/cnm.3176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The periodontal ligament (PDL) is a soft biological tissue that connects the tooth with the trabecular bone of the mandible. It plays a key role in load transmission and is primarily responsible for bone resorption and most common periodontal diseases. Although several numerical studies have analysed the biomechanical response of the PDL, most did not consider its porous fibrous structure, and only a few analysed damage to the PDL. This study presents an innovative numerical formulation of a porous fibrous hyperelastic damage material model for the PDL. The model considers two separate softening phenomena: fibre alignment during loading and fibre rupture. The parameters for the material model characterization were fitted using experimental data from the literature. Furthermore, the experimental tests used for characterization were computationally modelled to verify the material parameters. A finite element model of a portion of a human mandible, obtained by microcomputerized tomography, was developed, and the proposed constitutive model was implemented for the PDL. Our results confirm that damage to the PDL may occur mainly because of overpressure of the interstitial fluid, while large forces must be applied to damage the PDL fibrous network. Moreover, this study clarifies some aspects of the relationship between PDL damage and the bone remodelling process.
Collapse
Affiliation(s)
- Javier Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Urbano Santana-Penín
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Urbano Santana-Mora
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
43
|
Damping and mechanical behavior of metal-ceramic composites applied to novel dental restorative systems. J Mech Behav Biomed Mater 2019; 90:239-247. [DOI: 10.1016/j.jmbbm.2018.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022]
|
44
|
Wu JL, Liu YF, Peng W, Dong HY, Zhang JX. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J Zhejiang Univ Sci B 2018; 19:535-546. [PMID: 29971992 DOI: 10.1631/jzus.b1700195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament (PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g (100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 kPa (capillary pressure) and 12.8 kPa (80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24% (80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces (40-44 g for distal-direction and 28-32 g for labial-direction) were smaller than the translation forces (130-137 g for distal-direction and 110-124 g for labial-direction). In addition, the optimal forces for labial-direction motion (110-124 g for translation and 28-32 g for tipping) were smaller than those for distal-direction motion (130-137 g for translation and 40-44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans.
Collapse
Affiliation(s)
- Jian-Lei Wu
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014, China
| | - Yun-Feng Liu
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014, China
| | - Wei Peng
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014, China
| | - Hui-Yue Dong
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xing Zhang
- Department of Stomatology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| |
Collapse
|
45
|
Mechanical Properties of the Periodontal System and of Dental Constructs Deduced from the Free Response of the Tooth. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:4609264. [PMID: 30310558 PMCID: PMC6166376 DOI: 10.1155/2018/4609264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022]
Abstract
The biomechanical behaviour of the periodontal ligament (PDL) is still not well understood although this topic has been studied for almost 100 years. This study reports on clinical and mathematical studies to determine the constitutive law of the PDL. A set of mechanical parameters of the tooth-PDL system is obtained, and a new method for the evaluation of these parameters from the free response of the tooth is introduced. This response is produced by repeated impacts applied to the gingival tissue in the apical part of the tooth investigated—with the aid of a Periotest exciter. A Doppler ultrasound probe is utilized to determine the response of the tooth-PDL system. The parameters evaluated from these measurements can be considered as the elastometric properties of the dental system investigated. A modal analysis/system identification method is utilized to estimate these parameters. The investigations are carried out for different teeth abutments, both with and without a dental bridge/fixed partial prosthesis (FPP). The differences between the responses of the systems in these two cases are determined with the new method proposed. They are discussed with regard to the specific purposes of the FPP. The study demonstrates that this method can provide the dentist with the necessary objective evaluations regarding the properties and health of the tooth-PDL system, as well as of the construct that is obtained after installing a dental bridge.
Collapse
|
46
|
Pei D, Hu X, Jin C, Lu Y, Liu S. Energy Storage and Dissipation of Human Periodontal Ligament during Mastication Movement. ACS Biomater Sci Eng 2018; 4:4028-4035. [DOI: 10.1021/acsbiomaterials.8b00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Nonlinear Biomechanical Characteristics of the Schneiderian Membrane: Experimental Study and Numerical Modeling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2829163. [PMID: 30035119 PMCID: PMC6033247 DOI: 10.1155/2018/2829163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 01/21/2023]
Abstract
Objective The aim of this study is to quantify the nonlinear mechanical behavior of the Schneiderian membrane. Methods Thirty cadaveric maxillary sinus membrane specimens were divided into the elongation testing group and the perforation testing group. Mechanical experimental measurements were taken via ex vivo experiments. Theoretical curves were compared with experimental findings to assess the effectiveness of the nonlinear mechanical properties. The FE model with nonlinear mechanical properties was used to simulate the detachment of the Schneiderian membrane under loading. Results The mean thickness of the membrane samples was 1.005 mm. The mean tensile strength obtained by testing was 6.81 N/mm2. In membrane perforation testing, the mean tensile strength and the linear elastic modulus were significantly higher than those in membrane elongation testing (P < 0.05). The mean adhesion force between the Schneiderian membrane and the bone was 0.052 N/mm. By FE modeling, the squared correlation coefficients of theoretical stress-strain curves for the nonlinear and linear models were 0.99065 and 0.94656 compared with the experimental data. Conclusions The biomechanical properties of the Schneiderian membrane were implemented into the FE model, which was applied to simulate the mechanical responses of the Schneiderian membrane in sinus floor elevation.
Collapse
|
48
|
Ortún-Terrazas J, Cegoñino J, Santana-Penín U, Santana-Mora U, Pérez Del Palomar A. Approach towards the porous fibrous structure of the periodontal ligament using micro-computerized tomography and finite element analysis. J Mech Behav Biomed Mater 2017; 79:135-149. [PMID: 29304428 DOI: 10.1016/j.jmbbm.2017.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022]
Abstract
The periodontal ligament (PDL) is a porous and fibrous soft tissue situated around the tooth, which plays a key role in the transmission of loads from the tooth to the alveolar bone of the mandible. Although several studies have tried to characterize its mechanical properties, the behaviour of this tissue is not clear yet. In this study, a new simulation methodology based on a material model which considers the contribution of porous and fibrous structure with different material model formulations depending on the effort direction is proposed. The defined material model was characterized by a non-linear approximation of the porous fibrous matrix to experimental results obtained from samples of similar species and was validated by rigorous test simulations under tensile and compressive loads. The global PDL response was also validated using the parameters of the characterization in a finite element model of full human canine tooth obtained by micro-tomography. The results suggest that the porous contribution has high influence during compression because the bulk modulus of the material depends on the ability of interstitial fluid to drain. On the other hand, the collagen fibres running along the load direction are the main responsible of the ligament stiffness during tensile efforts. Thus, a material model with distinct responses depending of the load direction is proposed. Furthermore, the results suggest the importance of considering 3D finite element models based of the real morphology of human PDL for representing the irregular stress distribution caused by the coupling of complex material models and irregular morphologies.
Collapse
Affiliation(s)
- J Ortún-Terrazas
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - J Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - U Santana-Penín
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - U Santana-Mora
- School of Dentistry, Faculty of Medicine and Odontology, Santiago de Compostela University, Santiago de Compostela, Spain
| | - A Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
49
|
WU BIN, ZHU YUNYUN, LU RUXIN, YAN BIN, FU YIPENG, ZHAO SIYU, HUANG HUIXIANG. RESEARCH OF MAXILLARY IMPACTED CANINE IN ORTHODONTIC TREATMENT BASED ON NANOINDENTATION EXPERIMENTS. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417400292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study selected the maxillary labial impacted canine as the research object to build the model of periodontal ligament (PDL) and simulate the process of orthodontic treatment. This paper obtained stress–strain curve by calculating and analyzing the data of nanoindentation experiments. The parameters were identified through curve fittings by ABAQUS. The fitting results show that the third-order Ogden model is in good agreement with the experimental data which demonstrate that the third-order Ogden model is able to reflect the material properties of the PDL. In this paper, orthodontic process of the maxillary labial impacted canine was simulated. The results show that inside and outside surfaces of PDL all have stress variation, the stress on the root apex and dental cervix of PDL is relatively large, the maximum appears at dental cervix and the minimum appears close to tooth impedance center.
Collapse
Affiliation(s)
- BIN WU
- Department of Mechanical and Electronic Engineering, Nanjing Forestry University, 210037 Nanjing, P. R. China
| | - YUNYUN ZHU
- Department of Mechanical and Electronic Engineering, Nanjing Forestry University, 210037 Nanjing, P. R. China
| | - RUXIN LU
- Department of Mechanical and Electronic Engineering, Nanjing Forestry University, 210037 Nanjing, P. R. China
| | - BIN YAN
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029 Nanjing, P. R. China
| | - YIPENG FU
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029 Nanjing, P. R. China
| | - SIYU ZHAO
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029 Nanjing, P. R. China
| | - HUIXIANG HUANG
- Department of Mechanical Engineering, Nanjing Institute of Technology, 211167 Nanjing, P. R. China
| |
Collapse
|