1
|
Zhan J, Kong Y, Zhou X, Gong H, Chen Q, Zhang X, Zhang J, Wang Y, Huang W. 3D printing of wearable sensors with strong stretchability for myoelectric rehabilitation. Biomater Sci 2025; 13:1021-1032. [PMID: 39815832 DOI: 10.1039/d4bm01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF. Our proposed solution leverages polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as core materials, ingeniously incorporating wood pulp nano celluloses (CNF-P)-Na+ to enhance the structural integrity. Additionally, the inclusion of nano-silica particles further augments the sensor's capabilities, enabling the creation of a stress-sensitive mineral ionization hydrogel sensor. This innovative approach not only capitalizes on the superior rheological properties of the materials but also, through advanced 3D printing technology, facilitates the production of a micro-scale structural hydrogel sensor with unparalleled sensitivity, stability, and durability. The potential of this sensor in the realm of human motion detection is nothing short of extraordinary. This development can potentially improve the treatment landscape for EMG-BF offering patients more convenient and efficient therapeutic options.
Collapse
Affiliation(s)
- Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| |
Collapse
|
2
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
3
|
Li Z, Liang Y, Wan J, Zhu W, Wang Y, Chen Y, Lu B, Zhu J, Zhu C, Zhang X. Physically cross-linked organo-hydrogels for friction interfaces in joint replacements: design, evaluation and potential clinical applications. J Mater Chem B 2023; 11:11150-11163. [PMID: 37971358 DOI: 10.1039/d3tb01830j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This paper investigates physically crosslinked organo-hydrogels for total hip replacement surgery. Current materials in artificial joints have limitations in mechanical performance and biocompatibility. To overcome these issues, a new approach based on hydrogen bonds between polyvinyl alcohol, poly(2-hydroxyethyl methacrylate), and glycerin is proposed to develop bioactive organo-hydrogels with improved mechanical properties and biocompatibility. This study analyzes local pathological characteristics, systemic toxicity, and mechanical properties of the gels. The results show that the gels possess excellent biocompatibility and mechanical strength, suggesting their potential as an alternative material for total hip replacement surgery. These findings contribute to improving patient outcomes in joint replacement procedures.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Yongzhi Liang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- School of Science, Harbin Institute of Technology, Shenzhen, P. R. China
| | - Jia Wan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingjie Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Yuan Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Baoliang Lu
- Graduate School of Bengbu Medical College, Bengbu, P. R. China
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, P. R. China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
4
|
Jurczak P, Lach S. Hydrogels as Scaffolds in Bone-Related Tissue Engineering and Regeneration. Macromol Biosci 2023; 23:e2300152. [PMID: 37276333 DOI: 10.1002/mabi.202300152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Several years have passed since the medical and scientific communities leaned toward tissue engineering as the most promising field to aid bone diseases and defects resulting from degenerative conditions or trauma. Owing to their histocompatibility and non-immunogenicity, bone grafts, precisely autografts, have long been the gold standard in bone tissue therapies. However, due to issues associated with grafting, especially the surgical risks and soaring prices of the procedures, alternatives are being extensively sought and researched. Fibrous and non-fibrous materials, synthetic substitutes, or cell-based products are just a few examples of research directions explored as potential solutions. A very promising subgroup of these replacements involves hydrogels. Biomaterials resembling the bone extracellular matrix and therefore acting as 3D scaffolds, providing the appropriate mechanical support and basis for cell growth and tissue regeneration. Additional possibility of using various stimuli in the form of growth factors, cells, etc., within the hydrogel structure, extends their use as bioactive agent delivery platforms and acts in favor of their further directed development. The aim of this review is to bring the reader closer to the fascinating subject of hydrogel scaffolds and present the potential of these materials, applied in bone and cartilage tissue engineering and regeneration.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, 80-308, Poland
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
5
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
6
|
Kanca Y, Özkahraman B. An investigation on tribological behavior of methacrylated κ-carrageenan and gellan gum hydrogels as a candidate for chondral repair. J Biomater Appl 2023; 37:1271-1285. [PMID: 36473707 DOI: 10.1177/08853282221144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides have recently attracted attention as structural biomaterials to replace focal chondral defects. In the present study, in-vitro tribological performance of methacrylated κ-carrageenan and gellan gum hydrogels (KA-MA and GG-MA) was evaluated under physiological conditions. Coefficient of friction (COF) was continuously recorded over testing whilst worn area was measured post-testing. The findings help improve our understanding of KA-MA-H and GG-MA-H tribological performance under various physiological conditions. The friction and wear performance of the hydrogels improved in bovine calf serum lubricant at lower applied loads. Adhesion was the dominant wear mechanism detected by SEM. Among the proposed hydrogels GG-MA-H found robust mechanical properties, increased wear resistance and considerably low COF, which may suggest its potential usage as a cartilage substitute.
Collapse
Affiliation(s)
- Yusuf Kanca
- Department of Mechanical Engineering, Faculty of Engineering, 162313Hitit University, Çorum, Turkey
| | - Bengi Özkahraman
- Department of Polymer Materials Engineering, Faculty of Engineering, 162313Hitit University, Çorum, Turkey
| |
Collapse
|
7
|
Wu Y, Wang F, Shi Y, Lin G, Qiao J, Wang L. Molecular dynamics simulation of hyaluronic acid hydrogels: Effect of water content on mechanical and tribological properties. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107169. [PMID: 36208538 DOI: 10.1016/j.cmpb.2022.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently conducted biomedical studies have shown that the drug diffusivity of hyaluronic acid hydrogel plays an important role in the treatment of joint diseases. The drug diffusivity is closely related to the water content of hydrogel. In addition, different water content will not only affect its mechanical and tribological properties, but also change the effect of drug release. METHODS In this work, a Molecular dynamics simulation was used to investigate the effect of water content on spatial distribution, tribological and mechanical properties of a hyaluronic acid hydrogel network. This paper focuses on the analysis and calculation of the radial distribution function of 20, 40, 60, and 80% water content model and the friction force and mechanical parameters under the influence of different load and friction speed. RESULTS The results show that at 20 and 40% water content, the spatial distribution is loose and the intermolecular force is not strong, resulting in a major lack in tribological and mechanical properties; whereas at 60 and 80% water content, the spatial distribution becomes gradually compact and the intermolecular force is gradually increased. The tribological and mechanical properties manifest a marked improvement. CONCLUSIONS The calculations reveal that the hydrogel model has the best wear resistance, pressure resistance, and plastic deformation resistance at 80% water content. In the range of 20-80% water content, the mechanical properties and friction properties of hydrogels become better and better with the increase of water content.
Collapse
Affiliation(s)
- Yuyao Wu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| |
Collapse
|
8
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
9
|
Aşık EE, Damen AHA, van Hugten PPW, Roth AK, Thies JC, Emans PJ, Ito K, van Donkelaar CC, Pastrama M. Surface texture analysis of different focal knee resurfacing implants after 6 and 12 months in vivo in a goat model. J Orthop Res 2022; 40:2402-2413. [PMID: 35128715 PMCID: PMC9790236 DOI: 10.1002/jor.25274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.
Collapse
Affiliation(s)
- Emin E. Aşık
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Alicia H. A. Damen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Pieter P. W. van Hugten
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alex K. Roth
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | - Pieter J. Emans
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Maria Pastrama
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
10
|
Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Addition of Pygeum africanum with Potential Application in Urology. Int J Mol Sci 2022; 23:ijms231810324. [PMID: 36142228 PMCID: PMC9499472 DOI: 10.3390/ijms231810324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
New hydrogel materials developed to improve soft tissue healing are an alternative for medical applications, such as tissue regeneration or enhancing the biotolerance effect in the tissue-implant–body fluid system. The biggest advantages of hydrogel materials are the presence of a large amount of water and a polymeric structure that corresponds to the extracellular matrix, which allows to create healing conditions similar to physiological ones. The present work deals with the change in mechanical properties of sodium alginate mixed with gelatin containing Pygeum africanum. The work primarily concentrates on the evaluation of the mechanical properties of the hydrogel materials produced by the sol–gel method. The antimicrobial activity of the hydrogels was investigated based on the population growth dynamics of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, as well as the degree of degradation after contact with urine using an innovative method with a urine flow simulation stand. On the basis of mechanical tests, it was found that sodium alginate-based hydrogels with gelatin showed weaker mechanical properties than without the additive. In addition, gelatin accelerates the degradation process of the produced hydrogel materials. Antimicrobial studies have shown that the presence of African plum bark extract in the hydrogel enhances the inhibitory effect on Gram-positive and Gram-negative bacteria. The research topic was considered due to the increased demand from patients for medical devices to promote healing of urethral epithelial injuries in order to prevent the formation of urethral strictures.
Collapse
|
11
|
Hu F, Lu H, Wu C, Xu G, Shao Z, Gao L. Effects of pressure on the cross‐linking behavior of hyaluronic acid‐functionalized boric acid cross‐linked poly(vinyl alcohol) hydrogels. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
- Taizhou Medical New&Hi‐Tech Industrial Development Zone Taizhou People's Republic of China
| | - Changlei Wu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Guangshen Xu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an People's Republic of China
| | - Zhonglei Shao
- Faculty of Engineering University of Strathclyde Glasgow UK
| | - Li Gao
- Department of Gynaecology and Obstetrics The First Affiliated hospital of Xi'an Jiaotong University Xi'an JiaotongUniversity Xi' an People's Republic of China
| |
Collapse
|
12
|
Jalageri MB, Mohan Kumar GC. Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement. Gels 2022; 8:gels8090555. [PMID: 36135266 PMCID: PMC9498870 DOI: 10.3390/gels8090555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Polyvinyl alcohol (PVA) and Polyvinyl Pyrrolidone (PVP) hydrogels are desirable biomaterials for soft tissue repair and replacement. However, the bio-inertness and poor cell adhesive potency of the PVA and PVP hinder the wide range of biomedical applications. In the present work, PVA and PVP were blended with a one-dimensional hydroxyapatite nanorod (HNr), and PVA/PVP/HNr composite hydrogel was synthesized by the freeze-thaw process. The developed hydrogels were characterized by Scanning Electron Microscope (SEM). The bio-ceramic nanohydroxyapatite content was optimized, and it was found that reinforcement improves mechanical strength as well as bioactivity. The compression strength values are 2.47 ± 0.73 MPa for the composite having 2 wt% of nanohydroxyapatite. The storage modulus was much higher than the loss modulus, which signifies the elastic dominancy similar to cartilage. Besides, the antimicrobial activity of nanohydroxyapatite reinforced PVA hydrogel towards bacterial species, Escherichia coli (E. Coli), Staphylococcus aureus (S. aureus) was satisfactory, and the in vitro biocompatibility response towards Human Mesenchymal stem cells(hMSC) after 72 h of culture confirms nanohydroxyapatite reinforced PVA/PVP hydrogels are the promising alternatives for next-generation cartilage substitutes.
Collapse
|
13
|
Banerjee A, Rana M, Chakraborty A, Singh AP, Roy Chowdhury A. Influence of implant parameters on biomechanical stability of TMJ replacement: A finite element analysis. Int J Artif Organs 2022; 45:715-721. [PMID: 35730118 DOI: 10.1177/03913988221107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The articular disc reduces the stress distribution from the mandible to fossa. In total temporomandibular joint (TMJ) replacement, the implant is required to reduce the stress on fossa implant. Current studies lack standard and optimized parameters for the cylindrical dome on Christensen TMJ implant collar. This study briefed a novel TMJ implant head design and investigates the biomechanical behaviour by considering the articular disc. The radius of the head was varied with the height of the cylinder height to obtain the design of the experiment and the stress distribution was compared with an intact mandible-articular disc model by considering the viscoelastic property of the TMJ disc. The model was simulated at three different angles: 20°, 0° and -20° in the mediolateral direction to simulate the manducation. FEA analysis showed high stresses at the circular heads, and high strength is achieved with increased implant cylinder length and diameter. The results also showed a stress reduction of 50% on the fossa from the mandible. Hence, the newly designed head and suggested modifications may be used as a reference for further clinical improvement of Christensen TMJ as well as other TMJ implants.
Collapse
Affiliation(s)
- Anik Banerjee
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Masud Rana
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Arindam Chakraborty
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ankush Pratap Singh
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
14
|
Co-formulations of adalimumab with hyaluronic acid / polyvinylpyrrolidone to combine intraarticular drug delivery and viscosupplementation. Eur J Pharm Biopharm 2022; 177:39-49. [PMID: 35691537 DOI: 10.1016/j.ejpb.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Polymer-based formulations present an attractive strategy in intraarticular drug-delivery to refrain biologicals from early leakage from the joint. In this study, co-formulations of hyaluronic acid and polyvinylpyrrolidone were investigated for their potential as viscosupplements and their influence on the transsynovial loss of adalimumab. For this purpose, polymer mixtures were evaluated for their viscosity and elasticity behavior while their influence on the permeation of adalimumab across a porcine ex-vivo synovial membrane was determined. Hyaluronic acid showed strong shear thinning behavior and exhibited high viscosity and elasticity at low motions, while combinations with polyvinylpyrrolidone provided absorption and stiffness at high mechanical stress, so that they can potentially restore the rheological properties of the synovial fluid over the range of joint motion. In addition, the formulations showed significant influence on transsynovial permeation kinetics of adalimumab and hyaluronic acid, which could be decelerated up to 5- and 3-fold, respectively. Besides viscosity effects, adalimumab was retained primarily by an electrostatic interaction with hyaluronic acid, as detected by isothermal calibration calorimetry. Furthermore, polymer-mediated stabilization of the antibody activity was detected. In summary, hyaluronic acid - polyvinylpyrrolidone combinations can be efficiently used to prolong the residence of adalimumab in the joint cavity while simultaneously supplying viscosupplementation.
Collapse
|
15
|
PVA-Based Hydrogels Loaded with Diclofenac for Cartilage Replacement. Gels 2022; 8:gels8030143. [PMID: 35323256 PMCID: PMC8954927 DOI: 10.3390/gels8030143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels have been widely studied for cartilage replacement due to their biocompatibility, chemical stability, and ability to be modified such that they approximate natural tissue behavior. Additionally, they may also be used with advantages as local drug delivery systems. However, their properties are not yet the most adequate for such applications. This work aimed to develop new PVA-based hydrogels for this purpose, displaying improved tribomechanical properties with the ability to control the release of diclofenac (DFN). Four types of PVA-based hydrogels were prepared via freeze-thawing: PVA, PVA/PAA (by polyacrylic acid (PAA) addition), PVA/PAA+PEG (by polyethylene glycol (PEG) immersion), and PVA/PAA+PEG+A (by annealing). Their morphology, water uptake, mechanical and rheological properties, wettability, friction coefficient, and drug release behavior were accessed. The irritability of the best-performing material was investigated. The results showed that the PAA addition increased the swelling and drug release amount. PEG immersion led to a more compact structure and significantly improved the material’s tribomechanical performance. The annealing treatment led to the material with the most suitable properties: besides presenting a low friction coefficient, it further enhanced the mechanical properties and ensured a controlled DFN release for at least 3 days. Moreover, it did not reveal irritability potential for biological tissues.
Collapse
|
16
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
17
|
Mohamed F, Sharmoukh W, Youssef AM, Hameed TA. Structural, morphological, optical, and dielectric properties of
PVA‐PVP
filled with zinc oxide
aluminum‐graphene
oxide composite for promising applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fathia Mohamed
- Spectroscopy Department, National Research Centre Physics Research Institute Giza Egypt
| | - Walid Sharmoukh
- Inorganic Chemistry Department, National Research Centre Advanced Materials Technology and Mineral Resources Research Institute Dokki Giza Egypt
| | - Ahmed M. Youssef
- Inorganic Chemistry Department, National Research Centre Advanced Materials Technology and Mineral Resources Research Institute Dokki Giza Egypt
| | - Talaat A. Hameed
- Solid‐State Physics Department, Physics Research Institute National Research Centre Dokki Giza Egypt
| |
Collapse
|
18
|
Li W, Qiao K, Zheng Y, Yan Y, Xie Y, Liu Y, Ren H. Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel. J Mech Behav Biomed Mater 2021; 126:105009. [PMID: 34861520 DOI: 10.1016/j.jmbbm.2021.105009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
Polyvinyl alcohol hydrogel (PVA-H) has been widely used in clinical transplantation because of its high water content, good biocompatibility and mechanical properties. However, PVA-H have some problems, such as low elongation at break, low fatigue resistance and high friction coefficient, which hinders its application in clinic. In this paper, a novel high-performance PVA hydrogel enhanced by chemical double crosslinking (CDC) method had been synthesized. The influences of chemical crosslinking agent concentration on mechanical properties, friction properties and fatigue properties of materials were systematically investigated, in order to meet the clinical application of artificial meniscus, artificial cartilage, nucleus pulposus and so on. As a result, due to the introduction of chemical bonds, CDC hydrogels have over 600% elongation at break, modulus loss after fatigue test was reduced by 42%, average coefficient during friction was reduced to 0.048, and biocompatibility performance was excellent. The PVA hydrogel enhanced by CDC method provides a new concept for us to prepare high-performance PVA hydrogel and a promising material to replace cartilage, meniscus, nucleus pulposus and other tissues.
Collapse
Affiliation(s)
- Weichao Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China.
| | - Yu Yan
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology, Beijing, 100083, PR China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Yang Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Huimin Ren
- School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| |
Collapse
|
19
|
Özbaş Z, Özkahraman B, Bayrak G, Kılıç Süloğlu A, Perçin I, Boran F, Tamahkar E. Poly(vinyl alcohol)/(hyaluronic acid-g-kappa-carrageenan) hydrogel as antibiotic-releasing wound dressing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01824-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Pastório NFG, Vecchi CF, Said dos Santos R, Bruschi ML. Design of Mucoadhesive Strips for Buccal Fast Release of Tramadol. Pharmaceutics 2021; 13:pharmaceutics13081187. [PMID: 34452148 PMCID: PMC8399036 DOI: 10.3390/pharmaceutics13081187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
Tramadol hydrochloride is a synthetic analogue of codeine and shows activity on the central nervous system as an opioid agonist and inhibitor of serotonin and norepinephrine reuptake. It has been used for controlling moderate to severe pain. Mucoadhesive fast-dissolving films can present greater drug availability and patient acceptance when compared to the systems of peroral administration. The films were prepared using the solvent casting method with ethylcellulose, polyvinylpyrrolidone and poly(vinyl alcohol). The effect of each polymer concentration was investigated using a 2³ factorial design with repetition at the central point. The formulations were subjected to physicochemical, mechanical, ex vivo mucoadhesive and in vitro drug release profile analysis. These properties were dependent on the polymeric composition (independent factors) of each system. The optimized formulations showed good macroscopic characteristics, improved resistance to bending, rigidity, rapid swelling up to 60 s, improved mechanical and mucoadhesive characteristics, and also fast dissolving and tramadol release. The optimized formulations constitute platforms and strategies to improve the therapy of tramadol with regard to availability at the site of application, considering the necessity of rapid pain relief, and show potential for in vivo evaluation.
Collapse
|
21
|
Damen AHA, van Donkelaar CC, Cardinaels RM, Brandt JM, Schmidt TA, Ito K. Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulation. Osteoarthritis Cartilage 2021; 29:894-904. [PMID: 33647390 DOI: 10.1016/j.joca.2021.02.566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The clinical success of focal metallic resurfacing implants depends largely on the friction between implant and opposing cartilage. Therefore, the present study determines the lubricating ability of the synovial fluid components hyaluronic acid (HA), proteoglycan 4 (PRG4) and a surface-active phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), on the articulation between cartilage and a Cobalt Chromium Molybdenum (CoCrMo) implant surface, compared with two cartilage surfaces. METHODS A ring-on-disk geometry was used to perform repeated friction measurements at physiologically relevant velocities (6 and 60 mm/s) using lubricants with an increasing number of components present. Shear measurements were performed in order to evaluate the viscosity. To ensure that it is clinically relevant to explore the effect of these components, the presence of PRG4 in synovial fluid obtained from primary and revision knee and hip implant surgeries was examined. RESULTS PRG4 in the presence of HA was found to significantly reduce the coefficient of friction for both cartilage-cartilage and cartilage-CoCrMo interface. This is relevant, as it was also demonstrated that PRG4 is still present at the time of revision surgeries. The addition of POPC had no effect for either configurations. HA increased the viscosity of the lubricating fluid by one order of magnitude, while PRG4 and POPC had no effect. CONCLUSION The present study demonstrates the importance of selecting the appropriate lubrication solution to evaluate implant materials with biotribology tests. Because PRG4 is a key component for reducing friction between cartilage and an opposing surface, developing coatings which bind PRG4 is recommended for cartilage resurfacing implants.
Collapse
Affiliation(s)
- A H A Damen
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| | - R M Cardinaels
- Polymer Technology, Department Mechanical Engineering, Eindhoven University of Technology, the Netherlands
| | - J-M Brandt
- 4LinesFusion Inc., London, Ontario, Canada
| | - T A Schmidt
- Department Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - K Ito
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
22
|
Statham P, Jones E, Jennings LM, Fermor HL. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:405-420. [PMID: 33726527 DOI: 10.1089/ten.teb.2020.0373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well known that the biomechanical and tribological performance of articular cartilage is inextricably linked to its extracellular matrix (ECM) structure and zonal heterogeneity. Furthermore, it is understood that the presence of native ECM components, such as collagen II and aggrecan, promote healthy homeostasis in the resident chondrocytes. What is less frequently discussed is how chondrocyte metabolism is related to the extracellular mechanical environment, at both the macro and microscale. The chondrocyte is in immediate contact with the pericellular matrix of the chondron, which acts as a mechanocoupler, transmitting external applied loads from the ECM to the chondrocyte. Therefore, components of the pericellular matrix also play essential roles in chondrocyte mechanotransduction and metabolism. Recreating the biomechanical environment through tuning material properties of a scaffold and/or the use of external cyclic loading can induce biosynthetic responses in chondrocytes. Decellularized scaffolds, which retain the native tissue macro- and microstructure also represent an effective means of recapitulating such an environment. The use of such techniques in tissue engineering applications can ensure the regeneration of skeletally mature articular cartilage with appropriate biomechanical and tribological properties to restore joint function. Despite the pivotal role in graft maturation and performance, biomechanical and tribological properties of such interventions is often underrepresented. This review outlines the role of biomechanics in relation to native cartilage performance and chondrocyte metabolism, and how application of this theory can enhance the future development and successful translation of biomechanically relevant tissue engineering interventions. Impact statement Physiological cartilage function is a key criterion in the success of a cartilage tissue engineering solution. The in situ performance is dependent on the initial scaffold design as well as extracellular matrix deposition by endogenous or exogenous cells. Both biological and biomechanical stimuli serve as key regulators of cartilage homeostasis and maturation of the resulting tissue-engineered graft. An improved understanding of the influence of biomechanics on cellular function and consideration of the final biomechanical and tribological performance will help in the successful development and translation of tissue-engineered grafts to restore natural joint function postcartilage trauma or osteoarthritic degeneration, delaying the requirement for prosthetic intervention.
Collapse
Affiliation(s)
- Patrick Statham
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, United Kingdom
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
23
|
Gan S, Bai S, Chen C, Zou Y, Sun Y, Zhao J, Rong J. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Int J Biol Macromol 2021; 181:418-425. [PMID: 33781814 DOI: 10.1016/j.ijbiomac.2021.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023]
Abstract
Ionic conductive hydrogels with both high-performance in conductivity and mechanical properties have received increasing attention due to their unique potential in artificial soft electronics. Here, a dual physically cross-linked double network (DN) hydrogel with high ionic conductivity and tensile strength was fabricated by a facile approach. Hydroxypropyl cellulose (HPC) biopolymer fibers were embedded in a poly (vinyl alcohol)‑sodium alginate (PVA/SA) hydrogel, and then the prestretched PVA-HPC/SA composite hydrogel was immersed in a CaCl2 solution to prepare PVA-HPCT/SA-Ca DN hydrogels. The obtained composite hydrogel has an excellent tensile strength up to 1.4 MPa. Importantly, the synergistic effect of hydroxypropyl cellulose (HPC) and prestretching reduces the migration resistance of ions in the hydrogel, and the conductivity reaches 3.49 S/ m. In addition, these composite hydrogels are noncytotoxic, and they have a low friction coefficient and an excellent wear resistance. Therefore, PVA-HPCT/SA-Ca DN hydrogels have potential applications in nerve replacement materials and biosensors.
Collapse
Affiliation(s)
- Shuchun Gan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Shihang Bai
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Cheng Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yongliang Zou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
24
|
Guo Y, An X, Fan Z. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed Mater 2021; 118:104452. [PMID: 33756417 DOI: 10.1016/j.jmbbm.2021.104452] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The poor mechanical properties and the lack of antibacterial ability of hydrogels limit their applications as wound dressing. In this work, a novel and high strength polyvinyl alcohol (PVA)/tannic acid (TA) hydrogel with aramid nanofibers (ANFs) as the reinforcement was successfully fabricated. The surface composition and microstructure of the hydrogel were characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The mechanical properties, water content and swelling behaviors, as well as the antibacterial abilities and biocompatibility of the prepared hydrogel were systematically analyzed as well. The results indicated that the prepared hydrogel showed excellent mechanical properties. The tensile strength and elongation of the prepared hydrogel can respectively reach 2.06 MPa and 950% owing to the formation of the multiple H bonds among PVA, ANFs and TA. What's more, PVA/ANFs/TA (PAT) hydrogel possessed shape memory and broad-spectrum antibacterial properties against S. aureus, E. coli and P. aeruginosa (100% antibacterial rate) at the concentration of 12 mg/mL. PAT hydrogels also had low cytotoxicity, affirming its potential application as wound dressing.
Collapse
Affiliation(s)
- Yuqing Guo
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
25
|
Tommalieh M, Awwad NS, Ibrahium HA, Menazea A. Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109195] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Chocarro‐Wrona C, de Vicente J, Antich C, Jiménez G, Martínez‐Moreno D, Carrillo E, Montañez E, Gálvez‐Martín P, Perán M, López‐Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021; 6:e10192. [PMID: 33532591 PMCID: PMC7823129 DOI: 10.1002/btm2.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
Collapse
Affiliation(s)
- Carlos Chocarro‐Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Applied PhysicsFaculty of Sciences, University of GranadaGranadaSpain
| | - Cristina Antich
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Gema Jiménez
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Daniel Martínez‐Moreno
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Esmeralda Carrillo
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Elvira Montañez
- Biomedical Research Institute of Málaga (IBIMA)Málaga
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálagaSpain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologySchool of Pharmacy, University of GranadaGranadaSpain
- Advanced Therapies AreaBioibérica S.A.UBarcelonaSpain
| | - Macarena Perán
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Elena López‐Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| |
Collapse
|
27
|
Vecchi CF, Cesar GB, Souza PRD, Caetano W, Bruschi ML. Mucoadhesive polymeric films comprising polyvinyl alcohol, polyvinylpyrrolidone, and poloxamer 407 for pharmaceutical applications. Pharm Dev Technol 2020; 26:138-149. [PMID: 33183099 DOI: 10.1080/10837450.2020.1849283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
28
|
|
29
|
Link JM, Salinas EY, Hu JC, Athanasiou KA. The tribology of cartilage: Mechanisms, experimental techniques, and relevance to translational tissue engineering. Clin Biomech (Bristol, Avon) 2020; 79:104880. [PMID: 31676140 PMCID: PMC7176516 DOI: 10.1016/j.clinbiomech.2019.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Diarthrodial joints, found at the ends of long bones, function to dissipate load and allow for effortless articulation. Essential to these functions are cartilages, soft hydrated tissues such as hyaline articular cartilage and the knee meniscus, as well as lubricating synovial fluid. Maintaining adequate lubrication protects cartilages from wear, but a decrease in this function leads to tissue degeneration and pathologies such as osteoarthritis. To study cartilage physiology, articular cartilage researchers have employed tribology, the study of lubrication and wear between two opposing surfaces, to characterize both native and engineered tissues. The biochemical components of synovial fluid allow it to function as an effective lubricant that exhibits shear-thinning behavior. Although tribological properties are recognized to be essential to native tissue function and a critical characteristic for translational tissue engineering, tribology is vastly understudied when compared to other mechanical properties such as compressive moduli. Further, tribometer configurations and testing modalities vary greatly across laboratories. This review aims to define commonly examined tribological characteristics and discuss the structure-function relationships of biochemical constituents known to contribute to tribological properties in native tissue, address the variations in experimental set-ups by suggesting a move toward standard testing practices, and describe how tissue-engineered cartilages may be augmented to improve their tribological properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Evelia Y. Salinas
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Jerry C. Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Kyriacos A. Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| |
Collapse
|
30
|
Damen AHA, Nickien M, Ito K, van Donkelaar CC. The performance of resurfacing implants for focal cartilage defects depends on the degenerative condition of the opposing cartilage. Clin Biomech (Bristol, Avon) 2020; 79:105052. [PMID: 32591239 DOI: 10.1016/j.clinbiomech.2020.105052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-degradable resurfacing implants are being developed for treatment of focal cartilage defects. Performance of these implants has been investigated opposing intact cartilage. This study investigates whether implants would perform equally well when the opposing cartilage is fibrillated. METHODS Human osteochondral strips (~2x1x1 cm) with a smooth (n = 9) or fibrillated (n = 17) cartilage surface were obtained from human tibial plateaus excised during total knee arthroscopy. A custom-made pin-on-plate sliding indenter was used to apply simultaneous compression (0.75-3 MPa) and movement (4 mm/s over 6 mm). Either metal implants, polycarbonate-urethane or healthy porcine osteochondral plugs with a diameter of 6 mm were used as indenter. FINDINGS Cartilage roughness of the osteochondral strips was significantly higher for the fibrillated than the smooth group prior to sliding-indentation. Roughness of the indenters was not significantly altered by sliding indentation using either smooth or fibrillated cartilage. For all but one sample, sliding of smooth cartilage against any of the indenter surfaces did not cause damage. However, samples with fibrillated cartilage showed varied responses from seemingly unaffected to severe tissue wear as quantified by analysis of Indian ink staining and histology. INTERPRETATION This study demonstrates that the opposing cartilage quality is relevant for the clinical success of implanting an artificial implant in a focal cartilage defect. Therefore it is essential to test the efficacy of newly developed implants against arthritic joint surfaces, and care should be taken when interpreting in vivo studies in which implants are inserted in healthy joints.
Collapse
Affiliation(s)
- A H A Damen
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - M Nickien
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| |
Collapse
|
31
|
Javadi MH, Darijani H, Niknafs M. Constitutive modeling of visco‐hyperelastic behavior of double‐network hydrogels using long‐term memory theory. J Appl Polym Sci 2020. [DOI: 10.1002/app.49894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Darijani
- Mechanical Engineering Department Shahid Bahonar University of Kerman Kerman Iran
| | - Mohammad Niknafs
- Mechanical Engineering Department Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
32
|
Vecchi CF, Said Dos Santos R, Bassi da Silva J, Rosseto HC, Sakita KM, Svidzinski TIE, Bonfim-Mendonça PDS, Bruschi ML. Development and in vitro evaluation of buccal mucoadhesive films for photodynamic inactivation of Candida albicans. Photodiagnosis Photodyn Ther 2020; 32:101957. [PMID: 32818649 DOI: 10.1016/j.pdpdt.2020.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Candidiasis is one of the most common diseases that occur in the oral cavity, caused mainly by the species Candida albicans. Methylene blue (MB) has a potential for microbial photoinactivation and can cause the destruction of fungi when applied in Photodynamic Therapy (PDT). Mucoadhesive films are increasingly being studied as a platform for drug application due to their advantages when compared to other pharmaceutical forms. The aim of this work was to develop mucoadhesive buccal film containing poloxamer 407 (P407), alcohol polyvinyl (PVA) and polyvinylpyrrolidone (PVP) for the release of MB aiming the photoinactivation of Candida albicans in buccal infections. Different amounts of P407 were added to the binary polymeric blends composed PVA and PVP. Formulations were characterized as morphology, thickness, density, bending strength, mechanical properties, water vapor transmission, disintegration time, mucoadhesion, DSC, ATR-FTIR, in vitro drug release profile and photodynamic inactivation. The films displayed physicochemical characteristics dependent of polymeric composition, mucoadhesive properties, fast MB release and were effective in photo inactivate the local growth of Candida albicans isolates. The formulation containing the lowest PVA and P407 amounts displayed the best performance. Therefore, data obtained from the film system show its potentially useful role as a platform for buccal MB delivery in photoinactivation of C. albicans, showing its potential for in vivo evaluation.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Rafaela Said Dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Hélen Cassia Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil.
| |
Collapse
|
33
|
Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int J Mol Sci 2020; 21:ijms21165719. [PMID: 32784986 PMCID: PMC7461130 DOI: 10.3390/ijms21165719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop polyvinyl alcohol (PVA) -based scaffold enriched with hyaluronic acid (HA) and hydroxyapatite (HAp) using physical crosslinking by freezing-thawing method. We accomplished biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic test. The results showed that all types of scaffolds should be safe for use in the human body. The culturing of human osteoblast-like cells MG-63 and their proliferation showed better adhesion of cells due to the presence of HA and confirmed better proliferation depending on the amount of HAp. This paper gives the optimal composition of the scaffold and the optimal amount of the particular components of the scaffold. Based on our results we concluded that the best PVA/HA/HAp combination is in the ratio 3:1:2.
Collapse
|
34
|
Cheng Y, Hu Y, Xu M, Qin M, Lan W, Huang D, Wei Y, Chen W. High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1836-1851. [PMID: 32529914 DOI: 10.1080/09205063.2020.1782023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (vinyl alcohol) (PVA) hydrogel has been considered as promising cartilage replacement materials due to its excellent characteristics such as high water content, low frictional behavior and excellent biocompatibility. However, lack of sufficient mechanical properties and cytocompatibility are two key obstacles for PVA hydrogel to be applied as cartilage substitutes. Herein, Polyacrylic acid (PAA) has been introduced into PVA hydrogel to balance these problems. Compared with pure PVA hydrogel, PVA/PAA hydrogel has the equal excellent biocompatibility, and its cell adhesion is significantly improved. In order to further improve the mechanical properties of hydrogels, Cold-Drawn treatment of hydrogels is performed in this paper. Compared to pure 12% PVA hydrogel, 40.8-fold, 50.8-fold, and 46.8-fold increase in tensile strength, tensile modulus, and toughness, respectively, which can be obtained from 12% PVA/PAA Cold-Drawn hydrogel. These biocompatible composite hydrogels have a great application potential as cartilage tissue substitutes.
Collapse
Affiliation(s)
- Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Miao Qin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
35
|
Li X, Qin H, Zhang X, Guo Z. Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking. J Colloid Interface Sci 2019; 556:549-556. [DOI: 10.1016/j.jcis.2019.08.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
|
36
|
Abdel Bary EM, Harmal AN. A novel method to prepare microporous and nanofibrous hydrogel scaffolds as neural tissue engineering. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1593792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- E. M. Abdel Bary
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ammar N. Harmal
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Chemistry, Faculty of Science, Sa'adah University, Sa'adah, Yemen
| |
Collapse
|
37
|
Montaser A, Rehan M, El-Naggar ME. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int J Biol Macromol 2019; 124:1016-1024. [DOI: 10.1016/j.ijbiomac.2018.11.252] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
38
|
Wahab AHA, Saad APM, Harun MN, Syahrom A, Ramlee MH, Sulong MA, Kadir MRA. Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J Mech Behav Biomed Mater 2019; 91:406-415. [DOI: 10.1016/j.jmbbm.2018.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
|
39
|
Tan J, Joyner HS. Characterizing wear behaviors of κ-carrageenan and whey protein gels by numerical modeling. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Drupitha M, Nando GB, Naskar K. Nanocomposites of TPU-PDMS blend based on chitosan wrapped hydroxyapatite nanorods. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Zhang YR, Xu KJ, Bai YL, Tang LQ, Jiang ZY, Liu YP, Liu ZJ, Zhou LC, Zhou XF. Features of the volume change and a new constitutive equation of hydrogels under uniaxial compression. J Mech Behav Biomed Mater 2018; 85:181-187. [PMID: 29906673 DOI: 10.1016/j.jmbbm.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/26/2018] [Accepted: 06/02/2018] [Indexed: 11/26/2022]
Abstract
For high-water content hydrogels in compression, the water inside of hydrogels contributes to the response of hydrogels to external loads directly, but part of the water is expelled from hydrogels in the meantime to change the volume of the hydrogel and reduce the contribution. In order to consider the contribution of the water in the constitution equation, PVA (polyvinyl alcohol) hydrogels with high-water content were used as examples, and compressive experiments were carried out to measure both the stress-strain relation and the change of the volume in the meantime. By considering the effect of the difference of the contribution of water in different directions of the hydrogel, we deduced a new constitutive equation, which can pretty well depict the stress-strain of hydrogels with different water contents. The results showed that the contribution of water to the total stress increases with the compression strain and even exceed that of the polymer, although the expelled water reduces the contribution at the early loading stage, which well explains the difference of elastic moduli of hydrogels in compression and tension.
Collapse
Affiliation(s)
- Y R Zhang
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China; Guangdong Institute of Intelligent Manufacturing, Guangzhou, China
| | - K J Xu
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China
| | - Y L Bai
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China; LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - L Q Tang
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China.
| | - Z Y Jiang
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China
| | - Y P Liu
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China
| | - Z J Liu
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China
| | - L C Zhou
- School of Civil Engineering and Transportation, South China University of Technology, No.381, Wushan Road, Guangzhou, Guangdong, China
| | - X F Zhou
- Guangdong Institute of Intelligent Manufacturing, Guangzhou, China
| |
Collapse
|
42
|
Kanca Y, Milner P, Dini D, Amis AA. Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. J Mech Behav Biomed Mater 2018; 82:394-402. [DOI: 10.1016/j.jmbbm.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
|