1
|
Cui J, Zeng F, Wei D, Wang Y. Unraveling the effects of geometrical parameters on dynamic impact responses of graphene reinforced polymer nanocomposites using coarse-grained molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:19266-19281. [PMID: 38962897 DOI: 10.1039/d4cp01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nacre plays an important role in bionic design due to its light weight, high strength, and structure-function integration. The key to elucidate its reinforcing and toughening mechanisms is to truly characterize its multi-layer structure and properties. In this work, the dynamic impact responses of graphene reinforced polymer nanocomposites with a unique brick-and-mortar structure are investigated using coarse-grained molecular dynamics simulations, in which the interfacial coarse-grained force field between graphene and the polymer matrix is derived by the energy matching approach. The influences of various geometrical parameters on dynamic impact responses of the nanocomposites are studied, including the interlayer distance, lateral distance, and number of graphene layers. The results demonstrate that the impact resistance of the nacre-like structure can be significantly improved by tuning the geometrical parameters of graphene layers. It is also found that the chain scission and interchain disentanglement of polymer chains are the main failure mechanisms during the perforation failure process as compared to the stretching and breaking of bonds. In addition, the microstructure analysis is performed to deeply interpret the deformation and damage mechanisms of the nanocomposites during impact. This study could be helpful for the rational design and preparation of graphene reinforced nacre-like nanocomposites with high impact resistance.
Collapse
Affiliation(s)
- Jianzheng Cui
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Fanlin Zeng
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Dahai Wei
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
2
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Sun H, Tabrizian P, Qambrani A, Jargalsaikhan U, Sui T, Ireland T, Su B. Bio-inspired nacre-like zirconia/PMMA composites for chairside CAD/CAM dental restorations. Dent Mater 2024; 40:307-317. [PMID: 38040580 DOI: 10.1016/j.dental.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES To introduce a versatile fabrication process to fabricate zirconia/PMMA composites for chairside CAD/CAM dental restorations. These zirconia composites have nacre-like lamellar microstructures, competent and tooth-matched mechanical properties, as well as crack resistance behaviours. METHODS Bi-directional freeze casting was used to fabricate ceramic green bodies with highly aligned lamellar structure. Pressure was then applied to control the ceramic volume fraction. PMMA was infiltrated into the ceramic scaffold. Mechanical tests including 3-point bending, Vickers hardness, and fracture toughness were performed on the composites. The machinability of the composites was also characterised. RESULTS Two types of nacre-like zirconia/PMMA composites, i.e., 3Y-YZP/PMMA and 5Y-PSZ/PMMA composites were fabricated. The microstructure created was similar to the 'brick and mortar' structure of nacre. Excellent flexural strength (up to 400 MPa and 290 MPa for 3Y-TZP/PMMA and 5Y-PSZ/PMMA composite, respectively), tuneable hardness and elastic modulus within the range similar to enamel, along with improved crack-resistance behaviour were demonstrated on both zirconia composites. In addition, both zirconia/PMMA composites showed acceptable machinability, being easy to mill, as would be required to produce a dental crown. SIGNIFICANCE Nacre-like zirconia/PMMA composites therefore exhibit the potential for use in the production of chairside CAD/CAM dental restorations.
Collapse
Affiliation(s)
- Huijun Sun
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, UK
| | - Parinaz Tabrizian
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, UK
| | - Aqsa Qambrani
- Department of Mechanical Engineering Sciences, University of Surrey, UK
| | | | - Tan Sui
- Department of Mechanical Engineering Sciences, University of Surrey, UK
| | - Tony Ireland
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, UK
| | - Bo Su
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, UK.
| |
Collapse
|
5
|
Espíndola SP, Norder B, Jansen KMB, Zlopasa J, Picken SJ. Affine Deformation and Self-Assembly Alignment in Hydrogel Nanocomposites. Macromolecules 2023; 56:9839-9852. [PMID: 38105930 PMCID: PMC10720479 DOI: 10.1021/acs.macromol.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Tailoring the order in hierarchical structures is a key goal of bioinspired nanocomposite design. Recently, nacre-like materials have been developed by solvent evaporation methods that are scalable and attain advanced functionalities. However, understanding the alignment mechanisms of 2D fillers, nanosheets, or platelets remains challenging. This work explores possible pathways for nanocomposite ordering via orientation distribution functions. We demonstrate how the immobilization of 2D materials via (pseudo)network formation is crucial to alignment based on evaporation. We show a modified affine deformation model that describes such evaporative methods. In this, a gel network develops enough yield stress and uniformly deforms as drying proceeds, along with the immobilized particles, causing an in-plane orientation. Herein, we tested the dominance of this approach by using a thermo-reversible gel for rapid montmorillonite (MMT) particle fixation. We researched gelatin/MMT as a model system to investigate the effects of high loadings, orientational order, and aspect ratio. The nacre-like nanocomposites showed a semiconstant order parameter (⟨P2⟩ ∼ 0.7) over increasing nanofiller content up to 64 vol % filler. This remarkable alignment resulted in continuously improved mechanical and water vapor barrier properties over unusually large filler fractions. Some variations in stiffness and diffusion properties were observed, possibly correlated to the applied drying conditions of the hybrid hydrogels. The affine deformation strategy holds promise for developing next-generation advanced materials with tailored properties even at (very) high filler loadings. Furthermore, a gelling approach offers the advantages of simplicity and versatility in the formulation of the components, which is useful for large-scale fabrication methods.
Collapse
Affiliation(s)
- Suellen Pereira Espíndola
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ben Norder
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Kaspar M. B. Jansen
- Department
of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The
Netherlands
| | - Jure Zlopasa
- Department
of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
6
|
Espíndola SP, Zlopasa J, Picken SJ. Systematic Study of the Nanostructures of Exfoliated Polymer Nanocomposites. Macromolecules 2023; 56:7579-7586. [PMID: 37781216 PMCID: PMC10537450 DOI: 10.1021/acs.macromol.3c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023]
Abstract
High-performance bioinspired materials have shown rapid development over the last decade. Examples are brick-and-mortar hierarchical structures, which are often achieved via solvent evaporation. Although good properties are claimed, most systems are composed of stacked or intercalated platelets. Exfoliation is a crucial step to give ultimate anisotropic properties, e.g., thermal, mechanical, and barrier properties. We propose a general framework for all the various types of micro-scale structures that should be distinguished for 2D filler nanocomposites. In particular, the exfoliated state is systematically explored by the immobilization of montmorillonite platelets via (gelatin) hydrogelation. Scattering techniques were used to evaluate this strategy at the level of the particle dispersion and the regularity of spatial arrangement. The gelatin/montmorillonite exfoliated nanostructures are fully controlled by the filler volume fraction since the observed gallery d-spacings perfectly fall onto the predicted values. Surprisingly, X-ray analysis also revealed short- and quasi long-range arrangement of the montmorillonite clay at high loading.
Collapse
Affiliation(s)
- Suellen Pereira Espíndola
- Advanced
Soft Matter, Department of Chemical Engineering, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jure Zlopasa
- Environmental
Biotechnology, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Advanced
Soft Matter, Department of Chemical Engineering, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
8
|
Tabrizian P, Sun H, Jargalsaikhan U, Sui T, Davis S, Su B. Biomimetic Nacre-like Hydroxyapatite/Polymer Composites for Bone Implants. J Funct Biomater 2023; 14:393. [PMID: 37623638 PMCID: PMC10455918 DOI: 10.3390/jfb14080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
One of the most ambitious goals for bone implants is to improve bioactivity, incapability, and mechanical properties; to reduce the need for further surgery; and increase efficiency. Hydroxyapatite (HA), the main inorganic component of bones and teeth, has high biocompatibility but is weak and brittle material. Cortical bone is composed of 70% calcium phosphate (CaP) and 30% collagen and forms a complex hierarchical structure with anisotropic and lamellar microstructure (osteons) which makes bone a light, strong, tough, and durable material that can support large loads. However, imitation of concentric lamellar structure of osteons is difficult to achieve in fabrication. Nacre from mollusk shells with layered structures has now become the archetype of the natural "model" for bio-inspired materials. Incorporating a nacre-like layered structure into bone implants can enhance their mechanical strength, toughness, and durability, reducing the risk of implant catastrophic failure or fracture. The layered structure of nacre-like HA/polymer composites possess high strength, toughness, and tunable stiffness which matches that of bone. The nacre-like HA/polymer composites should also possess excellent biocompatibility and bioactivity which facilitate the bonding of the implant with the surrounding bone, leading to improved implant stability and long-term success. To achieve this, a bi-directional freeze-casting technique was used to produce elongated lamellar HA were further densified and infiltrated with polymer to produce nacre-like HA/polymer composites with high strength and fracture toughness. Mechanical characterization shows that increasing the ceramic fractions in the composite increases the density of the mineral bridges, resulting in higher flexural and compressive strength. The nacre-like HA/(methyl methacrylate (MMA) + 5 wt.% acrylic acid (AA)) composites with a ceramic fraction of 80 vol.% showed a flexural strength of 158 ± 7.02 MPa and a Young's modulus of 24 ± 4.34 GPa, compared with 130 ± 5.82 MPa and 19.75 ± 2.38 GPa, in the composite of HA/PMMA, due to the higher strength of the polymer and the interface of the composite. The fracture toughness in the composition of 5 wt.% PAA to PMMA improves from 3.023 ± 0.98 MPa·m1/2 to 5.27 ± 1.033 MPa·m1/2 by increasing the ceramic fraction from 70 vol.% to 80 vol.%, respectively.
Collapse
Affiliation(s)
- Parinaz Tabrizian
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (P.T.)
| | - Huijun Sun
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (P.T.)
| | - Urangua Jargalsaikhan
- School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Tan Sui
- School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sean Davis
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Bo Su
- Biomaterials Engineering Group, Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK; (P.T.)
| |
Collapse
|
9
|
Liu F, Yang H, Feng X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with "Brick-and-Mortar" Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114094. [PMID: 37297231 DOI: 10.3390/ma16114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Inspired by nature, materials scientists have been exploring and designing various biomimetic materials. Among them, composite materials with brick-and-mortar-like structure synthesized from organic and inorganic materials (BMOIs) have attracted increasing attention from scholars. These materials have the advantages of high strength, excellent flame retardancy, and good designability, which can meet the requirements of various fields for materials and have extremely high research value. Despite the increasing interest in and applications of this type of structural material, there is still a dearth of comprehensive reviews, leaving the scientific community with a limited understanding of its properties and applications. In this paper, we review the preparation, interface interaction, and research progress of BMOIs, and propose possible future development directions for this class of materials.
Collapse
Affiliation(s)
- Feng Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Facile processing of oriented macro-porous ceramics with high strength and low thermal conductivity. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Xia Y, Gao C, Gao W. A review on elastic graphene aerogels: Design, preparation, and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxing Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
12
|
Bioinspired Techniques in Freeze Casting: A Survey of Processes, Current Advances, and Future Directions. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9169046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Freeze casting, popularly known as ice templating or freeze gelation, is a mechanical method to fabricate scaffolds of desirable properties and materials. Aerospace engineering, the healthcare sector, manufacturing department, and automotive industries are the different fields where freeze casting has been used. Bioinspiration refers to the translation of biological systems into new and innovative creations. Bioinspired materials are extensively used in freeze casting methods such as ceramide, spines of porcupine fish, and collagen. Due to the tunable properties and production of complex structures with ease, biomaterials have found numerous applications in the ice templating method. This review rigorously explains the freeze casting process and the effect of thermal conductivity, stress, and electrostatic repulsion on the porous materials. Also, we have discussed the different biomaterial polymers used in freeze casting along with different methods involved.
Collapse
|
13
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
14
|
Kim S, Kim J, Lee J. Fast and opposite temperature responsivity in release behavior of cocontinuous hydrogel composites. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhao Z, Chua HM, Goh BHR, Lai HY, Tan SJ, Moay ZK, Setyawati MI, Ng KW. Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. J Biomed Mater Res A 2021; 110:92-104. [PMID: 34254735 DOI: 10.1002/jbm.a.37268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Human hair keratin (HHK) has been successfully explored as raw materials for three-dimensional scaffolds for soft tissue regeneration due to its excellent biocompatibility and bioactivity. However, none of the reported HHK based scaffolds is able to replicate the strain-stiffening capacity of living tissues when responding to large deformations. In the present study, strain-stiffening property was achieved in scaffolds fabricated from HHK via a synergistic effect of well-defined, aligned microstructure and chemical crosslinking. Directed ice-templating method was used to fabricate HHK-based scaffolds with highly aligned (anisotropic) microstructure while oxidized dopamine (ODA) was used to crosslink covalently to HHKs. The resultant HHK-ODA scaffolds exhibited strain-stiffening behavior characterized by the increased gradient of the stress-strain curve after the yield point. Both ultimate tensile strength and the elongation at break were enhanced significantly (~700 kPa, ~170%) in comparison to that of HHK scaffolds lacking of aligned microstructure or ODA crosslinking. In vitro cell culture studies indicated that HHK-ODA scaffolds successfully supported human dermal fibroblasts (HDFs) adhesion, spreading and proliferation. Moreover, anisotropic HHK-ODA scaffolds guided cell growth in alignment with the defined microstructure as shown by the highly organized cytoskeletal networks and nuclei distribution. The findings suggest that HHK-ODA scaffolds, with strain-stiffening properties, biocompatibility and bioactivity, have the potential to be applied as biomimetic matrices for soft tissue regeneration.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Singapore
| |
Collapse
|
16
|
Zhao Z, Moay ZK, Lai HY, Goh BHR, Chua HM, Setyawati MI, Ng KW. Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. Macromol Biosci 2020; 21:e2000314. [PMID: 33146949 DOI: 10.1002/mabi.202000314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Indexed: 01/18/2023]
Abstract
Human hair keratin (HHK) is successfully exploited as raw materials for 3D scaffolds for soft tissue regeneration owing to its excellent biocompatibility and bioactivity. However, most HHK scaffolds are not able to achieve the anisotropic mechanical properties of soft tissues such as tendons and ligaments due to lack of tunable, well-defined microstructures. In this study, directed ice templating method is used to fabricate anisotropic HHK scaffolds that are characterized by aligned pores (channels) in between keratin layers in the longitudinal plane. In contrast, pores in the transverse plane maintain a homogenous rounded morphology. Channel widths throughout the scaffolds range from ≈5 to ≈15 µm and are tunable by varying the freezing temperature. In comparison with HHK scaffolds with random, isotropic pore structures, the tensile strength of anisotropic HHK scaffolds is enhanced significantly by up to fourfolds (≈200 to ≈800 kPa) when the tensile load is applied in the direction parallel to the aligned pores. In vitro results demonstrate that the anisotropic HHK scaffolds are able to support human dermal fibroblast adhesion, spreading, and proliferation. The findings suggest that HHK scaffolds with well-defined, aligned microstructure hold promise as templates for soft tissues regeneration by mimicking their anisotropic properties.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Center for Nanotechnology and NanotoxicologyHarvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.,Environmental Chemistry and Materials CentreNanyang Environment and Water Research Institution, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
17
|
Li D, Bu X, Xu Z, Luo Y, Bai H. Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001222. [PMID: 32644270 DOI: 10.1002/adma.202001222] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Cellular plastics have been widely used in transportation, aerospace, and personal safety applications owing to their excellent mechanical, thermal, and acoustic properties. It is highly desirable to impart them with a complex porous structure and composition distribution to obtain specific functionality for various engineering applications, which is challenging with conventional foaming technologies. Herein, it is demonstrated that this can be achieved through the controlled freezing process of a monomer/water emulsion, followed by cryopolymerization and room temperature thawing. As ice is used as a template, this method is environmentally friendly and capable of producing cellular plastics with various microstructures by harnessing the numerous morphologies of ice crystals. In particular, a cellular plastic with a radially aligned structure shows a negative Poisson's ratio under compression. The rigid plastic shows a much higher energy dissipation capability compared to other materials with similar negative Poisson's ratios. Additionally, the simplicity and scalability of this approach provides new possibilities for fabricating high-performance cellular plastics with well-defined porous structures and composition distributions.
Collapse
Affiliation(s)
- Dewen Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Bu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zongpu Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|