1
|
He P, Wang J, Tan D, Hu L, Ma Y, Mi Y, Li F, Zhang T, Du Y, Zhang W, Li J, Jiao L, Zhu B. The combination of Mycobacterium tuberculosis fusion proteins LT33 and LT28 induced strong protective immunity in mice. Front Immunol 2024; 15:1450124. [PMID: 39650665 PMCID: PMC11621036 DOI: 10.3389/fimmu.2024.1450124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Effective subunit vaccines for tuberculosis (TB) must target antigenic components at various stages of infection. In this study, we constructed fusion proteins using secreted antigens from Mycobacterium tuberculosis (M. tuberculosis), specifically ESAT6, CFP10, MPT64, and Rv2645 from the proliferation stage, along with latency-associated antigens Rv1738 and Rv1978. The resulting fusion proteins, designated LT33 (ESAT6-CFP10-Rv1738) and LT28 (MPT6461-170-Rv19788-60-Rv264521-80), were combined with an adjuvant containing dimethyldioctadecylammonium bromide (DDA), polyriboinosinic polyribocytidylic acid (PolyI:C), and cholesterol to construct subunit vaccines. We evaluated the subunit vaccine effect in C57BL/6 mice and revealed that LT33 and LT28 exhibited strong immunogenicity and induced protective efficacy against aerosol challenge with M. tuberculosis H37Rv. Notably, the combination of LT33 and LT28 led to a significant reduction of 0.77 log10 colony-forming units (CFU) of H37Rv in the lungs compared to the adjuvant control group, highlighting their potential as promising candidates for subunit vaccine against M. tuberculosis infection.
Collapse
Affiliation(s)
- Pu He
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Hu
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yanlin Ma
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tingting Zhang
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Yang Y, Chen YZ, Xia T. Optimizing antigen selection for the development of tuberculosis vaccines. CELL INSIGHT 2024; 3:100163. [PMID: 38572176 PMCID: PMC10987857 DOI: 10.1016/j.cellin.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi-Zhen Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| |
Collapse
|
3
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (Beijing) 2024; 5:e419. [PMID: 38188605 PMCID: PMC10771061 DOI: 10.1002/mco2.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 01/09/2024] Open
Abstract
Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Ling Yang
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Linsheng Li
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Zhaoyang Ye
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
6
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|
7
|
Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol 2023; 14:1238649. [PMID: 38022657 PMCID: PMC10652786 DOI: 10.3389/fimmu.2023.1238649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) remains a serious public health threat around the world. An effective vaccine is urgently required for cost-effective, long-term control of TB. However, the only licensed vaccine Bacillus Calmette-Guerin (BCG) is limited to prevent TB for its highly variable efficacy. Substantial progress has been made in research and development (R&D) of TB vaccines in the past decades, and a dozen vaccine candidates, including live attenuated mycobacterial vaccines, killed mycobacterial vaccines, adjuvanted subunit vaccines, viral vector vaccines, and messenger RNA (mRNA) vaccines were developed in clinical trials to date. Nevertheless, many challenges to the successful authorization for the use and deployment of an effective tuberculosis vaccine remain. Therefore, it is still necessary and urgent to continue exploring new vaccine construction approaches. Virus-like particles (VLPs) present excellent prospects in the field of vaccine development because of their helpful immunological features such as being safe templates without containing viral nucleic acid, repetitive surface geometry, conformational epitopes similar to natural viruses, and enhancing both innate and adaptive immune responses. The marketization process of VLP vaccines has never stopped despite VLP vaccines face several shortcomings such as their complex and slow development process and high production cost, and several VLP-based vaccines, including vaccines against Human papillomavirus (HPV), Hepatitis B Virus (HBV) and malaria, are successfully licensed for use at the market. In this review, we provide an update on the current progress regarding the development of TB vaccines in clinical trials and seek to give an overview of VLP-based TB vaccine candidates.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Li J, Xie H, Fu L, Guo X, Dong J, Xu M, Wang G, Zhao A. Comparison of the Immune Responses to Different Formulations of BC02-Adjuvanted HPV Types 16 and 18 Bivalent Vaccines in Mice. Vaccines (Basel) 2023; 11:1553. [PMID: 37896956 PMCID: PMC10611034 DOI: 10.3390/vaccines11101553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
To achieve maximum efficacy, vaccines, such as subunit, recombinant, and conjugate vaccines, necessitate the incorporation of immunostimulators/adjuvants. Adjuvants play a vital role in bolstering and extending the strength of the immune response while also influencing its type. As antigen and adjuvant formulations become more intricate, it becomes imperative to establish a well-characterized and robust formulation to ensure consistent and reproducible outcomes in preclinical and clinical studies. In the present study, an HPV bivalent vaccine was developed using a BC02 adjuvant in conjunction with HPV 16 and 18 L1 VLP antigens produced from an E. coli expression system. The study involved evaluating the adjuvant formulation and in vivo immunogenicity in mice. Remarkably, a medium-dose of BCG-CpG-DNA combined with a low-dose of aluminum hydroxide substantially enhanced the immunogenicity of HPV16 and 18 VLPs, resulting in improved cellular and humoral immune responses.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Huicong Xie
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Lili Fu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Xiaonan Guo
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Jiaxin Dong
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Guozhi Wang
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (H.X.); (L.F.); (X.G.); (J.D.); (M.X.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| |
Collapse
|
9
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
12
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
13
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
14
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
15
|
Guo X, Lu J, Li J, Du W, Shen X, Su C, Wu Y, Zhao A, Xu M. The Subunit AEC/BC02 Vaccine Combined with Antibiotics Provides Protection in Mycobacterium tuberculosis-Infected Guinea Pigs. Vaccines (Basel) 2022; 10:vaccines10122164. [PMID: 36560574 PMCID: PMC9781032 DOI: 10.3390/vaccines10122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A latent tuberculosis infection (LTBI) is a major source of active tuberculosis, and addressing an LTBI is crucial for the elimination of tuberculosis. The treatment of tuberculosis often requires a 6-month course of multidrug therapy, and for drug-resistant tuberculosis, a longer course of multidrug therapy is needed, which has many drawbacks. At present, vaccines are proposed as an adjunct to chemotherapy to protect populations with an LTBI and delay its recurrence. In this study, we analyzed the protective effect of a novel subunit vaccine, AEC/BC02, in a guinea pig latent infection model. Through the optimization of different chemotherapy durations and immunization times, it was found that 4 weeks of administration of isoniazid-rifampin tablets combined with three or six injections of the vaccine could significantly reduce the gross pathological score and bacterial load in organs and improve the pathological lesions. This treatment regimen had a better protective effect than the other administration methods. Furthermore, no drug resistance of Mycobacterium tuberculosis was detected after 2 or 4 weeks of administration of the isoniazid-rifampin tablets, indicating a low risk of developing drug-resistant bacteria during short-term chemotherapy. The above results provided the foundation for an AEC/BC02 clinical protocol.
Collapse
Affiliation(s)
- Xiaonan Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jinbiao Lu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaobing Shen
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Cheng Su
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| |
Collapse
|
16
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
18
|
Therapeutic Effect of Subunit Vaccine AEC/BC02 on Mycobacterium tuberculosis Post-Chemotherapy Relapse Using a Latent Infection Murine Model. Vaccines (Basel) 2022; 10:vaccines10050825. [PMID: 35632581 PMCID: PMC9145927 DOI: 10.3390/vaccines10050825] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB), caused by the human pathogen Mycobacterium tuberculosis (Mtb), is an infectious disease that presents a major threat to human health. Bacillus Calmette-Guérin (BCG), the only licensed TB vaccine, is ineffective against latent TB infection, necessitating the development of further TB drugs or therapeutic vaccines. Herein, we evaluated the therapeutic effect of a novel subunit vaccine AEC/BC02 after chemotherapy in a spontaneous Mtb relapse model. Immunotherapy followed 4 weeks of treatment with isoniazid and rifapentine, and bacterial loads in organs, pathological changes, and adaptive immune characteristics were investigated. The results showed slowly increased bacterial loads in the spleen and lungs of mice inoculated with AEC/BC02 with significantly lower loads than those of the control groups. Pathological scores for the liver, spleen, and lungs decreased accordingly. Moreover, AEC/BC02 induced antigen-specific IFN-γ-secreting or IL-2-secreting cellular immune responses, which decreased with the number of immunizations and times. Obvious Ag85b- and EC-specific IgG were observed in mice following the treatment with AEC/BC02, indicating a significant Th1-biased response. Taken together, these data suggest that AEC/BC02 immunotherapy post-chemotherapy may shorten future TB treatment.
Collapse
|
19
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
20
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Mi J, Liang Y, Liang J, Gong W, Wang S, Zhang J, Li Z, Wu X. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol 2021; 11:763591. [PMID: 34869066 PMCID: PMC8634162 DOI: 10.3389/fcimb.2021.763591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) is a serious public health problem worldwide. The combination of various anti-TB drugs is mainly used to treat TB in clinical practice. Despite the availability of effective antibiotics, effective treatment regimens still require long-term use of multiple drugs, leading to toxicity, low patient compliance, and the development of drug resistance. It has been confirmed that immune recognition, immune response, and immune regulation of Mycobacterium tuberculosis (Mtb) determine the occurrence, development, and outcome of diseases after Mtb infection. The research and development of TB-specific immunotherapy agents can effectively regulate the anti-TB immune response and provide a new approach toward the combined treatment of TB, thereby preventing and intervening in populations at high risk of TB infection. These immunotherapy agents will promote satisfactory progress in anti-TB treatment, achieving the goal of "ultra-short course chemotherapy." This review highlights the research progress in immunotherapy of TB, including immunoreactive substances, tuberculosis therapeutic vaccines, chemical agents, and cellular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
23
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
24
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
25
|
Clemmensen HS, Knudsen NPH, Billeskov R, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Mortensen R. Rescuing ESAT-6 Specific CD4 T Cells From Terminal Differentiation Is Critical for Long-Term Control of Murine Mtb Infection. Front Immunol 2020; 11:585359. [PMID: 33240275 PMCID: PMC7677256 DOI: 10.3389/fimmu.2020.585359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
In most cases, Mycobacterium tuberculosis (Mtb) causes life-long chronic infections, which poses unique challenges for the immune system. Most of the current tuberculosis (TB) subunit vaccines incorporate immunodominant antigens and at this point, it is poorly understood how the CD4 T cell subsets recognizing these antigens are affected during long-term infection. Very little is known about the requirements for sustainable vaccine protection against TB. To explore this, we screened 62 human-recognized Mtb antigens during chronic murine Mtb infection and identified the four most immunodominant antigens in this setting (MPT70, Rv3020c, and Rv3019c and ESAT-6). Combined into a subunit vaccine, this fusion protein induced robust protection both in a standard short-term model and in a long-term infection model where immunity from BCG waned. Importantly, replacement of ESAT-6 with another ESAT-6-family antigen, Rv1198, led to similar short-term protection but a complete loss of bacterial control during chronic infection. This observation was further underscored, as the ESAT-6 containing vaccine mediated sustainable protection in a model of post-exposure vaccination, where the ESAT-6-replacement vaccine did not. An individual comparison of the CD4 T cell responses during Mtb infection revealed that ESAT-6-specific T cells were more terminally differentiated than the other immunodominant antigens and immunization with the ESAT-6 containing vaccine led to substantially greater reduction in the overall T cell differentiation status. Our data therefore associates long-term bacterial control with the ability of a vaccine to rescue infection-driven CD4T cell differentiation and future TB antigen discovery programs should focus on identifying antigens with the highest accompanying T cell differentiation, like ESAT-6. This also highlights the importance of long-term readouts in both preclinical and clinical studies with TB vaccines.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
26
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
27
|
Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 2020; 50:101431. [PMID: 33279383 PMCID: PMC7786643 DOI: 10.1016/j.smim.2020.101431] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis is the leading infectious disease killer globally due to a single pathogen. Despite wide deployment of standard drug regimens, modern diagnostics and a vaccine (bacille Calmette Guerin, BCG), the global tuberculosis epidemic is inadequately controlled. Novel, effective vaccine(s) are a crucial element of the World Health Organization End TB Strategy. TB vaccine research and development has recently been catalysed by several factors, including a revised strategy focused first on preventing pulmonary TB in adolescents and adults who are the main source of transmission, and encouraging evaluations of novel efficacy endpoints. Renewed enthusiasm for TB vaccine research has also been stimulated by recent preclinical and clinical advancements. These include new insights into underlying protective immune responses, including potential roles for 'trained' innate immunity and Th1/Th17 CD4+ (and CD8+) T cells. The field has been further reinvigorated by two positive proof of concept efficacy trials: one evaluating a potential new use of BCG in preventing high risk populations from sustained Mycobacterium tuberculosis infection and the second evaluating a novel, adjuvanted, recombinant protein vaccine candidate (M72/AS01E) for prevention of disease in adults already infected. Fourteen additional candidates are currently in various phases of clinical evaluation and multiple approaches to next generation vaccines are in discovery and preclinical development. The two positive efficacy trials and recent studies in nonhuman primates have enabled the first opportunities to discover candidate vaccine-induced correlates of protection, an effort being undertaken by a broad research consortium.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands; Department of Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| | - Ann M Ginsberg
- Bill & Melinda Gates Foundation, Division of Global Health, Washington DC, United States.
| |
Collapse
|
28
|
Wang C, Lu J, Du W, Wang G, Li X, Shen X, Su C, Yang L, Chen B, Wang J, Xu M. Ag85b/ESAT6-CFP10 adjuvanted with aluminum/poly-IC effectively protects guinea pigs from latent mycobacterium tuberculosis infection. Vaccine 2019; 37:4477-4484. [PMID: 31266673 DOI: 10.1016/j.vaccine.2019.06.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The high global burden of tuberculosis (TB) underscores the urgent need for an effective TB vaccine since the only licensed Bacillus Calmette-Guérin (BCG) vaccine is ineffective in preventing adult pulmonary TB and affords no protection against latent TB infection (LTBI). Herein we investigated the potential of Mycobacterium tuberculosis (Mtb) antigen proteins AEC comprised of Ag85b and ESAT6-CFP10 proteins in conjunction with aluminum (Al) and polyriboinosinic-polyribocytidylic acid (poly-IC) as a novel subunit vaccine against TB. The immunogenicity and protection induced by the adjuvanted vaccine were evaluated in two animal models. Mice vaccinated with AEC/Al/poly-IC exhibited significant antigen-specific humoral immune responses and cell-mediated immunity as determined by immunoassay and multicolor flow cytometric assay, and the protective effect of the vaccine was demonstrated in a guinea pig model of latent Mtb infection. Compared to the control group, the mean pathological scores and bacterial loads in lungs and spleens of AEC/Al/poly-IC-immunized guinea pigs were significantly reduced. These data indicate that the AEC/Al/poly-IC is highly immunogenic in mice and can effectively protect guinea pigs against latent Mtb infection; it may represent a promising candidate vaccine for the control of latent TB.
Collapse
Affiliation(s)
- Chunhua Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinbiao Lu
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Weixin Du
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xuguang Li
- Centre for Biologicals Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Xiaobin Shen
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Cheng Su
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Lei Yang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Baowen Chen
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junzhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Miao Xu
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
29
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
30
|
A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS One 2018; 13:e0196815. [PMID: 29718990 PMCID: PMC5931632 DOI: 10.1371/journal.pone.0196815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.
Collapse
|
31
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
32
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|