1
|
Dong W, Rawat ES, Stephanopoulos G, Abu-Remaileh M. Isotope tracing in health and disease. Curr Opin Biotechnol 2022; 76:102739. [PMID: 35738210 PMCID: PMC9555185 DOI: 10.1016/j.copbio.2022.102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Biochemical characterization of metabolism provides molecular insights for understanding biology in health and disease. Over the past decades, metabolic perturbations have been implicated in cancer, neurodegeneration, and diabetes, among others. Isotope tracing is a technique that allows tracking of labeled atoms within metabolites through biochemical reactions. This technique has become an integral component of the contemporary metabolic research. Isotope tracing measures substrate contribution to downstream metabolites and indicates its utilization in cellular metabolic networks. In addition, isotopic labeling data are necessary for quantitative metabolic flux analysis. Here, we review recent work utilizing metabolic tracing to study health and disease, and highlight its application to interrogate subcellular, intercellular, and in vivo metabolism. We further discuss the current challenges and opportunities to expand the utility of isotope tracing to new research areas.
Collapse
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eshaan S Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Mandal PK, Guha Roy R, Samkaria A, Maroon JC, Arora Y. In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease. Neurochem Res 2022; 47:1183-1201. [PMID: 35089504 DOI: 10.1007/s11064-022-03538-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique that contributes to the elucidation of brain biochemistry. 13C MRS enables the detection of specific neurochemicals and their neuroenergetic correlation with neuronal function. The synergistic outcome of 13C MRS and the infusion of 13C-labeled substrates provide an understanding of neurometabolism and the role of glutamate/gamma-aminobutyric acid (GABA) neurotransmission in diseases, such as Alzheimer's disease, schizophrenia, and bipolar disorder. Moreover, 13C MRS provides a window into the altered flux rate of different pathways, including the tricarboxylic acid cycle (TCA) and the glutamate/glutamine/GABA cycle, in health and in various diseases. Notably, the metabolic flux rate of the TCA cycle often decreases in neurodegenerative diseases. Additionally, 13C MRS can be used to investigate several psychiatric and neurological disorders as it directly reflects the real-time production and alterations of key brain metabolites. This review aims to highlight the chronology, the technological advancements, and the applications of 13C MRS in various brain diseases.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India.
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia.
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| |
Collapse
|
3
|
Ebersole J, Rose G, Eid T, Behar K, Patrylo P. Altered hippocampal astroglial metabolism is associated with aging and preserved spatial learning and memory. Neurobiol Aging 2021; 102:188-199. [PMID: 33774381 DOI: 10.1016/j.neurobiolaging.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
An age-related decrease in hippocampal metabolism correlates with cognitive decline. Hippocampus-dependent learning and memory requires glutamatergic neurotransmission supported by glutamate-glutamine (GLU-GLN) cycling between neurons and astrocytes. We examined whether GLU-GLN cycling in hippocampal subregions (dentate gyrus and CA1) in Fischer 344 rats was altered with age and cognitive status. Hippocampal slices from young adult, aged cognitively-unimpaired (AU) and aged cognitively-impaired (AI) rats were incubated in artificial cerebrospinal fluid (aCSF) containing 1-13C-glucose to assess neural metabolism. Incorporation of 13C-glucose into glutamate and glutamine, measured by mass spectroscopy/liquid chromatography tandem mass spectroscopy, did not significantly differ between groups. However, when 13C-acetate, a preferential astrocytic metabolite, was used, a significant increase in 13C-labeled glutamate was observed in slices from AU rats. Taken together, the data suggest that resting state neural metabolism and GLU-GLN cycling may be preserved during aging when sufficient extracellular glucose is available, but that enhanced astroglial metabolism can occur under resting state conditions. This may be an aging-related compensatory change to maintain hippocampus-dependent cognitive function.
Collapse
Affiliation(s)
- Jeremy Ebersole
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Gregory Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; MRRC Neurometabolism Research Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA; Center for Integrated Research in the Cognitive and Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
4
|
Jin S, Cao Q, Yang F, Zhu H, Xu S, Chen Q, Wang Z, Lin Y, Cinar R, Pawlosky RJ, Zhang Y, Xiong W, Gao B, Koob GF, Lovinger DM, Zhang L. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab 2021; 3:337-351. [PMID: 33758417 PMCID: PMC8294184 DOI: 10.1038/s42255-021-00357-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/07/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Alcohol is among the most widely used psychoactive substances worldwide. Ethanol metabolites such as acetate, thought to be primarily the result of ethanol breakdown by hepatic aldehyde dehydrogenase 2 (ALDH2), contribute to alcohol's behavioural effects and alcoholism. Here, we show that ALDH2 is expressed in astrocytes in the mouse cerebellum and that ethanol metabolism by astrocytic ALDH2 mediates behavioural effects associated with ethanol intoxication. We show that ALDH2 is expressed in astrocytes in specific brain regions and that astrocytic, but not hepatocytic, ALDH2 is required to produce ethanol-derived acetate in the mouse cerebellum. Cerebellar astrocytic ALDH2 mediates low-dose ethanol-induced elevation of GABA levels, enhancement of tonic inhibition and impairment of balance and coordination skills. Thus, astrocytic ALDH2 controls the production, cellular and behavioural effects of alcohol metabolites in a brain-region-specific manner. Our data indicate that astrocytic ALDH2 is an important, but previously under-recognized, target in the brain to alter alcohol pharmacokinetics and potentially treat alcohol use disorder.
Collapse
Affiliation(s)
- Shiyun Jin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Fanghan Yang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongying Zhu
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Qi Chen
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Ziyi Wang
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Yuhong Lin
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Pawlosky
- Laboratory for Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Wei Xiong
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
6
|
Cherix A, Donati G, Lizarbe B, Lanz B, Poitry-Yamate C, Lei H, Gruetter R. Excitatory/inhibitory neuronal metabolic balance in mouse hippocampus upon infusion of [U- 13C 6]glucose. J Cereb Blood Flow Metab 2021; 41:282-297. [PMID: 32151224 PMCID: PMC8370000 DOI: 10.1177/0271678x20910535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Donati
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Blanca Lizarbe
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Instituto de Investigaciones Biomedicas "Alberto Sols", CSIC-UAM, Madrid, Spain
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Carole Poitry-Yamate
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Lanz B, Abaei A, Braissant O, Choi IY, Cudalbu C, Henry PG, Gruetter R, Kara F, Kantarci K, Lee P, Lutz NW, Marjańska M, Mlynárik V, Rasche V, Xin L, Valette J. Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4325. [PMID: 33565219 PMCID: PMC9429976 DOI: 10.1002/nbm.4325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/11/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 05/21/2023]
Abstract
In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - In-Young Choi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Phil Lee
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Norbert W Lutz
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Lijing Xin
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives, MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Wu L, Niu Z, Hu X, Liu H, Li S, Chen L, Zheng D, Liu Z, Liu T, Xu F, Manyande A, Wang J, Xia H. Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury. FASEB J 2020; 34:10547-10559. [PMID: 32592196 DOI: 10.1096/fj.202000447r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Liang Wu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases Yinchuan P.R. China
- School of Clinical Medicine Ningxia Medical University Yinchuan P.R. China
| | - Zhanfeng Niu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
| | - Xulei Hu
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases Yinchuan P.R. China
- School of Clinical Medicine Ningxia Medical University Yinchuan P.R. China
| | - Huili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Shuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
| | - Lei Chen
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Zhuang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Taotao Liu
- Department of Anesthesiology Peking University Third Hospital Beijing P.R. China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
| | - Anne Manyande
- School of Human and Social Sciences University of West London London UK
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and MathematicsChinese Academy of SciencesInnovation Academy for Precision Measurement Science and Technology Wuhan P.R. China
- University of Chinese Academy of Sciences Beijing P.R. China
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes 2nd Hospital of Shijiazhuang Shijiazhuang P.R. China
| | - Hechun Xia
- Department of Neurosurgery General Hospital of Ningxia Medical University Yinchuan P.R. China
- Ningxia Human Stem Cell Research Institute General Hospital of Ningxia Medical University Yinchuan P.R. China
| |
Collapse
|
9
|
Dong W, Moon SJ, Kelleher JK, Stephanopoulos G. Dissecting Mammalian Cell Metabolism through 13C- and 2H-Isotope Tracing: Interpretations at the Molecular and Systems Levels. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joanne K. Kelleher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Zhou Q, Zheng H, Chen J, Li C, Du Y, Xia H, Gao H. Metabolic fate of glucose in the brain of APP/PS1 transgenic mice at 10 months of age: a 13C NMR metabolomic study. Metab Brain Dis 2018; 33:1661-1668. [PMID: 29946959 DOI: 10.1007/s11011-018-0274-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/18/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) has been associated with the disturbance of brain glucose metabolism. The present study investigates brain glucose metabolism using 13C NMR metabolomics in combination with intravenous [1-13C]-glucose infusion in APP/PS1 transgenic mouse model of amyloid pathology at 10 months of age. We found that brain glucose was significantly accumulated in APP/PS1 mice relative to wild-type (WT) mice. Reductions in 13C fluxes into the specific carbon sites of tricarboxylic acid (TCA) intermediate (succinate) as well as neurotransmitters (glutamate, glutamine, γ-aminobutyric acid and aspartate) from [1-13C]-glucose were also detected in the brain of APP/PS1 mice. In addition, our results reveal that the 13C-enrichments of the C3 of alanine were significantly lower and the C3 of lactate have a tendency to be lower in the brain of APP/PS1 mice than WT mice. Taken together, the development of amyloid pathology could cause a reduction in glucose utilization and further result in decreases in energy and neurotransmitter metabolism as well as the lactate-alanine shuttle in the brain.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jiuxia Chen
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Du
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Xia
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Sonnay S, Gruetter R, Duarte JMN. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Front Neurosci 2017; 11:288. [PMID: 28603480 PMCID: PMC5445183 DOI: 10.3389/fnins.2017.00288] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland.,Department of Radiology, University of LausanneLausanne, Switzerland.,Department of Radiology, University of GenevaGeneva, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
12
|
Rowlands BD, Klugmann M, Rae CD. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J Neurochem 2017; 140:903-918. [PMID: 27925207 DOI: 10.1111/jnc.13916] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
[13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1-13 C]D-glucose and [1,2-13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2-13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2-13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2-13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2-13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2-13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as modulation of metabolism through changes in cellular energetic status via altered enzyme acetylation levels rather than simply as an adjustment of glial-neuronal metabolic activity.
Collapse
Affiliation(s)
- Benjamin D Rowlands
- Neuroscience Research Australia, Randwick, NSW, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Neuroscience Research Australia, Randwick, NSW, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Abstract
The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions.
Collapse
Affiliation(s)
- James Yip
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Jiamei Shen
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
14
|
Zheng H, Zheng Y, Wang D, Cai A, Lin Q, Zhao L, Chen M, Deng M, Ye X, Gao H. Analysis of neuron-astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy. J Cereb Blood Flow Metab 2017; 37:332-343. [PMID: 26762505 PMCID: PMC5363750 DOI: 10.1177/0271678x15626154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
Type 2 diabetes has been linked to cognitive impairment, but its potential metabolic mechanism is still unclear. The present study aimed to explore neuron-astrocyte metabolic cooperation in the brain of diabetic (db/db, BKS.Cg-m+/+ Leprdb/J) mice with cognitive decline using 13C NMR technique in combination with intravenous [2-13C]-acetate and [3-13C]-lactate infusions. We found that the 13C-enrichment from [2-13C]-acetate into tricarboxylic acid cycle intermediate, succinate, was significantly decreased in db/db mice with cognitive decline compared with wild-type (WT, C57BLKS/J) mice, while an opposite result was obtained after [3-13C]-lactate infusion. Relative to WT mice, db/db mice with cognitive decline had significantly lower 13C labeling percentages in neurotransmitters including glutamine, glutamate, and γ-aminobutyric acid after [2-13C]-acetate infusion. However, [3-13C]-lactate resulted in increased 13C-enrichments in neurotransmitters in db/db mice with cognitive decline. This may indicate that the disturbance of neurotransmitter metabolism occurred during the development of cognitive decline. In addition, a reduction in 13C-labeling of lactate and an increase in gluconeogenesis were found from both labeled infusions in db/db mice with cognitive decline. Therefore, our results suggest that the development of cognitive decline in type 2 diabetes may be implicated to an unbalanced metabolism in neuron-astrocyte cooperation and an enhancement of gluconeogenesis.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongquan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiuting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Minjiang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mingjie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Valette J, Tiret B, Boumezbeur F. Experimental strategies for in vivo 13C NMR spectroscopy. Anal Biochem 2016; 529:216-228. [PMID: 27515993 DOI: 10.1016/j.ab.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
In vivo carbon-13 (13C) MRS opens unique insights into the metabolism of intact organisms, and has led to major advancements in the understanding of cellular metabolism under normal and pathological conditions in various organs such as skeletal muscles, the heart, the liver and the brain. However, the technique comes at the expense of significant experimental difficulties. In this review we focus on the experimental aspects of non-hyperpolarized 13C MRS in vivo. Some of the enrichment strategies which have been proposed so far are described; the various MRS acquisition paradigms to measure 13C labeling are then presented. Finally, practical aspects of 13C spectral quantification are discussed.
Collapse
Affiliation(s)
- Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France.
| | - Brice Tiret
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Fawzi Boumezbeur
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), NeuroSpin, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Pichumani K, Mashimo T, Vemireddy V, Kovacs Z, Ratnakar J, Mickey B, Malloy CR, DeBerardinis RJ, Bachoo RM, Maher EA. Hepatic gluconeogenesis influences (13)C enrichment in lactate in human brain tumors during metabolism of [1,2-(13)C]acetate. Neurochem Int 2016; 97:133-6. [PMID: 27020407 DOI: 10.1016/j.neuint.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/26/2022]
Abstract
(13)C-enriched compounds are readily metabolized in human malignancies. Fragments of the tumor, acquired by biopsy or surgical resection, may be acid-extracted and (13)C NMR spectroscopy of metabolites such as glutamate, glutamine, 2-hydroxyglutarate, lactate and others provide a rich source of information about tumor metabolism in situ. Recently we observed (13)C-(13)C spin-spin coupling in (13)C NMR spectra of lactate in brain tumors removed from patients who were infused with [1,2-(13)C]acetate prior to the surgery. We found, in four patients, that infusion of (13)C-enriched acetate was associated with synthesis of (13)C-enriched glucose, detectable in plasma. (13)C labeled glucose derived from [1,2-(13)C]acetate metabolism in the liver and the brain pyruvate recycling in the tumor together lead to the production of the (13)C labeled lactate pool in the brain tumor. Their combined contribution to acetate metabolism in the brain tumors was less than 4.0%, significantly lower than the direct oxidation of acetate in the citric acid cycle in tumors.
Collapse
Affiliation(s)
- Kumar Pichumani
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Tomoyuki Mashimo
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vamsidhara Vemireddy
- Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Ratnakar
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Mickey
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Veterans Affairs North Texas HealthCare System, Lancaster, TX 75216, USA
| | - Ralph J DeBerardinis
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA; McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert M Bachoo
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth A Maher
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Dehghani M M, Lanz B, Duarte JMN, Kunz N, Gruetter R. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets. ASN Neuro 2016; 8:8/2/1759091416632342. [PMID: 26969691 PMCID: PMC4790427 DOI: 10.1177/1759091416632342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022] Open
Abstract
Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them.
Collapse
Affiliation(s)
- Masoumeh Dehghani M
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland Department of Radiology, University of Lausanne, Switzerland
| | - Nicolas Kunz
- CIBM-AIT, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland Department of Radiology, University of Lausanne, Switzerland Department of Radiology, University of Geneva, Switzerland
| |
Collapse
|
18
|
Tiret B, Shestov AA, Valette J, Henry PG. Metabolic Modeling of Dynamic (13)C NMR Isotopomer Data in the Brain In Vivo: Fast Screening of Metabolic Models Using Automated Generation of Differential Equations. Neurochem Res 2015; 40:2482-92. [PMID: 26553273 DOI: 10.1007/s11064-015-1748-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model.
Collapse
Affiliation(s)
- Brice Tiret
- Commissariat à l'Energie Atomique (CEA), Molecular Imaging Research Center (MIRCen), 92260, Fontenay-aux-Roses, France
| | - Alexander A Shestov
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA
| | - Julien Valette
- Commissariat à l'Energie Atomique (CEA), Molecular Imaging Research Center (MIRCen), 92260, Fontenay-aux-Roses, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C, Huang Z, Barnett S, Mickey BE, DeBerardinis RJ, Tu BP, Maher EA, Bachoo RM. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2015; 159:1603-14. [PMID: 25525878 DOI: 10.1016/j.cell.2014.11.025] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2014] [Revised: 08/05/2014] [Accepted: 11/17/2014] [Indexed: 01/12/2023]
Abstract
Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using (13)C-NMR analysis of brain tumors resected from patients during infusion of (13)C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-(13)C]acetate and can do so while simultaneously oxidizing [1,6-(13)C]glucose. The tumors do not oxidize [U-(13)C]glutamine. In vivo oxidation of [1,2-(13)C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth.
Collapse
Affiliation(s)
- Tomoyuki Mashimo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kumar Pichumani
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vamsidhara Vemireddy
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimmo J Hatanpaa
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Kumar Singh
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shyam Sirasanagandla
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suraj Nannepaga
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara G Piccirillo
- Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chan Foong
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiguang Huang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel Barnett
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce E Mickey
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth A Maher
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Robert M Bachoo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Marin-Valencia I, Hooshyar MA, Pichumani K, Sherry AD, Malloy CR. The ratio of acetate-to-glucose oxidation in astrocytes from a single 13C NMR spectrum of cerebral cortex. J Neurochem 2014; 132:99-109. [PMID: 25231025 DOI: 10.1111/jnc.12948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA; Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Lanz B, Xin L, Millet P, Gruetter R. In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T. J Neurochem 2013; 128:125-39. [PMID: 24117599 DOI: 10.1111/jnc.12479] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2013] [Revised: 08/31/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
23
|
Lanz B, Gruetter R, Duarte JMN. Metabolic Flux and Compartmentation Analysis in the Brain In vivo. Front Endocrinol (Lausanne) 2013; 4:156. [PMID: 24194729 PMCID: PMC3809570 DOI: 10.3389/fendo.2013.00156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/31/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: João M. N. Duarte, Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Bâtiment CH, Station 6, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
24
|
Jeffrey FM, Marin-Valencia I, Good LB, Shestov AA, Henry PG, Pascual JM, Malloy CR. Modeling of brain metabolism and pyruvate compartmentation using (13)C NMR in vivo: caution required. J Cereb Blood Flow Metab 2013; 33:1160-7. [PMID: 23652627 PMCID: PMC3734769 DOI: 10.1038/jcbfm.2013.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/03/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 01/30/2023]
Abstract
Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-(13)C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to analyze multiplets arising from (13)C spin-spin coupling, known to improve parameter estimates in heart. Data analyzed were from a literature report providing time courses of [1,6-(13)C2]glucose metabolism. Four analyses were used, two comparing the effect of different pyruvate enrichment in glia and neurons, and two for determining the effect of multiplets present in the data. When fit independently, the enrichment in glial pyruvate was less than in neurons. In the absence of multiplets, fit quality and parameter values were typical of those in the literature, whereas the multiplet curves were not modeled well. This prompted the use of robust statistical analysis (the Kolmogorov-Smirnov test of goodness of fit) to determine whether individual curves were modeled appropriately. At least 50% of the curves in each experiment were considered poorly fit. It was concluded that the model does not include all metabolic features required to analyze the data.
Collapse
Affiliation(s)
- F Mark Jeffrey
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 2013; 38:1523-42. [PMID: 23677775 PMCID: PMC3691476 DOI: 10.1007/s11064-013-1060-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer’s disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.
Collapse
|
26
|
Shen J. Modeling the glutamate-glutamine neurotransmitter cycle. FRONTIERS IN NEUROENERGETICS 2013; 5:1. [PMID: 23372548 PMCID: PMC3556573 DOI: 10.3389/fnene.2013.00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/22/2012] [Accepted: 01/08/2013] [Indexed: 02/05/2023]
Abstract
Glutamate is the principal excitatory neurotransmitter in brain. Although it is rapidly synthesized from glucose in neural tissues the biochemical processes for replenishing the neurotransmitter glutamate after glutamate release involve the glutamate–glutamine cycle. Numerous in vivo13C magnetic resonance spectroscopy (MRS) experiments since 1994 by different laboratories have consistently concluded: (1) the glutamate–glutamine cycle is a major metabolic pathway with a flux rate substantially greater than those suggested by early studies of cell cultures and brain slices; (2) the glutamate–glutamine cycle is coupled to a large portion of the total energy demand of brain function. The dual roles of glutamate as the principal neurotransmitter in the CNS and as a key metabolite linking carbon and nitrogen metabolism make it possible to probe glutamate neurotransmitter cycling using MRS by measuring the labeling kinetics of glutamate and glutamine. At the same time, comparing to non-amino acid neurotransmitters, the added complexity makes it more challenging to quantitatively separate neurotransmission events from metabolism. Over the past few years our understanding of the neuronal-astroglial two-compartment metabolic model of the glutamate–glutamine cycle has been greatly advanced. In particular, the importance of isotopic dilution of glutamine in determining the glutamate–glutamine cycling rate using [1−13C] or [1,6-13C2] glucose has been demonstrated and reproduced by different laboratories. In this article, recent developments in the two-compartment modeling of the glutamate–glutamine cycle are reviewed. In particular, the effects of isotopic dilution of glutamine on various labeling strategies for determining the glutamate–glutamine cycling rate are analyzed. Experimental strategies for measuring the glutamate–glutamine cycling flux that are insensitive to isotopic dilution of glutamine are also suggested.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health Bethesda, MD, USA
| |
Collapse
|
27
|
Li B, Hertz L, Peng L. Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 2012; 61:1325-32. [PMID: 23017600 DOI: 10.1016/j.neuint.2012.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Intense glucose-based energy metabolism and glutamate synthesis by astrocytes require malate-aspartate-shuttle (MAS) activity to regenerate NAD⁺ from NADH formed during glycolysis, since brain lacks significant glycerophosphate shuttle activity. Aralar is a necessary aspartate/glutamate exchanger for MAS function in brain. Based on cytochemical immunoassays the absence of aralar in adult astrocytes was repeatedly reported. This would mean that adult astrocytes must regenerate NAD⁺ by producing lactate from pyruvate, eliminating its use by oxidative and biosynthetic pathways. We alternatively used astrocytes and neurons from adult brain, freshly isolated by fluorescence-activated cell sorting, to determine aralar protein by a specific antibody and its mRNA by real-time PCR. Both protein and mRNA expressions were identical in adult neurons and astrocytes and similar to whole brain levels. The same level of aralar expression was reached in well-differentiated astrocyte cultures, but not until late development, coinciding with the late-maturing brain capability for glutamate formation and degradation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | |
Collapse
|
28
|
Gao HC, Zhu H, Song CY, Lin L, Xiang Y, Yan ZH, Bai GH, Ye FQ, Li XK. Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson's rat. Mol Neurobiol 2012; 47:123-30. [PMID: 22936308 DOI: 10.1007/s12035-012-8336-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance ((1)H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lanz B, Duarte JMN, Kunz N, Mlynárik V, Gruetter R, Cudalbu C. Which prior knowledge? Quantification of in vivo brain 13C MR spectra following 13C glucose infusion using AMARES. Magn Reson Med 2012; 69:1512-22. [PMID: 22886985 DOI: 10.1002/mrm.24406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 11/06/2022]
Abstract
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet (13)C NMR of the adult mouse brain. Neurochem Int 2012; 61:1036-43. [PMID: 22884585 DOI: 10.1016/j.neuint.2012.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2011] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/22/2022]
Abstract
The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the (13)C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-(13)C(2)]glucose (oxidized by both neurons and glia) and [1,2-(13)C(2)]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by (13)C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of (13)C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The (13)C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-(13)C]acetate relative to [1,6-(13)C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain.
Collapse
|
31
|
Li S, Zhang Y, Araneta MF, Xiang Y, Johnson C, Innis R, Shen J. In vivo detection of 13C isotopomer turnover in the human brain by sequential infusion of 13C labeled substrates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 218:16-21. [PMID: 22578550 PMCID: PMC3351698 DOI: 10.1016/j.jmr.2012.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 05/14/2023]
Abstract
This study demonstrates the feasibility of simultaneously detecting human brain metabolites labeled by two substrates infused in a sequential order. In vivo (13)C spectra of carboxylic/amide carbons were acquired only during the infusion of the second substrate. This approach allowed dynamic detection of (13)C labeling from two substrates with considerably different labeling patterns. [2-(13)C]glucose and [U-(13)C(6)]glucose were used to generate singlet and doublet signals of the same carboxylic/amide carbon atom, respectively. Because of the large one-bond (13)C-(13)C homonuclear J coupling between a carboxylic/amide carbon and an aliphatic carbon (~50 Hz), the singlet and doublet signals of the same carboxylic/amide carbon were well distinguished. The results demonstrated that different (13)C isotopomer patterns could be simultaneously and distinctly measured in vivo in a clinical setting at 3T.
Collapse
Affiliation(s)
- Shizhe Li
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yan Zhang
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Maria Ferraris Araneta
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yun Xiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Johnson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robert Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jun Shen
- Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Shestov AA, Valette J, Deelchand DK, Uğurbil K, Henry PG. Metabolic modeling of dynamic brain ¹³C NMR multiplet data: concepts and simulations with a two-compartment neuronal-glial model. Neurochem Res 2012; 37:2388-401. [PMID: 22528840 DOI: 10.1007/s11064-012-0782-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2012] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 12/28/2022]
Abstract
Metabolic modeling of dynamic (13)C labeling curves during infusion of (13)C-labeled substrates allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies performed in the brain to date have only modeled time courses of total isotopic enrichment at individual carbon positions (positional enrichments), not taking advantage of the additional dynamic (13)C isotopomer information available from fine-structure multiplets in (13)C spectra. Here we introduce a new (13)C metabolic modeling approach using the concept of bonded cumulative isotopomers, or bonded cumomers. The direct relationship between bonded cumomers and (13)C multiplets enables fitting of the dynamic multiplet data. The potential of this new approach is demonstrated using Monte-Carlo simulations with a brain two-compartment neuronal-glial model. The precision of positional and cumomer approaches are compared for two different metabolic models (with and without glutamine dilution) and for different infusion protocols ([1,6-(13)C(2)]glucose, [1,2-(13)C(2)]acetate, and double infusion [1,6-(13)C(2)]glucose + [1,2-(13)C(2)]acetate). In all cases, the bonded cumomer approach gives better precision than the positional approach. In addition, of the three different infusion protocols considered here, the double infusion protocol combined with dynamic bonded cumomer modeling appears the most robust for precise determination of all fluxes in the model. The concepts and simulations introduced in the present study set the foundation for taking full advantage of the available dynamic (13)C multiplet data in metabolic modeling.
Collapse
Affiliation(s)
- Alexander A Shestov
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
33
|
de Graaf RA, Rothman DL, Behar KL. State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR IN BIOMEDICINE 2011; 24:958-72. [PMID: 21919099 PMCID: PMC3694136 DOI: 10.1002/nbm.1761] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/19/2010] [Revised: 04/05/2011] [Accepted: 05/05/2011] [Indexed: 05/20/2023]
Abstract
Carbon-13 NMR spectroscopy in combination with (13)C-labeled substrate infusion is a powerful technique for measuring a large number of metabolic fluxes noninvasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission, and evaluate the importance of different substrates. Measurements can, in principle, be performed through direct (13)C NMR detection or via indirect (1)H-[(13)C] NMR detection of the protons attached to (13)C nuclei. The choice of detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on metabolic pathways. (13)C NMR spectroscopy remains a challenging technique that requires several nonstandard hardware modifications, infusion of (13)C-labeled substrates, and sophisticated processing and metabolic modeling. In this study, the various aspects of direct (13)C and indirect (1)H-[(13)C] NMR are reviewed with the aim of providing a practical guide.
Collapse
Affiliation(s)
- Robin A de Graaf
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut 06520-8043, USA.
| | | | | |
Collapse
|
34
|
Xin L, Mlynárik V, Lanz B, Frenkel H, Gruetter R. 1H-[13C] NMR spectroscopy of the rat brain during infusion of [2-13C] acetate at 14.1 T. Magn Reson Med 2011; 64:334-40. [PMID: 20535808 DOI: 10.1002/mrm.22359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.
Collapse
Affiliation(s)
- Lijing Xin
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 2010; 30:1200-13. [PMID: 20125180 PMCID: PMC2879471 DOI: 10.1038/jcbfm.2010.2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Acetate is a well-known astrocyte-specific substrate that has been used extensively to probe astrocytic function in vitro and in vivo. Analysis of amino acid turnover curves from (13)C-acetate has been limited mainly for estimation of first-order rate constants from exponential fitting or calculation of relative rates from steady-state (13)C enrichments. In this study, we used (1)H-[(13)C]-Nuclear Magnetic Resonance spectroscopy with intravenous infusion of [2-(13)C]acetate-Na(+) in vivo to measure the cerebral kinetics of acetate transport and utilization in anesthetized rats. Kinetics were assessed using a two-compartment (neuron/astrocyte) analysis of the (13)C turnover curves of glutamate-C4 and glutamine-C4 from [2-(13)C]acetate-Na(+), brain acetate levels, and the dependence of steady-state glutamine-C4 enrichment on blood acetate levels. The steady-state enrichment of glutamine-C4 increased with blood acetate concentration until 90% of plateau for plasma acetate of 4 to 5 mmol/L. Analysis assuming reversible, symmetric Michaelis-Menten kinetics for transport yielded 27+/-2 mmol/L and 1.3+/-0.3 micromol/g/min for K(t) and T(max), respectively, and for utilization, 0.17+/-0.24 mmol/L and 0.14+/-0.02 micromol/g/min for K(M_util) and V(max_util), respectively. The distribution space for acetate was only 0.32+/-0.12 mL/g, indicative of a large excluded volume. The astrocytic and neuronal tricarboxylic acid cycle fluxes were 0.37+/-0.03 micromol/g/min and 1.41+/-0.11 micromol/g/min, respectively; astrocytes thus comprised approximately 21%+/-3% of total oxidative metabolism.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
36
|
van Eijsden P, Behar KL, Mason GF, Braun KPJ, de Graaf RA. In vivo neurochemical profiling of rat brain by 1H-[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission. J Neurochem 2009; 112:24-33. [PMID: 19818103 DOI: 10.1111/j.1471-4159.2009.06428.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by (13)C NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using (1)H-[(13)C] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-(13)C(6)]-glucose and [2-(13)C]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo.
Collapse
Affiliation(s)
- Pieter van Eijsden
- Department of Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|