1
|
Tobias TJ, Moraes TB, Colnago LA. Establishing optimal parameters to mitigate the heating effects caused by CPMAS sequence in 13C solid-state NMR studies of cocoa butter and other fat samples. Food Res Int 2025; 204:115944. [PMID: 39986788 DOI: 10.1016/j.foodres.2025.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
The physical and chemical properties of solid triacylglycerols (fats) have been investigated through the use of 13C solid-state nuclear magnetic resonance (SS-NMR). However, the 13C SS-NMR experiments performed with cross-polarization (CP), magic angle sample spinning (MAS) and high power for 1H decoupling (DEC), known as CPMAS, have the potential to increase sample temperature, which may disrupt the solid-liquid content, crystallization dynamics, and polymorphism of the fat samples. While the heating effects observed in CPMAS experiments have been well documented, they have not yet been studied in fat samples. Accordingly, the present study examines the influence of sample spinning frequencies (SF) and radio frequency irradiation (RFI) due to DEC, on sample heating using cocoa butter (CB), chocolate, and animal fats. The results of the variation in the 1H chemical shift of the water peak in the butter sample indicate that the use of routine CPMAS parameter results in an increase in sample temperature of up to 15 °C. This temperature is sufficient to affect various physicochemical properties of fats, including partial or total melting when the experiments are performed with an air stream at ambient temperature. The results demonstrate that a SF of approximately 3 kHz and a recycle delay exceeding 10 s for a decoupler power of 70 W for 50 ms result in an increase of less than 1 °C in sample temperature in 13C CPMAS experiments. These experimental conditions were successfully employed to study the CB crystallization process, which exhibited the presence of the α form at the beginning of the process and the β form at its conclusion.
Collapse
Affiliation(s)
- Thais Juliana Tobias
- Institute of Chemistry of São Carlos, Av. Trabalhador Sao-carlense 400, University of São Paulo (USP), São Carlos 13660-970 SP, Brazil
| | - Tiago Bueno Moraes
- Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil
| | - Luiz Alberto Colnago
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
2
|
Koppe J, Sanders KJ, Robinson TC, Lejeune AL, Proriol D, Wegner S, Purea A, Engelke F, Clément RJ, Grey CP, Pell AJ, Pintacuda G. Resolving Structures of Paramagnetic Systems in Chemistry and Materials Science by Solid-State NMR: The Revolving Power of Ultra-Fast MAS. Angew Chem Int Ed Engl 2025; 64:e202408704. [PMID: 39388344 DOI: 10.1002/anie.202408704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution. While previous approaches employing slower MAS are often unsuccessful in providing sufficient resolution, we show that ultra-fast 100+kHz MAS allows site-specific assignments of all resonances from complex paramagnetic solids. Combined with more reliable rotor materials and handling methods, this opens the way to the routine characterization of geometry and electronic structures of functional paramagnetic systems in chemistry, including catalysts and battery materials. We benchmark this approach on a hygroscopic luminescent Tb3+ complex, an air-sensitive homogeneous high-spin Fe2+ catalyst, and a series of mixed Fe2+/Mn2+/Mg2+ olivine-type cathode materials.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Kevin J Sanders
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thomas C Robinson
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Arthur L Lejeune
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | - David Proriol
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | | | - Armin Purea
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Frank Engelke
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Raphaële J Clément
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrew J Pell
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
3
|
Espejo J, Zellmann-Parrotta CO, Sarkar D, Che A, Michaelis VK, Williams VE, Ling CC. Unprecedented Cubic Mesomorphic Behaviour of Crown-Ether Functionalized Amphiphilic Cyclodextrins. Chemistry 2024; 30:e202403232. [PMID: 39382344 DOI: 10.1002/chem.202403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Amphiphilic supramolecular materials based on biodegradable cyclodextrins (CDs) have been known to self-assemble into different types of thermotropic liquid crystals, including smectic and hexagonal columnar mesophases. Previous studies on amphiphilic CDs bearing 14 aliphatic chains at the secondary face and 7 oligoethylene glycol (OEG) chains at the primary face showed that the stability of the mesophase can be rationally tuned through implementation of terminal functional groups to the OEG chains. Here, we report the syntheses of first examples of crown ether-functionalized amphiphilic cyclodextrins that unexpectedly form thermotropic bicontinuous cubic phases. This constitutes the first reported examples of cyclodextrins forming such phases, which are potentially capable of 3D ion transport. Lithium composites were made to assess lithium conduction in the material. XRD revealed the added lithium salt destabilizes the cubic phase in favour of the smectic phase. Solid-state NMR studies showed that these materials conduct lithium ions with a very low activation energy.
Collapse
Affiliation(s)
- Jayar Espejo
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | | | - Diganta Sarkar
- Department of Chemistry, University of Alberta, 116 St and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Austin Che
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, 116 St and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Dr W, Burnaby, BC, V5A 1S6, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
4
|
Sarkar D, Stelmakh A, Karmakar A, Aebli M, Krieg F, Bhattacharya A, Pawsey S, Kovalenko MV, Michaelis VK. Surface Structure of Lecithin-Capped Cesium Lead Halide Perovskite Nanocrystals Using Solid-State and Dynamic Nuclear Polarization NMR Spectroscopy. ACS NANO 2024; 18:21894-21910. [PMID: 39110153 DOI: 10.1021/acsnano.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Abhoy Karmakar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Franziska Krieg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shane Pawsey
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
5
|
Dai Y, Terskikh V, Wu G. A combined solid-state 1H, 13C, 17O NMR and periodic DFT study of hyperfine coupling tensors in paramagnetic copper(II) compounds. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 132:101945. [PMID: 38968703 DOI: 10.1016/j.ssnmr.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
We report solid-state 1H, 13C, and 17O NMR determination of hyperfine coupling tensors (A-tensors) in several paramagnetic Cu(II) (d9, S = 1/2) complexes: trans-Cu(DL-Ala)2·H217O, Cu([1-13C]acetate)2·H2O, Cu([2-13C]acetate)2·H2O, and Cu(acetate)2·H217O. Using these new experimental results and some A-tensor data available in the literature for trans-Cu(L-Ala)2 and K2CuCl4·2H2O, we were able to examine the accuracy of A-tensor computation from a periodic DFT method implemented in the BAND program. We evaluated A-tensors on 1H (I = 1/2), 13C (I = 1/2), 14N (I = 1), 17O (I = 5/2), 39K (I = 3/2), 35Cl (I = 3/2), and 63Cu (I = 3/2) nuclei over a range spanning more than 3 orders of magnitude. We found that the BAND code can reproduce reasonably well the experimental results for both A-tensors and nuclear quadrupole coupling tensors.
Collapse
Affiliation(s)
- Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
6
|
Sarkar D, Bhattacharya A, Meyer J, Kirchberger AM, Mishra V, Nilges T, Michaelis VK. Unraveling Sodium-Ion Dynamics in Honeycomb-Layered Na 2Mg xZn 2-xTeO 6 Solid Electrolytes with Solid-State NMR. J Am Chem Soc 2023; 145:19727-19745. [PMID: 37642533 DOI: 10.1021/jacs.3c04928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
All-solid-state sodium-ion batteries (SIBs) have the potential to offer large-scale, safe, cost-effective, and sustainable energy storage solutions by supplementing the industry-leading lithium-ion batteries. However, for the enhanced bulk properties of SIB components (e.g., solid electrolytes), a comprehensive understanding of their atomic-scale structure and the dynamic behavior of sodium (Na) ions is essential. Here, we utilize a robust multinuclear (23Na, 125Te, 25Mg, and 67Zn) magnetic resonance approach to explore a novel Mg/Zn homogeneously mixed-cation honeycomb-layered oxide Na2MgxZn2-xTeO6 solid solution series. These new intermediate compounds exhibit tailorable bulk Na-ion conductivity (σ) with the highest σ = 0.14 × 10-4 S cm-1 for Na2MgZnTeO6 at room temperature suitable for SIB solid electrolyte applications as observed by powder electrochemical impedance spectroscopy (EIS). A combination of powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and field emission scanning electron microscopy (FESEM) reveals highly crystalline phase-pure compounds in the P6322 space group. We show that the Mg/Zn disorder is random within the honeycomb layers using 125Te nuclear magnetic resonance (NMR) and resolve multiple Na sites using two-dimensional (triple-quantum magic-angle spinning (3QMAS)) 23Na NMR. The medium-range disorder in the honeycomb layer is revealed through the combination of 25Mg and 67Zn NMR, complemented by electronic structure calculations using density functional theory (DFT). Furthermore, we expose very fast local Na-ion hopping processes (hopping rate, 1/τNMR = 0.83 × 109 Hz) by using a laser to achieve variable high-temperature (∼860 K) 23Na NMR, which are sensitive to different Mg/Zn ratios. The Na2MgZnTeO6 with maximum Mg/Zn disorder displays the highest short-range Na-ion dynamics among all of the solid solution members.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jan Meyer
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Anna Maria Kirchberger
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
- TUMint Energy Research GmbH, 85748 Garching b., München, Germany
| | - Vidyanshu Mishra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tom Nilges
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
McKay RT. Metabolomics and NMR. Handb Exp Pharmacol 2023; 277:73-116. [PMID: 36355220 DOI: 10.1007/164_2022_616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this manuscript will be to convince the reader to dive deeper into NMR spectroscopy and prevent the technique from being just another "black-box" in the lab. We will try to concisely highlight interesting topics and supply additional references for further exploration at each stage. The advantages of delving into the technique will be shown. The secondary objective, i.e., avoiding common problems before starting, will hopefully then become clear. Lastly, we will emphasize the spectrometer information needed for manuscript reporting to allow reproduction of results and confirm findings.
Collapse
Affiliation(s)
- Ryan T McKay
- Department Chemistry, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
9
|
Gelenter MD, Chen KJ, Hong M. Off-resonance 13C- 2H REDOR NMR for site-resolved studies of molecular motion. JOURNAL OF BIOMOLECULAR NMR 2021; 75:335-345. [PMID: 34342847 PMCID: PMC8830769 DOI: 10.1007/s10858-021-00377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 06/06/2023]
Abstract
We introduce a 13C-2H Rotational Echo DOuble Resonance (REDOR) technique that uses the difference between on-resonance and off-resonance 2H irradiation to detect dynamic segments in deuterated molecules. By selectively inverting specific regions of the 2H magic-angle spinning (MAS) sideband manifold to recouple some of the deuterons to nearby carbons, we distinguish dynamic and rigid residues in 1D and 2D 13C spectra. We demonstrate this approach on deuterated GB1, H/D exchanged GB1, and perdeuterated bacterial cellulose. Numerical simulations reproduce the measured mixing-time and 2H carrier-frequency dependence of the REDOR dephasing of bacterial cellulose. Combining numerical simulations with experiments thus allow the extraction of motionally averaged quadrupolar couplings from REDOR dephasing values.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA
| | - Kelly J Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, Cambridge, USA.
| |
Collapse
|
10
|
NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat Rev Chem 2021; 5:624-645. [PMID: 37118421 DOI: 10.1038/s41570-021-00309-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.
Collapse
|
11
|
Gelenter MD, Mandala VS, Niesen MJM, Sharon DA, Dregni AJ, Willard AP, Hong M. Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol 2021; 4:338. [PMID: 33712696 PMCID: PMC7955094 DOI: 10.1038/s42003-021-01847-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michiel J M Niesen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Bhattacharya S, Basu U, Haouas M, Su P, Espenship MF, Wang F, Solé‐Daura A, Taffa DH, Wark M, Poblet JM, Laskin J, Cadot E, Kortz U. Discovery and Supramolecular Interactions of Neutral Palladium-Oxo Clusters Pd 16 and Pd 24. Angew Chem Int Ed Engl 2021; 60:3632-3639. [PMID: 33104280 PMCID: PMC7898824 DOI: 10.1002/anie.202010690] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 01/27/2023]
Abstract
We report on the synthesis, structure, and physicochemical characterization of the first three examples of neutral palladium-oxo clusters (POCs). The 16-palladium(II)-oxo cluster [Pd16 O24 (OH)8 ((CH3 )2 As)8 ] (Pd16 ) comprises a cyclic palladium-oxo unit capped by eight dimethylarsinate groups. The chloro-derivative [Pd16 Na2 O26 (OH)3 Cl3 ((CH3 )2 As)8 ] (Pd16 Cl) was also prepared, which forms a highly stable 3D supramolecular lattice via strong intermolecular interactions. The 24-palladium(II)-oxo cluster [Pd24 O44 (OH)8 ((CH3 )2 As)16 ] (Pd24 ) can be considered as a bicapped derivative of Pd16 with a tetra-palladium-oxo unit grafted on either side. The three compounds were fully characterized 1) in the solid state by single-crystal and powder XRD, IR, TGA, and solid-state 1 H and 13 C NMR spectroscopy, 2) in solution by 1 H, 13 C NMR and 1 H DOSY spectroscopic methods, and 3) in the gas phase by electrospray ionization mass spectrometry (ESI-MS).
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Uttara Basu
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Mohamed Haouas
- Institut Lavoisier de VersaillesCNRS, UVSQUniversité Paris-SaclayVersaillesFrance
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | | | - Fei Wang
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Albert Solé‐Daura
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Dereje H. Taffa
- Institute of ChemistryCarl von Ossietzky University Oldenburg26129OldenburgGermany
| | - Michael Wark
- Institute of ChemistryCarl von Ossietzky University Oldenburg26129OldenburgGermany
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | - Emmanuel Cadot
- Institut Lavoisier de VersaillesCNRS, UVSQUniversité Paris-SaclayVersaillesFrance
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
13
|
Bhattacharya S, Basu U, Haouas M, Su P, Espenship MF, Wang F, Solé‐Daura A, Taffa DH, Wark M, Poblet JM, Laskin J, Cadot E, Kortz U. Discovery and Supramolecular Interactions of Neutral Palladium‐Oxo Clusters Pd
16
and Pd
24. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Uttara Basu
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Mohamed Haouas
- Institut Lavoisier de Versailles CNRS, UVSQ Université Paris-Saclay Versailles France
| | - Pei Su
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | | | - Fei Wang
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Albert Solé‐Daura
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Dereje H. Taffa
- Institute of Chemistry Carl von Ossietzky University Oldenburg 26129 Oldenburg Germany
| | - Michael Wark
- Institute of Chemistry Carl von Ossietzky University Oldenburg 26129 Oldenburg Germany
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Julia Laskin
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles CNRS, UVSQ Université Paris-Saclay Versailles France
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
14
|
Rouillon J, Blahut J, Jean M, Albalat M, Vanthuyne N, Lesage A, Ali LMA, Hadj-Kaddour K, Onofre M, Gary-Bobo M, Micouin G, Banyasz A, Le Bahers T, Andraud C, Monnereau C. Two-Photon Absorbing AIEgens: Influence of Stereoconfiguration on Their Crystallinity and Spectroscopic Properties and Applications in Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55157-55168. [PMID: 33217234 DOI: 10.1021/acsami.0c15810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper aims at designing chromophores with efficient aggregation-induced emission (AIE) properties for two-photon fluorescence microscopy (2PFM), which is one of the best-suited types of microscopy for the imaging of living organisms or thick biological tissues. Tetraphenylethylene (TPE) derivatives are common building blocks in the design of chromophores with efficient AIE properties. Therefore, in this study, extended TPE AIEgens specifically optimized for two-photon absorption (2PA) are synthesized and the resulting (E/Z) isomers are separated using chromatography on chiral supports. Comparative characterization of the AIE properties is performed on the pure (Z) and (E) isomers and the mixture, allowing us, in combination with powder X-ray diffraction and solid-state NMR, to document a profound impact of crystallinity on solid-state fluorescence properties. In particular, we show that stereopure AIEgens form aggregates of superior crystallinity, which in turn exhibit a higher fluorescence quantum yield compared to diastereoisomers mixtures. Preparation of stereopure organic nanoparticles affords very bright fluorescent contrast agents, which are then used for cellular and intravital two-photon microscopy on human breast cancer cells and on zebrafish embryos.
Collapse
Affiliation(s)
- Jean Rouillon
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Jan Blahut
- Univ. Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Marion Jean
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Muriel Albalat
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Anne Lesage
- Univ. Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | | | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | | | - Guillaume Micouin
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Akos Banyasz
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Tangui Le Bahers
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Chantal Andraud
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Cyrille Monnereau
- Univ. Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| |
Collapse
|
15
|
Bernard GM, Michaelis VK. Lead-207 NMR spectroscopy at 1.4 T: Application of benchtop instrumentation to a challenging I = ½ nucleus. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1203-1212. [PMID: 32364623 DOI: 10.1002/mrc.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The practicality of obtaining liquid- and solid-state 207 Pb nuclear magnetic resonance (NMR) spectra with a low permanent-field magnet is investigated. Obtaining 207 Pb NMR spectra of salts in solution is shown to be viable for samples as dilute as 0.05 M. The concentration dependence of the 207 Pb chemical shifts for lead nitrate was investigated; the results are comparable with those obtained with high-field instruments. Likewise, the isotope effect of substituting D2 O for H2 O as the solvent was investigated and found to be comparable with those reported previously. Obtaining solid-state 207 Pb NMR spectra is challenging, but we demonstrate the ability to obtain such spectra for three unique solid samples. An axially symmetric 207 Pb powder pattern for lead nitrate and the powder pattern expected for lead chloride reveal linewidths dominated by shielding anisotropy, while 207 Pb-35/37 Cl J-coupling dominates in the methylammonium lead chloride perovskite material. Finally, recent innovations and the future potential of the instruments are considered.
Collapse
Affiliation(s)
- Guy M Bernard
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Vladimir K Michaelis
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
17
|
Gelenter MD, Dregni AJ, Hong M. Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining Long-Range 13C- 13C and 15N- 13C Distance Restraints. J Phys Chem B 2020; 124:7138-7151. [PMID: 32700540 PMCID: PMC8324326 DOI: 10.1021/acs.jpcb.0c04574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a class of pulsed third-spin-assisted recoupling (P-TSAR) magic-angle-spinning solid-state NMR techniques that achieve efficient polarization transfer over long distances to provide important restraints for structure determination. These experiments utilize second-order cross terms between strong 1H-13C and 1H-15N dipolar couplings to achieve 13C-13C and 15N-13C polarization transfer, similar to the principle of continuous-wave (CW) TSAR experiments. However, in contrast to the CW-TSAR experiments, these P-TSAR experiments require much less radiofrequency (rf) energy and allow a much simpler routine for optimizing the rf field strength. We call the technique PULSAR (pulsed proton-assisted recoupling) for homonuclear spin pairs. For heteronuclear spin pairs, we improve the recently introduced PERSPIRATIONCP (proton-enhanced rotor-echo short pulse irradiation cross-polarization) experiment by shifting the pulse positions and removing the z-filters, which significantly broaden the bandwidth and increase the efficiency of polarization transfer. We demonstrate the PULSAR and PERSPIRATIONCP techniques on the model protein GB1 and found cross peaks for distances as long as 10 and 8 Å for 13C-13C and 15N-13C spin pairs, respectively. We then apply these methods to the amyloid fibrils formed by the peptide hormone glucagon and show that long-range correlation peaks are readily observed to constrain intermolecular packing in this cross-β fibril. We provide an analytical model for the PULSAR and PERSPIRATIONCP experiments to explain the measured and simulated chemical shift dependence and pulse flip angle dependence of polarization transfer. These two techniques are useful for measuring long-range distance restraints to determine the three-dimensional structures of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Martin D. Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
18
|
Aebli M, Piveteau L, Nazarenko O, Benin BM, Krieg F, Verel R, Kovalenko MV. Lead-Halide Scalar Couplings in 207Pb NMR of APbX 3 Perovskites (A = Cs, Methylammonium, Formamidinium; X = Cl, Br, I). Sci Rep 2020; 10:8229. [PMID: 32427897 PMCID: PMC7237655 DOI: 10.1038/s41598-020-65071-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding the structure and dynamics of newcomer optoelectronic materials - lead halide perovskites APbX3 [A = Cs, methylammonium (CH3NH3+, MA), formamidinium (CH(NH2)2+, FA); X = Cl, Br, I] - has been a major research thrust. In this work, new insights could be gained by using 207Pb solid-state nuclear magnetic resonance (NMR) spectroscopy at variable temperatures between 100 and 300 K. The existence of scalar couplings 1JPb-Cl of ca. 400 Hz and 1JPb-Br of ca. 2.3 kHz could be confirmed for MAPbX3 and CsPbX3. Diverse and fast structure dynamics, including rotations of A-cations, harmonic and anharmonic vibrations of the lead-halide framework and ionic mobility, affect the resolution of the coupling pattern. 207Pb NMR can therefore be used to detect the structural disorder and phase transitions. Furthermore, by comparing bulk and nanocrystalline CsPbBr3 a greater structural disorder of the PbBr6-octahedra had been confirmed in a nanoscale counterpart, not readily captured by diffraction-based techniques.
Collapse
Affiliation(s)
- Marcel Aebli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland
| | - Laura Piveteau
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR 3079 CNRS, Université d'Orléans, 1D Avenue de la Recherche Scientifique, 45071, Orléans, France
| | - Olga Nazarenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland
| | - Bogdan M Benin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland
| | - Franziska Krieg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland
| | - René Verel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland.
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093, Switzerland.
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland.
| |
Collapse
|
19
|
Gelenter MD, Smith KJ, Liao SY, Mandala VS, Dregni AJ, Lamm MS, Tian Y, Xu W, Pochan DJ, Tucker TJ, Su Y, Hong M. The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations. Nat Struct Mol Biol 2019; 26:592-598. [PMID: 31235909 PMCID: PMC6609468 DOI: 10.1038/s41594-019-0238-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Glucagon and insulin maintain blood glucose homeostasis and are used to treat hypoglycemia and hyperglycemia, respectively, in patients with diabetes. Whereas insulin is stable for weeks in its solution formulation, glucagon fibrillizes rapidly at the acidic pH required for solubility and is therefore formulated as a lyophilized powder that is reconstituted in an acidic solution immediately before use. Here we use solid-state NMR to determine the atomic-resolution structure of fibrils of synthetic human glucagon grown at pharmaceutically relevant low pH. Unexpectedly, two sets of chemical shifts are observed, indicating the coexistence of two β-strand conformations. The two conformations have distinct water accessibilities and intermolecular contacts, indicating that they alternate and hydrogen bond in an antiparallel fashion along the fibril axis. Two antiparallel β-sheets assemble with symmetric homodimer cross sections. This amyloid structure is stabilized by numerous aromatic, cation-π, polar and hydrophobic interactions, suggesting mutagenesis approaches to inhibit fibrillization could improve this important drug.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katelyn J Smith
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew S Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yu Tian
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Institute for Molecular Engineering, The University of Chicago, Eckhardt Research Center, Chicago, IL, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | | | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Elgersma SV, Ha M, Yang JLJ, Michaelis VK, Unsworth LD. Charge and Peptide Concentration as Determinants of the Hydrogel Internal Aqueous Environment. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E832. [PMID: 30870997 PMCID: PMC6427708 DOI: 10.3390/ma12050832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022]
Abstract
Self-assembling peptides are a promising class of biomaterials with desirable biocompatibility and versatility. In particular, the oligopeptide (RADA)₄, consisting of arginine (R), alanine (A), and aspartic acid (D), self-assembles into nanofibers that develop into a three-dimensional hydrogel of up to 99.5% (w/v) water; yet, the organization of water within the hydrogel matrix is poorly understood. Importantly, peptide concentration and polarity are hypothesized to control the internal water structure. Using variable temperature deuterium solid-state nuclear magnetic resonance (²H NMR) spectroscopy, we measured the amount of bound water in (RADA)₄-based hydrogels, quantified as the non-frozen water content. To investigate how peptide polarity affects water structure, five lysine (K) moieties were appended to (RADA)₄ to generate (RADA)₄K₅. Hydrogels at 1 and 5% total peptide concentration were prepared from a 75:25 (w/w) blend of (RADA)₄:(RADA)₄K₅ and similarly analyzed by ²H NMR. Interestingly, at 5% peptide concentration, there was lower mobile water content in the lysinated versus the pristine (RADA)₄ hydrogel. Regardless of the presence of lysine, the 5% peptide concentration had higher non-frozen water content at temperatures as low as 217 ± 1.0 K, suggesting that bound water increases with peptide concentration. The bound water, though non-frozen, may be strongly bound to the charged lysine moiety to appear as immobilized water. Further understanding of the factors controlling water structure within hydrogels is important for tuning the transport properties of bioactive solutes in the hydrogel matrix when designing for biomedical applications.
Collapse
Affiliation(s)
- Scott V Elgersma
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- National Research Council, National Institute for Nanotechnology, Edmonton, AB T6G 2M9, Canada.
| | - Michelle Ha
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- National Research Council, National Institute for Nanotechnology, Edmonton, AB T6G 2M9, Canada.
| | - Vladimir K Michaelis
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- National Research Council, National Institute for Nanotechnology, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
21
|
Herbert-Pucheta J, Ortega Q, Zepeda-Vallejo L, Milmo-Brittingham D, Maya G, Aragón L, Castillo E, González F, Pino-Villar C, García R. Revealing full chemical forms of lead in wine with combined XRF-NMR technologies. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since 1953, The World Organization of Vine and Wine (OIV) Member States have reduced the lead maximum limits (ML) in wines, down to 0.05 mg/L (2018). Evidently, this ML value is too restrictive for wine industry as it excludes from international market a significant portion of wine production. Currently, the Codex Committee on Contaminants in Foods and OIV had recognized the value of gathering robust and novel data to better assess the best lowest ML for wine industry. Currently, there is not a direct statement within international reference documents, of which chemical form of lead must be controlled and/ or reduced. This work presents for the first time a method combining Energy Dispersive X-Ray analysis (EDAX) and Nuclear Magnetic Resonance (NMR) spectroscopies in order to determine presence and concentrations of major and trace elements of lead and other element moieties in wine that can allow to better redefine lead's ML. By identification of K, L, M, radiation shells with additional αβi labelling of lead's major and minor components with semi-quantitative XRF, combined with chemical-shift analysis of inorganic Pb4+, Pb2+ and/or organo-lead within wine samples, we propose a full discrimination framework to disentangle and quantify different chemical forms of lead.
Collapse
|
22
|
Forse AC, Milner PJ, Lee JH, Redfearn HN, Oktawiec J, Siegelman RL, Martell JD, Dinakar B, Porter-Zasada LB, Gonzalez MI, Neaton JB, Long JR, Reimer JA. Elucidating CO 2 Chemisorption in Diamine-Appended Metal-Organic Frameworks. J Am Chem Soc 2018; 140:18016-18031. [PMID: 30501180 DOI: 10.1021/jacs.8b10203] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal-organic frameworks of the type diamine-M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) have shown promise for carbon-capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van-der-Waals-corrected density functional theory (DFT) calculations for 13 diamine-M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products, ammonium carbamate chains and carbamic acid pairs, can be readily distinguished and that ammonium carbamate chain formation dominates for diamine-Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves the formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine-M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine-M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.
Collapse
Affiliation(s)
| | - Phillip J Milner
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jung-Hoon Lee
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Rebecca L Siegelman
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | - Bhavish Dinakar
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Jeffrey B Neaton
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey R Long
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jeffrey A Reimer
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
23
|
Jardón-Álvarez D, Schmedt Auf der Günne J. Reduction of the temperature gradients in laser assisted high temperature MAS NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:26-30. [PMID: 30125797 DOI: 10.1016/j.ssnmr.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 05/14/2023]
Abstract
Laser assisted magic angle spinning (MAS) solid state NMR experiments enable studying physicochemical properties at very high temperatures with high resolution. Large temperature gradients however, can degrade resolution and precision of this technique. Due to the strong temperature dependence of the 207Pb chemical-shift in lead nitrate, a temperature difference along the sample leads to a broadening of the signal. A second moment analysis of the NMR spectra serves as an analytical method to quantify the temperature gradient. We show how an arbitrary line-shape can be decomposed into a set of Gaussian functions from which the 2nd moment is calculated in an analytical fashion which improves the numerical stability of the analysis. It was found that measuring the FID in a non-steady temperature state can reduce the temperature gradient inside the rotor, caused by the single-sided heating.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Universität München (LMU), Department of Chemie, Butenandtstraße 5-13, 81377, Munich, Germany
| | | |
Collapse
|
24
|
Gelenter MD, Hong M. Efficient 15N- 13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. J Phys Chem B 2018; 122:8367-8379. [PMID: 30106585 DOI: 10.1021/acs.jpcb.8b06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range 15N-13C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (PERSPIRATIONCP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (PAINCP) experiment but uses only a fraction of the rf energy by replacing continuous-wave 13C and 15N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how PERSPIRATIONCP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and 13C carrier frequency and compare the PERSPIRATIONCP performance with the performances of PAINCP, RESPIRATIONCP, and SPECIFICCP for measuring 15N-13C cross peaks. PERSPIRATIONCP achieves long-range 15N-13C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that PERSPIRATIONCP relies on 15N-1H and 13C-1H dipolar couplings rather than 15N-13C dipolar coupling for polarization transfer. Therefore, PERSPIRATIONCP is an rf-efficient and higher-sensitivity alternative to PAINCP for measuring long-range 15N-13C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two PERSPIRATIONCP 15N-13C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient PERSPIRATIONCP method is useful for obtaining many long-range distance restraints for protein structure determination.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
25
|
Senocrate A, Moudrakovski I, Maier J. Short-range ion dynamics in methylammonium lead iodide by multinuclear solid state NMR and 127I NQR. Phys Chem Chem Phys 2018; 20:20043-20055. [PMID: 30022194 DOI: 10.1039/c8cp01535j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore the short-range ion dynamics in methylammonium lead iodide (MAPbI3, the archetypal halide perovskite) by means of solid-state NMR (1H, 13C, 14N, 15N and 207Pb) and Nuclear Quadrupolar Resonance (127I NQR), in combination with molecular dynamics simulations. We focus on the rotational motion of the methylammonium (MA) cation, and on the interaction between MA and the inorganic lattice, since these processes are linked to electronic carrier lifetimes, optical and electronic properties and even structural stability of this promising solar cell material. We show that the motion of the MA cation can be described by a bi-axial rotation, with similar interactions of CH3 and NH3+ groups with the inorganic framework. This motion becomes nearly isotropic above the cubic phase transition, dominating the spin-lattice relaxation of 1H, 13C and 15N through spin-rotational interactions. In addition, we observe strong cross-relaxation between 207Pb and 127I, which fully controls spin-spin and spin-lattice relaxation in 207Pb.
Collapse
Affiliation(s)
- Alessandro Senocrate
- Department of Physical Chemistry of Solids, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | | | | |
Collapse
|
26
|
Henoch J, Auch A, Diab F, Eichele K, Schubert H, Sirsch P, Block T, Pöttgen R, Wesemann L. Cyclic Distannene or Bis(stannylene) with a Ferrocenyl Backbone: Synthesis, Structure, and Coordination Chemistry. Inorg Chem 2018; 57:4135-4145. [PMID: 29561607 DOI: 10.1021/acs.inorgchem.8b00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,1'-Dilithioferrocene was reacted with 2 equiv of isopropyl (Ar*) or methyl (Ar') substituted terphenyl tin(II) chloride. Reaction product 1, carrying the bulkier terphenyl substituent Ar*, displays a bis(stannylene) structure in the solid state without formation of a tin-tin bond. Temperature-dependent solution 119Sn NMR spectroscopy, however, revealed a dynamic interplay between bis(stannylene) (100 °C) and cyclic distannene (-80 °C). In contrast to 1, the less bulky Ar' substituent results in a cyclic distannene 2. On the basis of temperature-dependent 119Sn NMR spectroscopy the Sn-Sn bond of compound 2 was preserved up to 100 °C. Both compounds were further characterized by solid-state 119Sn NMR spectroscopy as well as 119Sn and 57Fe Mössbauer spectroscopy. 1 reacted as a chelating ligand with nickel and palladium complexes [Ni(cod)2] and [Pd(nbe)3] (nbe = norbornene). In the resulting coordination compounds the nonstabilized stannylene acts as a donor as well as an acceptor ligand and shows a dynamic switch from donor to acceptor behavior in the monopalladium complex.
Collapse
Affiliation(s)
- Jessica Henoch
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Armin Auch
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Fatima Diab
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Peter Sirsch
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Theresa Block
- Institut für Anorganische und Analytische Chemie , Universität Münster , Corrensstrasse 30 , D-48149 Münster , Germany
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische Chemie , Universität Münster , Corrensstrasse 30 , D-48149 Münster , Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie , Eberhard-Karls-Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
27
|
Li X, Charaya H, Bernard GM, Elliott JAW, Michaelis VK, Lee B, Chung HJ. Low-Temperature Ionic Conductivity Enhanced by Disrupted Ice Formation in Polyampholyte Hydrogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinda Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hemant Charaya
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Guy M. Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Hyun-Joong Chung
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
28
|
Bernard GM, Wasylishen RE, Ratcliffe CI, Terskikh V, Wu Q, Buriak JM, Hauger T. Methylammonium Cation Dynamics in Methylammonium Lead Halide Perovskites: A Solid-State NMR Perspective. J Phys Chem A 2018; 122:1560-1573. [PMID: 29337561 DOI: 10.1021/acs.jpca.7b11558] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In light of the intense recent interest in the methylammonium lead halides, CH3NH3PbX3 (X = Cl, Br, and I) as sensitizers for photovoltaic cells, the dynamics of the methylammonium (MA) cation in these perovskite salts has been reinvestigated as a function of temperature via 2H, 14N, and 207Pb NMR spectroscopy. In the cubic phase of all three salts, the MA cation undergoes pseudoisotropic tumbling (picosecond time scale). For example, the correlation time, τ2, for the C-N axis of the iodide salt is 0.85 ± 0.30 ps at 330 K. The dynamics of the MA cation are essentially continuous across the cubic ↔ tetragonal phase transition; however, 2H and 14N NMR line shapes indicate that subtle ordering of the MA cation occurs in the tetragonal phase. The temperature dependence of the cation ordering is rationalized using a six-site model, with two equivalent sites along the c-axis and four equivalent sites either perpendicular or approximately perpendicular to this axis. As the cubic ↔ tetragonal phase transition temperature is approached, the six sites are nearly equally populated. Below the tetragonal ↔ orthorhombic phase transition, 2H NMR line shapes indicate that the C-N axis is essentially frozen.
Collapse
Affiliation(s)
- Guy M Bernard
- Gunning-Lemieux Chemistry Centre, University of Alberta , 11227 Saskatchewan Drive NW, Edmonton, Alberta, Canada T6G 2G2
| | - Roderick E Wasylishen
- Gunning-Lemieux Chemistry Centre, University of Alberta , 11227 Saskatchewan Drive NW, Edmonton, Alberta, Canada T6G 2G2
| | | | - Victor Terskikh
- Department of Chemistry, University of Ottawa , 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Qichao Wu
- Gunning-Lemieux Chemistry Centre, University of Alberta , 11227 Saskatchewan Drive NW, Edmonton, Alberta, Canada T6G 2G2
| | - Jillian M Buriak
- Gunning-Lemieux Chemistry Centre, University of Alberta , 11227 Saskatchewan Drive NW, Edmonton, Alberta, Canada T6G 2G2
| | - Tate Hauger
- Gunning-Lemieux Chemistry Centre, University of Alberta , 11227 Saskatchewan Drive NW, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|