1
|
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.
Collapse
Affiliation(s)
- Madhavi Latha Chinta
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
2
|
Apsite I, Constante G, Dulle M, Vogt L, Caspari A, Boccaccini AR, Synytska A, Salehi S, Ionov L. 4D Biofabrication of fibrous artificial nerve graft for neuron regeneration. Biofabrication 2020; 12:035027. [DOI: 10.1088/1758-5090/ab94cf] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Diez-Ahedo R, Mendibil X, Márquez-Posadas MC, Quintana I, González F, Rodríguez FJ, Zilic L, Sherborne C, Glen A, Taylor CS, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Merino S. UV-Casting on Methacrylated PCL for the Production of a Peripheral Nerve Implant Containing an Array of Porous Aligned Microchannels. Polymers (Basel) 2020; 12:E971. [PMID: 32331241 PMCID: PMC7240584 DOI: 10.3390/polym12040971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerves are basic communication structures guiding motor and sensory information from the central nervous system to receptor units. Severed peripheral nerve injuries represent a large clinical problem with relevant challenges to successful synthetic nerve repair scaffolds as substitutes to autologous nerve grafting. Numerous studies reported the use of hollow tubes made of synthetic polymers sutured between severed nerve stumps to promote nerve regeneration while providing protection for external factors, such as scar tissue formation and inflammation. Few approaches have described the potential use of a lumen structure comprised of microchannels or microfibers to provide axon growth avoiding misdirection and fostering proper healing. Here, we report the use of a 3D porous microchannel-based structure made of a photocurable methacrylated polycaprolactone, whose mechanical properties are comparable to native nerves. The neuro-regenerative properties of the polymer were assessed in vitro, prior to the implantation of the 3D porous structure, in a 6-mm rat sciatic nerve gap injury. The manufactured implants were biocompatible and able to be resorbed by the host's body at a suitable rate, allowing the complete healing of the nerve. The innovative design of the highly porous structure with the axon guiding microchannels, along with the observation of myelinated axons and Schwann cells in the in vivo tests, led to a significant progress towards the standardized use of synthetic 3D multichannel-based structures in peripheral nerve surgery.
Collapse
Affiliation(s)
- Ruth Diez-Ahedo
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | - Xabier Mendibil
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | | | - Iban Quintana
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| | - Francisco González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain; (F.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain; (F.G.); (F.J.R.)
| | - Leyla Zilic
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Colin Sherborne
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Adam Glen
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Caroline S. Taylor
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Frederik Claeyssens
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - John W. Haycock
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK; (L.Z.); (C.S.); (A.G.); (C.S.T.); (F.C.); (J.W.H.)
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain; (W.S.); (E.G.); (B.C.)
| | - Santos Merino
- Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain; (R.D.-A.); (X.M.); (M.C.M.-P.); (I.Q.)
| |
Collapse
|
4
|
Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E119. [PMID: 31936372 PMCID: PMC7023287 DOI: 10.3390/nano10010119] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a comprehensive overview of nanofibrous structures for tissue engineering purposes and the role of non-thermal plasma technology (NTP) within this field. Special attention is first given to nanofiber fabrication strategies, including thermally-induced phase separation, molecular self-assembly, and electrospinning, highlighting their strengths, weaknesses, and potentials. The review then continues to discuss the biodegradable polyesters typically employed for nanofiber fabrication, while the primary focus lies on their applicability and limitations. From thereon, the reader is introduced to the concept of NTP and its application in plasma-assisted surface modification of nanofibrous scaffolds. The final part of the review discusses the available literature on NTP-modified nanofibers looking at the impact of plasma activation and polymerization treatments on nanofiber wettability, surface chemistry, cell adhesion/proliferation and protein grafting. As such, this review provides a complete introduction into NTP-modified nanofibers, while aiming to address the current unexplored potentials left within the field.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada;
| | - Silvia Grande
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| |
Collapse
|
5
|
Yan L, Liu S, Qi J, Zhang Z, Zhong J, Li Q, Liu X, Zhu Q, Yao Z, Lu Y, Gu L. Three-dimensional reconstruction of internal fascicles and microvascular structures of human peripheral nerves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3245. [PMID: 31370097 DOI: 10.1002/cnm.3245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Biofabricated nanostructured and microstructured scaffolds have exhibited great potential for nerve tissue regeneration and functional restoration, and prevascularization and biotransportation within 3D fascicle structures are critical. Unfortunately, an ideal internal fascicle and microvascular model of human peripheral nerves is lacking. In this study, we used microcomputed tomography (microCT) to acquire high-resolution images of the human sciatic nerve. We propose a novel deep-learning network technique, called ResNetH3D-Unet, to segment fascicles and microvascular structures. We reconstructed 3D intraneural fascicles and microvascular topography to quantify the fascicle volume ratio (FVR), microvascular volume ratio (MVR), microvascular to fascicle volume ratio (MFVR), fascicle surface area to volume ratio (FSAVR), and microvascular surface area to volume ratio (MSAVR) of human samples. The frequency distributions of the fascicle diameter, microvascular diameter, and fascicle-to-microvasculature distance were analyzed. The obtained microCT analysis and reconstruction provided high-resolution microstructures of human peripheral nerves. Our proposed ResNetH3D-Unet method for fascicle and microvasculature segmentation yielded a mean intersection over union (IOU) of 92.1% (approximately 5% higher than the U-net IOU). The 3D reconstructed model showed that the internal microvasculature runs longitudinally within the internal epineurium and connects to the external vasculature at some points. Analysis of the 3D data indicated a 48.2 ± 3% FVR, 23.7 ± 1.8% MVR, 4.9 ± 0.5% MFVR, 7.26 ± 2.58 mm-1 FSAVR, and 1.52 ± 0.52 mm-1 MSAVR. A fascicle diameter of 0.98 mm, microvascular diameter of 0.125 mm, and microvasculature-to-fascicle distance of 0.196 mm were most frequent. This study provides fundamental data and structural references for designing bionic scaffolding constructs with 3D microvascular and fascicle distributions.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| | - Shouliang Liu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou, China
| | - Jian Qi
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| | - Zhongpu Zhang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Xiaolin Liu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| | - Zhi Yao
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| | - Yao Lu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou, China
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| |
Collapse
|
6
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 2019; 14:1352-1363. [PMID: 30964053 PMCID: PMC6524500 DOI: 10.4103/1673-5374.253512] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.
Collapse
Affiliation(s)
- Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
8
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol J 2018; 13:e1700635. [PMID: 29396994 DOI: 10.1002/biot.201700635] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Indexed: 12/23/2022]
Abstract
Nerve guidance conduits (NGCs) have been drawing considerable attention as an aid to promote regeneration of injured axons across damaged peripheral nerves. Ideally, NGCs should include physical and topographic axon guidance cues embedded as part of their composition. Over the past decades, much progress has been made in the development of NGCs that promote directional axonal regrowth so as to repair severed nerves. This paper briefly reviews the recent designs and fabrication techniques of NGCs for peripheral nerve regeneration. Studies associated with versatile design and preparation of NGCs fabricated with either conventional or rapid prototyping (RP) techniques have been examined and reviewed. The effect of topographic features of the filler material as well as porous structure of NGCs on axonal regeneration has also been examined from the previous studies. While such strategies as macroscale channels, lumen size, groove geometry, use of hydrogel/matrix, and unidirectional freeze-dried surface are seen to promote nerve regeneration, shortcomings such as axonal dispersion and wrong target reinnervation still remain unsolved. On this basis, future research directions are identified and discussed.
Collapse
Affiliation(s)
- Md Sarker
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Adam D McInnes
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - David J Schreyer
- Department of Anatomy and Cell Biology College of Medicine University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada.,Department of Mechanical Engineering College of Engineering University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
9
|
Lin C, Liu C, Zhang L, Huang Z, Zhao P, Chen R, Pang M, Chen Z, He L, Luo C, Rong L, Liu B. Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. Int J Mol Med 2017; 41:697-708. [PMID: 29207038 PMCID: PMC5752187 DOI: 10.3892/ijmm.2017.3299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a rapidly growing technological area for the regeneration and reconstruction of damage to the central nervous system. By combining seed cells with appropriate biomaterial scaffolds, tissue engineering has the ability to improve nerve regeneration and functional recovery. In the present study, mouse induced pluripotent stem cells (iPSCs) were generated from mouse embryonic fibroblasts (MEFs) with the non-integrating episomal vectors pCEP4-EO2S-ET2K and pCEP4-miR-302-367 cluster, and differentiated into neural stem cells (NSCs) as transplanting cells. Electrospinning was then used to fabricate randomly oriented poly(L-lactic acid) (PLLA) nanofibers and aligned PLLA nanofibers and assessed their cytocompatibility and neurite guidance effect with iPSC-derived NSCs (iNSCs). The results demonstrated that non-integrated iPSCs were effectively generated and differentiated into iNSCs. PLLA nanofiber scaffolds were able to promote the adhesion, growth, survival and proliferation of the iNSCs. Furthermore, compared with randomly oriented PLLA nanofibers, the aligned PLLA nanofibers greatly directed neurite outgrowth from the iNSCs and significantly promoted neurite growth along the nanofibrous alignment. Overall, these findings indicate the feasibility of using PLLA nanofiber scaffolds in combination with iNSCs in vitro and support their potential for use in nerve tissue engineering.
Collapse
Affiliation(s)
- Chengkai Lin
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chang Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi Huang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peipei Zhao
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liumin He
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chunxiao Luo
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
10
|
Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym 2015; 140:104-12. [PMID: 26876833 DOI: 10.1016/j.carbpol.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Abstract
Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration.
Collapse
Affiliation(s)
| | - Molamma P Prabhakaran
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| |
Collapse
|
11
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
12
|
Kabiri M, Oraee-Yazdani S, Dodel M, Hanaee-Ahvaz H, Soudi S, Seyedjafari E, Salehi M, Soleimani M. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI JOURNAL 2015; 14:851-60. [PMID: 26600751 PMCID: PMC4650950 DOI: 10.17179/excli2015-282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocompatibility with olfactory ensheathing glial cells (OEC). The plasma treated scaffolds were characterized using scanning electron microscopy and water contact angle. OECs were isolated from olfactory bulb of GFP Sprague-Dawley rats and characterized using OEC specific markers via immunocytochemistry and flow cytometery. The cytocompatibility of the conductive aligned nano-featured scaffold was assessed using microscopy and MTT assay. We indicate that doping of PLLA polymer with SWCNT can augment the aligned nanosized substrate with conductivity, making it favorable for nerve tissue engineering. Our results demonstrated that SWCNT/PLLA composite scaffold promote the adhesion, growth, survival and proliferation of OEC. Regarding the ideal physical, topographical and electrical properties of the scaffold and the neurotrophic and migratory features of the OECs, we suggest this scaffold and the cell/scaffold construct as a promising platform for cell delivery to neural defects in nerve tissue engineering approaches.
Collapse
Affiliation(s)
- Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran ; Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran, Stem Cell Technology Research Center, Tehran, Iran
| | - Hana Hanaee-Ahvaz
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Sara Soudi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mohammad Salehi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Mobasseri A, Faroni A, Minogue BM, Downes S, Terenghi G, Reid AJ. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng Part A 2015; 21:1152-62. [PMID: 25435096 DOI: 10.1089/ten.tea.2014.0266] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair.
Collapse
Affiliation(s)
- Atefeh Mobasseri
- 1 Blond McIndoe Laboratories, Centre for Tissue Injury and Repair, Institute of Inflammation & Repair, University of Manchester , Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Fukuda Y, Wang W, Ichinose S, Katakura H, Mukai T, Takakuda K. Laser perforated accordion nerve conduit of poly(lactide-co-glycolide-co-ɛ-caprolactone). J Biomed Mater Res B Appl Biomater 2014; 102:674-80. [DOI: 10.1002/jbm.b.33046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yutaka Fukuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Wei Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| | - Shizuko Ichinose
- Department of Instrumental Analysis Research Center; Tokyo Medical and Dental University; Tokyo Japan
| | - Hiroshi Katakura
- Department of Research and Development 2; Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology; Tokyo Japan
| | | | - Kazuo Takakuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
15
|
|
16
|
Mobasseri SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1639-47. [PMID: 23572143 DOI: 10.1007/s10856-013-4922-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/24/2013] [Indexed: 05/10/2023]
Abstract
Damage to peripheral nerves can cause significant motor or sensory injuries. In serious cases, a nerve is sacrificed from another part of the body to repair a damaged nerve (autograft). The development of biodegradable polymer conduits may offer an alternative to autografts. This study investigated the surface topography and mechanical properties of smooth, pitted and grooved structures of ultra-thin poly (ε-caprolactone)/poly lactic acid blended, solvent-cast films. We have investigated the effect of the groove shape on cell morphology and alignment. Photolithography and dry/wet etching was used to develop patterned silicon substrates with grooves with accurate geometries (V shaped, sloped walls and square shaped). Using a neural cell line (NG108-15), in vitro experiments confirmed good cell attachment and proliferation on all the polymer scaffolds. Imaging techniques demonstrated that there was different cellular responses and morphology according to the shape of the groove. Studies showed that the geometry, particularly the angle of the slope and the space between grooves, affected cellular responses. In addition, biomechanical studies showed that the patterned films had excellent mechanical properties and were stronger than the natural nerve. The conduit tubes were made by rolling the films around a mandrel and using a thermal welding technique to join the edges. The promising biomechanical and in vitro results demonstrate that nerve cell responses are affected by the shape of longitudinal grooves, and particularly by the angle of the slope of the groove walls.
Collapse
Affiliation(s)
- S A Mobasseri
- Materials Science Centre, School of Engineering and Physical Sciences, The University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
17
|
Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, Huang WC, Cheng H. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 2013; 9:6606-15. [PMID: 23376237 DOI: 10.1016/j.actbio.2013.01.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Nerve regeneration remains a difficult challenge due to the lack of safe and efficient matrix support. We designed a laminin (LN)-modified chitosan multi-walled nerve conduit combined with bone marrow stem cell (BMSC) grating to bridge a 10 mm long gap in the sciatic nerve of Sprague-Dawley rats. The repair outcome was monitored during 16 weeks after surgery. Successful grafting of LN onto the chitosan film, confirmed by immunolocalization, significantly improved cell adhesion. In vivo study showed that newly formed nerve cells covered the interior of the conduit to connect the nerve gap successfully in all groups. The rats implanted with the conduit combined with BMSCs showed the best results, in terms of nerve regrowth, muscle mass of gastrocnemius, function recovery and tract tracing. Neuroanatomical horseradish peroxidase tracer analysis of motor neurons in the lumbar spinal cord indicated that the amount and signal intensity were significantly improved. Furthermore, BMSCs suppressed neuronal cell death and promoted regeneration by suppressing the inflammatory and fibrotic response induced by chitosan after long-term implantation. In summary, this study suggests that LN-modified chitosan multi-walled nerve conduit combined with BMSCs is an efficient and safe conduit matrix for nerve regeneration.
Collapse
|
18
|
Building biocompatible hydrogels for tissue engineering of the brain and spinal cord. J Funct Biomater 2012; 3:839-63. [PMID: 24955749 PMCID: PMC4030922 DOI: 10.3390/jfb3040839] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/24/2012] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system.
Collapse
|
19
|
Chang YJ, Tsai CJ, Tseng FG, Chen TJ, Wang TW. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:345-55. [PMID: 22922570 DOI: 10.1016/j.nano.2012.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/29/2012] [Indexed: 11/15/2022]
Abstract
UNLABELLED In this study, we developed a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effect of directional tensile force and guiding microchannel on neural stem cell (NSC) behavior. Different stretching modes and culture conditions were conducted to investigate the mechanoresponse of NSCs on micropatterned substrate and to verify the effects of tension on NSCs maturation, axon sprouting, neurite outgrowth and orientation. From the results, we found that neurite extension and axon elongation were significantly enhanced and neurites were more directional orientated to parallel direction as stretching was experienced. The mechanical tension apparently influenced NSCs differentiation toward neuronal cells under stretching condition. The neuronal maturity also showed a significant difference when compared with parallel and vertical micropatterned channels. It is suggested that mechanical tension not only can guide neurites orientation and direction, but also promote their elongation length and trigger neural stem cells differentiation into mature neuronal cells. FROM THE CLINICAL EDITOR This group of investigators report the development of a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effects of directional tensile force and guiding microchannel on neural stem cell behavior. They demonstrate that neurite extension and axon elongation could be significantly enhanced, and neuronal maturity can also be improved.
Collapse
Affiliation(s)
- Yu-Ju Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
20
|
Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 2011; 112:501-7. [PMID: 21813321 DOI: 10.1016/j.jbiosc.2011.07.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/23/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Tissue engineering of nerve grafts requires synergistic combination of scaffolds and techniques to promote and direct neurite outgrowth across the lesion for effective nerve regeneration. In this study, we fabricated a composite polymeric scaffold which is conductive in nature by electrospinning and further performed electrical stimulation of nerve stem cells seeded on the electrospun nanofibers. Poly-L-lactide (PLLA) was blended with polyaniline (PANi) at a ratio of 85:15 and electrospun to obtain PLLA/PANi nanofibers with fiber diameters of 195 ± 30 nm. The morphology, chemical and mechanical properties of the electrospun PLLA and PLLA/PANi scaffolds were carried out by scanning electron microscopy (SEM), X-ray photo electron spectroscopy (XPS) and tensile instrument. The electrospun PLLA/PANi fibers showed a conductance of 3 × 10⁻⁹ S by two-point probe measurement. In vitro electrical stimulation of the nerve stem cells cultured on PLLA/PANi scaffolds applied with an electric field of 100 mV/mm for a period of 60 min resulted in extended neurite outgrowth compared to the cells grown on non-stimulated scaffolds. Our studies further strengthen the implication of electrical stimulation of nerve stem cells on conducting polymeric scaffolds towards neurite elongation that could be effective for nerve tissue regeneration.
Collapse
Affiliation(s)
- Molamma P Prabhakaran
- Nanoscience and Nanotechnology Initiative, Health Care and Energy Materials Laboratory, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576.
| | | | | | | |
Collapse
|
21
|
López-Álvarez M, Pereiro I, Serra J, de Carlos A, González P. Osteoblast-like cell response to macro- and micro-patterned carbon scaffolds obtained from the sea rush
Juncus maritimus. Biomed Mater 2011; 6:045012. [DOI: 10.1088/1748-6041/6/4/045012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
23
|
Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. Acta Biomater 2010; 6:2960-9. [PMID: 20193781 DOI: 10.1016/j.actbio.2010.02.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/13/2022]
Abstract
Topographical features, including fiber dimensions and pattern, are important aspects in developing fibrous scaffolds for tissue engineering. In this study aligned poly(l-lactide) (PLLA) fibers with diameters of 307+/-47, 500+/-53, 679+/-72 and 917+/-84 nm and random fibers with diameters of 327+/-40, 545+/-54, 746+/-82 and 1150+/-109 nm were obtained by optimizing the electrospinning parameters. We cultured neonatal mouse cerebellum C17.2 cells on the PLLA fibers. These neural stem cells (NSCs) exhibited significantly different growth and differentiation depending upon fiber dimension and pattern. On aligned fibers cell viability and proliferation was best on 500 nm fibers, and reduced on smaller or larger fibers. However, on random fibers cell viability and proliferation was best with the smallest (350 nm) and largest (1150 nm) diameter fibers. Polarized and elongated cells were orientated along the fiber direction on the aligned fibers, with focal contacts bridging the cell body and aligned fibers. Cells of spindle and polygonal morphologies were randomly distributed on the random fibers, with no focal contacts observed. Moreover, longer neurites were obtained on the aligned fibers than random fibers within the same diameter range. Thus, the surface topographic morphologies of fibrous scaffolds, including fiber pattern, dimensions and mesh size, play roles in regulating the viability, proliferation and neurite outgrowth of NSCs. Nevertheless, our results indicated that aligned 500 nm fiber are most promising for fine tuning the design of a nerve scaffold.
Collapse
|
24
|
Chang JY, Ho TY, Lee HC, Lai YL, Lu MC, Yao CH, Chen YS. Highly Permeable Genipin-Cross-linked Gelatin Conduits Enhance Peripheral Nerve Regeneration. Artif Organs 2009; 33:1075-85. [DOI: 10.1111/j.1525-1594.2009.00818.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Fabrication of the Microgrooved/Microporous Polylactide Substrates as Peripheral Nerve Conduits and In Vivo Evaluation. Tissue Eng Part A 2009; 15:1381-90. [DOI: 10.1089/ten.tea.2008.0175] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
He L, Zhang Y, Zeng C, Ngiam M, Liao S, Quan D, Zeng Y, Lu J, Ramakrishna S. Manufacture of PLGA Multiple-Channel Conduits with Precise Hierarchical Pore Architectures and In Vitro/Vivo Evaluation for Spinal Cord Injury. Tissue Eng Part C Methods 2009; 15:243-55. [DOI: 10.1089/ten.tec.2008.0255] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Liumin He
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Yanqing Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chenguang Zeng
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Michelle Ngiam
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Susan Liao
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Daping Quan
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Yuanshan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiang Lu
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Clements IP, Kim YT, English AW, Lu X, Chung A, Bellamkonda RV. Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 2009; 30:3834-46. [PMID: 19446873 DOI: 10.1016/j.biomaterials.2009.04.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
Abstract
It has been demonstrated that nerve guidance channels containing stacked thin-films of aligned poly(acrylonitrile-co-methylacrylate) fibers support peripheral nerve regeneration across critical sized nerve gaps, without the aid of exogenous cells or proteins. Here, we explore the ability of tubular channels minimally supplemented with aligned nanofiber-based thin-films to promote endogenous nerve repair. We describe a technique for fabricating guidance channels in which individual thin-films are fixed into place within the lumen of a polysulfone tube. Because each thin-film is <10 microm thick, this technique allows fine control over the positioning of aligned scaffolding substrate. We evaluated nerve regeneration through a 1-film guidance channel--containing a single continuous thin-film of aligned fibers--in comparison to a 3-film channel that provided two additional thin-film tracks. Thirty rats were implanted with one of the two channel types, and regeneration across a 14 mm tibial nerve gap was evaluated after 6 weeks and 13 weeks, using a range of morphological and functional measures. Both the 1-film and the 3-film channels supported regeneration across the nerve gap resulting in functional muscular reinnervation. Each channel type characteristically influenced the morphology of the regeneration cable. Interestingly, the 1-film channels supported enhanced regeneration compared to the 3-film channels in terms of regenerated axon profile counts and measures of nerve conduction velocity. These results suggest that minimal levels of appropriately positioned topographical cues significantly enhance guidance channel function by modulating endogenous repair mechanisms, resulting in effective bridging of critically sized peripheral nerve gaps.
Collapse
Affiliation(s)
- Isaac P Clements
- Neurological Biomaterials and Cancer Therapeutics, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Suite 3108, 313 Ferst Dr., Atlanta, GA 30332-0535, USA
| | | | | | | | | | | |
Collapse
|
28
|
Thouas GA, Contreras KG, Bernard CC, Sun GZ, Tsang K, Zhou K, Nisbet DR, Forsythe JS. Biomaterials for spinal cord regeneration: outgrowth of presumptive neuronal precursors on electrospun poly(epsilon)-caprolactone scaffolds microlayered with alternating polyelectrolytes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:1825-8. [PMID: 19163037 DOI: 10.1109/iembs.2008.4649534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to assess the feasibility of electrospun poly(epsilon)-caprolactone (PCL) scaffolds treated with alternating paly-electrolytes as a controllable three-dimensional adhesive substrate for neuronal progenitors. Unmodified PCL surfaces were generally not supportive of mouse embryonic stem cell (mESC) colony adhesion. However, scaffolds surfaced using layer-by-layer (LbL) deposition of heparin/poly-L-lysine encouraged better local adhesion of mESC colonies, and networking of monolayers containing nestin-positive presumptive neurons, similar to laminin coated controls, as observed by immuno-fluorescence microscopy. Confocal microscopy further revealed depth-wise penetration of mESC nestin-positive cell populations, and orientation along grass topographical features in the LbL scaffolds. LbL deposition therefore appears to provide a satisfactory adhesive substrate for contact and mechanical guidance of neuronal outgrowth in three-dimensions.
Collapse
Affiliation(s)
- George A Thouas
- Division of Biological Engineering, Monash University, Clayton Victoria 3800, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu MC, Huang YT, Lin JH, Yao CH, Lou CW, Tsai CC, Chen YS. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1175-1180. [PMID: 19115095 DOI: 10.1007/s10856-008-3646-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 11/03/2008] [Indexed: 05/27/2023]
Abstract
We evaluated peripheral nerve regeneration using a biodegradable multi-layer microbraided polylactic acid (PLA) fiber-reinforced conduit. Biodegradability of the PLA conduit and its effectiveness as a guidance channel were examined as it was used to repair a 10 mm gap in the rat sciatic nerve. As a result, tube fragmentation was not obvious and successful regeneration through the gap occurred in all the conduits at 8 weeks after operation. These results indicate the superiority of the PLA materials and suggest that the multi-layer microbraided PLA fiber-reinforced conduits provide a promising tool for neuro-regeneration.
Collapse
Affiliation(s)
- Ming-Chin Lu
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Krsko P, McCann TE, Thach TT, Laabs TL, Geller HM, Libera MR. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels. Biomaterials 2009; 30:721-9. [PMID: 19026443 PMCID: PMC3282616 DOI: 10.1016/j.biomaterials.2008.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022]
Abstract
We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
Collapse
Affiliation(s)
- Peter Krsko
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chiono V, Tonda-Turo C, Ciardelli G. Chapter 9: Artificial scaffolds for peripheral nerve reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:173-98. [PMID: 19682638 DOI: 10.1016/s0074-7742(09)87009-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Posttraumatic peripheral nerve repair is one of the major challenges in restorative medicine and microsurgery. Despite the recent progresses in the field of tissue engineering, functional recovery after severe nerve lesions is generally partial and unsatisfactory. Autograft is still the best method to treat peripheral nerve lesions, although it has several drawbacks and does not allow complete functional recovery. Full recovery of nerve functionality could ideally be achieved by proper guiding axon regeneration toward the original target tissues, through the use of purposely engineered artificial nerve guidance channels (NGCs). In the last decade, artificial NGCs have been produced using a variety of both natural and synthetic, biodegradable and nonbiodegradable polymers. Several techniques have been developed to obtain porous and nonporous NGCs and to realize and incorporate bioactive fillers for NGCs. Some of the developed products have been approved for clinical applications. Many other NGC typologies have been object of interest and are currently under investigation. The current trend of nerve tissue engineering is the realization of biomimetic NGCs, providing chemotactic, topological, and haptotactic signalling to cells, respectively by surface functionalization with cell binding domains, the use of internal-oriented matrices/fibres and the sustained release of neurotrophic factors. The present contribution provides a balanced integration of the most recent achievements of tissue engineering in the field of peripheral nerve repair. By an accurate evaluation of the status of research, the review delineates the most promising directions to which research should address for consistent progress in the field of peripheral nerve repair.
Collapse
Affiliation(s)
- Valeria Chiono
- Department of Mechanics, Politecnico di Torino, Torino, Italy
| | | | | |
Collapse
|
32
|
Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SOR, Mottaghy K. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int 2008; 54:73-83. [PMID: 19084565 DOI: 10.1016/j.neuint.2008.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 12/01/2022]
Abstract
Spinal cord injury is very complicated, as there are factors in the body that inhibit its repair. Although regeneration of the mammalian central nervous system (CNS) was once thought to be impossible, studies over the past two decades have shown that axonal growth after spinal cord injury can occur when provided with the correct substratum. Traditionally, tissue transplantation or peripheral nerve grafting are used to repair damaged or diseased regions of the CNS, but donor shortage and immunological problems associated with infectious disease are often encountered. Fortunately, recent advances in neuroscience, cell culture, and biomaterials provide optimistic future using new treatments for nerve injuries. Biomaterial scaffold creates substrate within which cells are instructed to form a tissue or an organ in a highly controlled way. The principal function of a scaffold is to direct cell behavior such as migration, proliferation, differentiation, maintenance of phenotype, and apoptosis by facilitating sensing and responding to the environment via cell-matrix and cell-cell communications. Therefore, having such abilities provides scaffolds seeded with a special type of cell as an important part of tissue engineering and regenerative medicine which spinal cord regeneration is an example of. Nevertheless, the vast number of biodegradable synthetic and natural biopolymers makes choosing the right one very difficult. In this review article, it was tried to provide an inclusive survey of biopolymers seeded with Schwann cells (SCs) to be used for axonal regeneration in the nervous system.
Collapse
Affiliation(s)
- H Tabesh
- Physiology Department, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lam MT, Clem WC, Takayama S. Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials 2008; 29:1705-12. [PMID: 18192004 DOI: 10.1016/j.biomaterials.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 12/04/2007] [Indexed: 12/29/2022]
Abstract
Traditional cell culture substrates consist of static, flat surfaces although in vivo, cells exist on various dynamic topographies. We report development of a reconfigurable microtopographical system compatible with cell culture that is comprised of reversible wavy microfeatures on poly(dimethylsiloxane). Robust reversibility of the wavy micropattern is induced on the cell culture customized substrate by first plasma oxidizing the substrate to create a thin, brittle film on the surface and then applying and releasing compressive strain, to introduce and remove the microfeatures, respectively. The reversible topography was able to align, unalign, and realign C2C12 myogenic cell line cells repeatedly on the same substrate within 24 h intervals, and did not inhibit cell differentiation. The flexibility and simplicity of the materials and methods presented here provide a broadly applicable capability by which to investigate and compare dynamic cellular processes not yet easily studied using conventional in vitro culture substrates.
Collapse
Affiliation(s)
- Mai T Lam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|