1
|
Jiang W, Liu X, Song M, Yang Z, Sun L, Jiang T. MBV-Pipe: A One-Stop Toolbox for Assessing Mouse Brain Morphological Changes for Cross-Scale Studies. Neuroinformatics 2024:10.1007/s12021-024-09687-1. [PMID: 39278985 DOI: 10.1007/s12021-024-09687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Mouse models are crucial for neuroscience research, yet discrepancies arise between macro- and meso-scales due to sample preparation altering brain morphology. The absence of an accessible toolbox for magnetic resonance imaging (MRI) data processing presents a challenge for assessing morphological changes in the mouse brain. To address this, we developed the MBV-Pipe (Mouse Brain Volumetric Statistics-Pipeline) toolbox, integrating the methods of Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL)-Voxel-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) to evaluate brain tissue volume and white matter integrity. To validate the reliability of MBV-Pipe, brain MRI data from seven mice at three time points (in vivo, post-perfusion, and post-fixation) were acquired using a 9.4T ultra-high MRI system. Employing the MBV-Pipe toolbox, we discerned substantial volumetric changes in the mouse brain following perfusion relative to the in vivo condition, with the fixation process inducing only negligible variations. Importantly, the white matter integrity was found to be largely stable throughout the sample preparation procedures. The MBV-Pipe source code is publicly available and includes a user-friendly GUI for facilitating quality control and experimental protocol optimization, which holds promise for advancing mouse brain research in the future.
Collapse
Affiliation(s)
- Wentao Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China
| | - Lan Sun
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| |
Collapse
|
2
|
Karl MT, Kim YD, Rajendran K, Manger PR, Sherwood CC. Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function. J Comp Neurol 2024; 532:e25669. [PMID: 39291629 PMCID: PMC11412485 DOI: 10.1002/cne.25669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Collapse
Affiliation(s)
- Molly T Karl
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Young Do Kim
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kavita Rajendran
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Aicardi S, Bozzo M, Guallart J, Garibaldi F, Lanteri L, Terzibasi E, Bagnoli S, Dionigi F, Steffensen JF, Poulsen AB, Domenici P, Candiani S, Amaroli A, Němec P, Ferrando S. The olfactory system of sharks and rays in numbers. Anat Rec (Hoboken) 2024. [PMID: 39030913 DOI: 10.1002/ar.25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Cartilaginous fishes have large and elaborate olfactory organs, but only a small repertoire of olfactory receptor genes. Here, we quantitatively analyze the olfactory system of 21 species of sharks and rays, assessing many features of the olfactory organ (OOR) (number of primary lamellae, branches of the secondary folds, sensory surface area, and density and number of sensory neurons) and the olfactory bulb (OB) (number of neurons and non-neuronal cells), and estimate the ratio between the number of neurons in the two structures. We show that the number of lamellae in the OOR does not correlate with the sensory surface area, while the complexity of the lamellar shape does. The total number of olfactory receptor neurons ranges from 30.5 million to 4.3 billion and the total number of OB neurons from 1.5 to 90 million. The number of neurons in the olfactory epithelium is 16 to 158 times higher (median ratio is 46) than the number of neurons in the OB. These ratios considerably exceed those reported in mammals. High convergence from receptor neurons to neurons processing olfactory information, together with the remarkably small olfactory receptor repertoire, strongly suggests that the olfactory system of sharks and rays is well adapted to detect a limited number of odorants with high sensitivity.
Collapse
Affiliation(s)
- S Aicardi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - M Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | | | - F Garibaldi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - L Lanteri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - E Terzibasi
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - S Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - F Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - A B Poulsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - P Domenici
- CNR-IBF Institute of Biophysiscs, Pisa, Italy
- CNR-IAS Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment, Oristano, Italy
| | - S Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - A Amaroli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - P Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - S Ferrando
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
4
|
Kaufmann LV, Schneeweiß U, Maier E, Hildebrandt T, Brecht M. Elephant facial motor control. SCIENCE ADVANCES 2022; 8:eabq2789. [PMID: 36288305 PMCID: PMC9604532 DOI: 10.1126/sciadv.abq2789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/06/2022] [Indexed: 06/10/2023]
Abstract
We studied facial motor control in elephants, animals with muscular dexterous trunks. Facial nucleus neurons (~54,000 in Asian elephants, ~63,000 in African elephants) outnumbered those of other land-living mammals. The large-eared African elephants had more medial facial subnucleus neurons than Asian elephants, reflecting a numerically more extensive ear-motor control. Elephant dorsal and lateral facial subnuclei were unusual in elongation, neuron numerosity, and a proximal-to-distal neuron size increase. We suggest that this subnucleus organization is related to trunk representation, with the huge distal neurons innervating the trunk tip with long axons. African elephants pinch objects with two trunk tip fingers, whereas Asian elephants grasp/wrap objects with larger parts of their trunk. Finger "motor foveae" and a positional bias of neurons toward the trunk tip representation in African elephant facial nuclei reflect their motor strategy. Thus, elephant brains reveal neural adaptations to facial morphology, body size, and dexterity.
Collapse
Affiliation(s)
- Lena V. Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Undine Schneeweiß
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Imam A, Bhagwandin A, Ajao MS, Manger PR. The brain of the tree pangolin (Manis tricuspis). IX. The pallial telencephalon. J Comp Neurol 2022; 530:2645-2691. [PMID: 35621013 PMCID: PMC9546464 DOI: 10.1002/cne.25349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
A cyto‐, myelo‐, and chemoarchitectonic analysis of the pallial telencephalon of the tree pangolin is provided. As certain portions of the pallial telencephalon have been described previously (olfactory pallium, hippocampal formation, and amygdaloid complex), we focus on the claustrum and endopiriform nuclear complex, the white matter and white matter interstitial cells, and the areal organization of the cerebral cortex. Our analysis indicates that the organization of the pallial telencephalon of the tree pangolin is similar to that observed in many other mammals, and specifically quite similar to the closely related carnivores. The claustrum of the tree pangolin exhibits a combination of insular and laminar architecture, while the endopiriform nuclear complex contains three nuclei, both reminiscent of observations made in other mammals. The population of white matter interstitial cells resembles that observed in other mammals, while a distinct laminated organization of the intracortical white matter was revealed with parvalbumin immunostaining. The cerebral cortex of the tree pangolin presented with indistinct laminar boundaries as well as pyramidalization of the neurons in both layers 2 and 4. All cortical regions typically found in mammals were present, with the cortical areas within these regions often corresponding to what has been reported in carnivores. Given the similarity of the organization of the pallial telencephalon of the tree pangolin to that observed in other mammals, especially carnivores, it would be reasonable to assume that the neural processing afforded the tree pangolin by these structures does not differ dramatically to that of other mammals.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
6
|
Abstract
Neuroscience research is understandably focused on highly tractable and lab-friendly mice and rats, but that emphasis obfuscates the biological beauty and intellectual richness that lies in animal diversity. The benefits of venturing further into that phylogenetic diversity are nicely illustrated by a new study on the elephant brain.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, 111 21(st) Avenue South, Nashville, TN 37240, USA.
| |
Collapse
|
7
|
Purkart L, Tuff JM, Shah M, Kaufmann LV, Altringer C, Maier E, Schneeweiß U, Tunckol E, Eigen L, Holtze S, Fritsch G, Hildebrandt T, Brecht M. Trigeminal ganglion and sensory nerves suggest tactile specialization of elephants. Curr Biol 2022; 32:904-910.e3. [DOI: 10.1016/j.cub.2021.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
8
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Distribution of cholinergic neurons in the brains of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1516-1535. [PMID: 34837339 DOI: 10.1002/ar.24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
Using choline acetyltransferase immunohistochemistry, we describe the nuclear parcellation of the cholinergic system in the brains of two apes, a lar gibbon (Hylobates lar) and a chimpanzee (Pan troglodytes). The cholinergic nuclei observed in both apes studied are virtually identical to that observed in humans and show very strong similarity to the cholinergic nuclei observed in other primates and mammals more generally. One specific difference between humans and the two apes studied is that, with the specific choline acetyltransferase antibody used, the cholinergic pyramidal neurons observed in human cerebral cortex were not labeled. When comparing the two apes studied and humans to other primates, the presence of a greatly expanded cholinergic medullary tegmental field, and the presence of cholinergic neurons in the intermediate and dorsal horns of the cervical spinal cord are notable variations of the distribution of cholinergic neurons in apes compared to other primates. These neurons may play an important role in the modulation of ascending and descending neural transmissions through the spinal cord and caudal medulla, potentially related to the differing modes of locomotion in apes compared to other primates. Our observations also indicate that the average soma volume of the neurons forming the laterodorsal tegmental nucleus (LDT) is larger than those of the pedunculopontine nucleus (PPT) in both the lar gibbon and chimpanzee. This variability in soma volume appears to be related to the size of the adult derivatives of the alar and basal plate across mammalian species.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Nuclear organization of serotonergic neurons in the brainstems of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1500-1515. [PMID: 34605203 DOI: 10.1002/ar.24795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/07/2022]
Abstract
In the current study, we detail, through the analysis of immunohistochemically stained sections, the morphology and nuclear parcellation of the serotonergic neurons present in the brainstem of a lar gibbon and a chimpanzee. In general, the neuronal morphology and nuclear organization of the serotonergic system in the brains of these two species of apes follow that observed in a range of Eutherian mammals and are specifically very similar to that observed in other species of primates. In both of the apes studied, the serotonergic nuclei could be readily divided into two distinct groups, a rostral and a caudal cluster, which are found from the level of the decussation of the superior cerebellar peduncle to the spinomedullary junction. The rostral cluster is comprised of the caudal linear, supralemniscal, and median raphe nuclei, as well as the six divisions of the dorsal raphe nuclear complex. The caudal cluster contains several distinct nuclei and nuclear subdivisions, including the raphe magnus nucleus and associated rostral and caudal ventrolateral (CVL) serotonergic groups, the raphe pallidus, and raphe obscurus nuclei. The one deviation in organization observed in comparison to other primate species is an expansion of both the number and distribution of neurons belonging to the lateral division of the dorsal raphe nucleus in the chimpanzee. It is unclear whether this expansion occurs in humans, thus at present, this expansion sets the chimpanzee apart from other primates studied to date.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
10
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Thannickal TC, Siegel JM, Sherwood CC, Manger PR. Nuclear organization of orexinergic neurons in the hypothalamus of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1459-1475. [PMID: 34535040 DOI: 10.1002/ar.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Employing orexin-A immunohistochemical staining we describe the nuclear parcellation of orexinergic neurons in the hypothalami of a lar gibbon and a chimpanzee. The clustering of orexinergic neurons within the hypothalamus and the terminal networks follow the patterns generally observed in other mammals, including laboratory rodents, strepsirrhine primates and humans. The orexinergic neurons were found within three distinct clusters in the ape hypothalamus, which include the main cluster, zona incerta cluster and optic tract cluster. In addition, the orexinergic neurons of the optic tract cluster appear to extend to a more rostral and medial location than observed in other species, being observed in the tuberal region in the anterior ventromedial aspect of the hypothalamus. While orexinergic terminal networks were observed throughout the brain, high density terminal networks were observed within the hypothalamus, medial and intralaminar nuclei of the dorsal thalamus, and within the serotonergic and noradrenergic regions of the midbrain and pons, which is typical for mammals. The expanded distribution of orexinergic neurons into the tuberal region of the ape hypothalamus, is a feature that needs to be investigated in other primate species, but appears to correlate with orexin gene expression in the same region of the human hypothalamus, but these neurons are not revealed with immunohistochemical staining in humans. Thus, it appears that apes have a broader distribution of orexinergic neurons compared to other primate species, but that the neurons within this extension of the optic tract cluster in humans, while expressing the orexin gene, do not produce the neuropeptide.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Thomas C Thannickal
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Jerome M Siegel
- Department of Psychiatry, School of Medicine, and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, Neurobiology Research, Sepulveda VA Medical Center, Los Angeles, California, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
11
|
Jacobs B, Rally H, Doyle C, O'Brien L, Tennison M, Marino L. Putative neural consequences of captivity for elephants and cetaceans. Rev Neurosci 2021; 33:439-465. [PMID: 34534428 DOI: 10.1515/revneuro-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - Heather Rally
- Foundation to Support Animal Protection, Norfolk, VA, 23510, USA
| | - Catherine Doyle
- Performing Animal Welfare Society, P.O. Box 849, Galt, CA, 95632, USA
| | - Lester O'Brien
- Palladium Elephant Consulting Inc., 2408 Pinewood Dr. SE, Calgary, AB, T2B1S4, Canada
| | - Mackenzie Tennison
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Lori Marino
- Whale Sanctuary Project, Kanab, UT, 84741, USA
| |
Collapse
|
12
|
Swiegers J, Bhagwandin A, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Spocter MA, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of a southern lesser galago, a black-capped squirrel monkey, and a crested macaque. J Comp Neurol 2021; 529:3676-3708. [PMID: 34259349 DOI: 10.1002/cne.25216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Swiegers J, Bhagwandin A, Williams VM, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a chimpanzee (Pan troglodytes) brain. J Comp Neurol 2021; 529:3429-3452. [PMID: 34180538 DOI: 10.1002/cne.25202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University, School of Medicine, Boston, Massachusetts, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
14
|
Manger PR, Patzke N, Spocter MA, Bhagwandin A, Karlsson KÆ, Bertelsen MF, Alagaili AN, Bennett NC, Mohammed OB, Herculano-Houzel S, Hof PR, Fuxe K. Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Sci Rep 2021; 11:5486. [PMID: 33750832 PMCID: PMC7970898 DOI: 10.1038/s41598-021-84762-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
To elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These findings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans.
Collapse
Affiliation(s)
- Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Nina Patzke
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Muhammad A Spocter
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Adhil Bhagwandin
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Karl Æ Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suzana Herculano-Houzel
- Department of Psychology, Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Bhagwandin A, Debipersadh U, Kaswera-Kyamakya C, Gilissen E, Rockland KS, Molnár Z, Manger PR. Distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of three megachiropteran bat species. J Comp Neurol 2020; 528:3023-3038. [PMID: 32103488 DOI: 10.1002/cne.24894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
A large population of infracortical white matter neurons, or white matter interstitial cells (WMICs), are found within the subcortical white matter of the mammalian telencephalon. We examined WMICs in three species of megachiropterans, Megaloglossus woermanni, Casinycteris argynnis, and Rousettus aegyptiacus, using immunohistochemical and stereological techniques. Immunostaining for neuronal nuclear marker (NeuN) revealed substantial numbers of WMICs in each species-M. woermanni 124,496 WMICs, C. argynnis 138,458 WMICs, and the larger brained R. aegyptiacus having an estimated WMIC population of 360,503. To examine the range of inhibitory neurochemical types we used antibodies against parvalbumin, calbindin, calretinin, and neural nitric oxide synthase (nNOS). The calbindin and nNOS immunostained neurons were the most commonly observed, while those immunoreactive for calretinin and parvalbumin were sparse. The proportion of WMICs exhibiting inhibitory neurochemical profiles was ~26%, similar to that observed in previously studied primates. While for the most part the WMIC population in the megachiropterans studied was similar to that observed in other mammals, the one feature that differed was the high proportion of WMICs immunoreactive to calbindin, whereas in primates (macaque monkey, lar gibbon and human) the highest proportion of inhibitory WMICs contain calretinin. Interestingly, there appears to be an allometric scaling of WMIC numbers with brain mass. Further quantitative comparative work across more mammalian species will reveal the developmental and evolutionary trends associated with this infrequently studied neuronal population.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Ulsana Debipersadh
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University, School of Medicine, Boston, Massachusetts, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
16
|
Bhagwandin A, Ndlovu N, Bronner GN, Bennett NC, Manger PR. The hypercholinergic brain of the Cape golden mole (Chrysochloris asiatica). J Chem Neuroanat 2020; 110:101856. [PMID: 32937165 DOI: 10.1016/j.jchemneu.2020.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/14/2020] [Accepted: 09/05/2020] [Indexed: 11/20/2022]
Abstract
Studies detailing the anatomy of the brain of the golden moles are few. A recent study indicated that in the Hottentot golden mole (a member of the Amblysominae clade), there was a broad, atypical, distribution of cholinergic interneurons in the olfactory bulb, cerebral cortex, hippocampus and amygdala. To determine whether this broad distribution of cholinergic neurons is shared by other species of golden mole, we here examine the brain of the Cape golden mole (a member of the Chrysochlorinae clade, representing the second major clade within the family Chrysochloridae). Our analyses indicates the presence of a similar widespread distribution of cholinergic interneurons in the Cape golden mole. Thus, we conclude that these features are derived morphological traits in the brains of golden moles. In addition, we describe the nuclei generally considered to be part of the typical cholinergic system in mammals. Whereas the vast majority of these generally reported cholinergic nuclei were the same as recorded in other Eutherian mammals, it was noted that the cholinergic nuclei involved in oculomotion were substantially reduced in size, or absent in the case of the abducens nucleus. In addition, there was an absence of the cholinergic medial septal nucleus, but the presence of a cholinergic lateral septal nucleus. The laterodorsal and pedunculopontine tegmental nuclei evince regions where the cholinergic neurons are densely packed. These are atypical features of the mammalian cholinergic system, which when combined with the widespread atypical distribution of cholinergic interneurons, reveals a family-specific complement of cholinergic nuclei in the Chrysochloridae.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nhanisi Ndlovu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Gary N Bronner
- Institute for Communities and Wildlife, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
17
|
Chaumeton AS, Gravett N, Bhagwandin A, Manger PR. Tyrosine hydroxylase containing neurons in the thalamic reticular nucleus of male equids. J Chem Neuroanat 2020; 110:101873. [PMID: 33086098 DOI: 10.1016/j.jchemneu.2020.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Here we report the unusual presence of thalamic reticular neurons immunoreactive for tyrosine hydroxylase in equids. The diencephalons of one adult male of four equid species, domestic donkey (Equus africanus asinus), domestic horse (Equus caballus), Cape mountain zebra (Equus zebra zebra) and plains zebra (Equus quagga), were sectioned in a coronal plane with series of sections stained for Nissl substance, myelin, or immunostained for tyrosine hydroxylase, and the calcium-binding proteins parvalbumin, calbindin and calretinin. In all equid species studied the thalamic reticular nucleus was observed as a sheet of neurons surrounding the rostral, lateral and ventral portions of the nuclear mass of the dorsal thalamus. In addition, these thalamic reticular neurons were immunopositive for parvalbumin, but immunonegative for calbindin and calretinin. Moreover, the thalamic reticular neurons in the equids studied were also immunopositive for tyrosine hydroxylase. Throughout the grey matter of the dorsal thalamus a terminal network also immunoreactive for tyrosine hydroxylase was present. Thus, the equid thalamic reticular neurons appear to provide a direct and novel potentially catecholaminergic innervation of the thalamic relay neurons. This finding is discussed in relation to the function of the thalamic reticular nucleus and the possible effect of a potentially novel catecholaminergic pathway on the neural activity of the thalamocortical loop.
Collapse
Affiliation(s)
- Alexis S Chaumeton
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
18
|
Chengetanai S, Tenley JD, Bertelsen MF, Hård T, Bhagwandin A, Haagensen M, Tang CY, Wang VX, Wicinski B, Hof PR, Manger PR, Spocter MA. Brain of the African wild dog. I. Anatomy, architecture, and volumetrics. J Comp Neurol 2020; 528:3245-3261. [PMID: 32720707 DOI: 10.1002/cne.24999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023]
Abstract
The African wild dog is endemic to sub-Saharan Africa and belongs to the family Canidae which includes domestic dogs and their closest relatives (i.e., wolves, coyotes, jackals, dingoes, and foxes). The African wild dog is known for its highly social behavior, co-ordinated pack predation, and striking vocal repertoire, but little is known about its brain and whether it differs in any significant way from that of other canids. We employed gross anatomical observation, magnetic resonance imaging, and classical neuroanatomical staining to provide a broad overview of the structure of the African wild dog brain. Our results reveal a mean brain mass of 154.08 g, with an encephalization quotient of 1.73, indicating that the African wild dog has a relatively large brain size. Analysis of the various structures that comprise their brains and their topological inter-relationships, as well as the areas and volumes of the corpus callosum, ventricular system, hippocampus, amygdala, cerebellum and the gyrification index, all reveal that the African wild dog brain is, in general, similar to that of other mammals, and very similar to that of other carnivorans. While at this level of analysis we do not find any striking specializations within the brain of the African wild dog, apart from a relatively large brain size, the observations made indicate that more detailed analyses of specific neural systems, particularly those involved in sensorimotor processing, sociality or cognition, may reveal features that are either unique to this species or shared among the Canidae to the exclusion of other Carnivora.
Collapse
Affiliation(s)
- Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | | | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Haagensen
- Department of Radiology, University of Witwatersrand-Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Cheuk Y Tang
- Department of Psychiatry, and BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria X Wang
- Department of Psychiatry, and BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA.,College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
19
|
Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. J Neurosci 2020; 40:4622-4643. [PMID: 32253358 DOI: 10.1523/jneurosci.2339-19.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
Microglial cells play essential volume-related actions in the brain that contribute to the maturation and plasticity of neural circuits that ultimately shape behavior. Microglia can thus be expected to have similar cell sizes and even distribution both across brain structures and across species with different brain sizes. To test this hypothesis, we determined microglial cell densities (the inverse of cell size) using immunocytochemistry to Iba1 in samples of free cell nuclei prepared with the isotropic fractionator from brain structures of 33 mammalian species belonging to males and females of five different clades. We found that microglial cells constitute ∼7% of non-neuronal cells in different brain structures as well as in the whole brain of all mammalian species examined. Further, they vary little in cell density compared with neuronal cell densities within the cerebral cortex, across brain structures, across species within the same clade, and across mammalian clades. As a consequence, we find that one microglial cell services as few as one and as many as 100 neurons in different brain regions and species, depending on the local neuronal density. We thus conclude that the addition of microglial cells to mammalian brains is governed by mechanisms that constrain the size of these cells and have remained conserved over 200 million years of mammalian evolution. We discuss the probable consequences of such constrained size for brain function in health and disease.SIGNIFICANCE STATEMENT Microglial cells are resident macrophages of the CNS, with key functions in recycling synapses and maintaining the local environment in health and disease. We find that microglial cells occur in similar densities in the brains of different species and in the different structures of each individual brain, which indicates that these cells maintain a similar average size in mammalian evolution, suggesting in turn that the volume monitored by each microglial cell remains constant across mammals. Because the density of neurons is highly variable across the same brain structures and species, our finding implies that microglia-dependent functional recovery may be particularly difficult in those brain structures and species with high neuronal densities and therefore fewer microglial cells per neuron.
Collapse
|
20
|
Coimbra JP, Alagaili AN, Bennett NC, Mohammed OB, Manger PR. Unusual topographic specializations of retinal ganglion cell density and spatial resolution in a cliff-dwelling artiodactyl, the Nubian ibex (Capra nubiana). J Comp Neurol 2019; 527:2813-2825. [PMID: 31045240 DOI: 10.1002/cne.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022]
Abstract
The Nubian ibex (Capra nubiana) occurs in information-rich visual habitats including the edges of cliffs and escarpments. In addition to needing enhanced spatial resolution to find food and detect predators, enhanced visual sampling of the lower visual field would be advantageous for the control of locomotion in such precarious terrains. Using retinal wholemounts and stereology, we sought to measure how the ganglion cell density varies across the retina of the Nubian ibex to reveal which portions of its surroundings are sampled with high resolution. We estimated a total of ~1 million ganglion cells in the Nubian ibex retinal ganglion cell layer. Topographic variations of ganglion cell density reveal a temporal area, a horizontal streak, and a dorsotemporal extension, which are topographic retinal features also found in other artiodactyls. In contrast to savannah-dwelling artiodactyls, the horizontal streak of the Nubian ibex appears loosely organized possibly reflecting a reduced predation risk in mountainous habitats. Estimates of spatial resolving power (~17 cycles/degree) for the temporal area would be reasonable to facilitate foraging in the frontal visual field. Embedded in the dorsotemporal extension, we also found an unusual dorsotemporal area not yet reported in any other mammal. Given its location and spatial resolving power (~6 cycles/degree), this specialization enhances visual sampling toward the lower visual field, which would be advantageous for visually guided locomotion. This study expands our understanding of the retinal organization in artiodactyls and offers insights on the importance of vision for the Nubian ibex ecology.
Collapse
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
21
|
Abstract
Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| |
Collapse
|
22
|
Malungo IB, Gravett N, Bhagwandin A, Davimes JG, Manger PR. A Preliminary Description of the Sleep-Related Neural Systems in the Brain of the Blue Wildebeest, Connochaetes taurinus. Anat Rec (Hoboken) 2019; 303:1977-1997. [PMID: 31513360 DOI: 10.1002/ar.24265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
The current study provides a detailed qualitative description of the organization of the cholinergic, catecholaminergic, serotonergic, orexinergic, and GABAergic sleep-related systems in the brain of the blue wildebeest (Connocheates taurinus), along with a quantitative analysis of the pontine cholinergic and noradrenergic neurons, and the hypothalamic orexinergic neurons. The aim of this study was to compare the nuclear organization of these systems to other mammalian species and specifically that reported for other Cetartiodactyla. In the brain of the blue wildebeest, from the basal forebrain to the pons, the nuclear organization of the cholinergic, catecholaminergic, serotonergic, and orexinergic systems, for the most part, showed a corresponding nuclear organization to that reported in other mammals and more specifically the Cetartiodactyla. Furthermore, the description and distribution of the GABAergic system, which was examined through immunostaining for the calcium binding proteins calbindin, calretinin, and parvalbumin, was also similar to that seen in other mammals. These findings indicate that sleep in the blue wildebeest is likely to show typically mammalian features in terms of the global brain activity of the generally recognized sleep states of mammals, but Cetartiodactyl-specific features of the orexinergic system may act to lower overall daily total sleep time in relation to similar sized non-Cetartiodactyl mammals. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1977-1997, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Illke B Malungo
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joshua G Davimes
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faulty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Falcone C, Wolf-Ochoa M, Amina S, Hong T, Vakilzadeh G, Hopkins WD, Hof PR, Sherwood CC, Manger PR, Noctor SC, Martínez-Cerdeño V. Cortical interlaminar astrocytes across the therian mammal radiation. J Comp Neurol 2019; 527:1654-1674. [PMID: 30552685 DOI: 10.1002/cne.24605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
Interlaminar astrocytes (ILA) in the cerebral cortex possess a soma in layer I and extend an interlaminar process that runs perpendicular to the pia into deeper cortical layers. We examined cerebral cortex from 46 species that encompassed most orders of therian mammalians, including 22 primate species. We described two distinct cell types with interlaminar processes that have been referred to as ILA, that we termed pial ILA and supial ILA. ILA subtypes differ in somatic morphology, position in layer I, and presence across species. We further described rudimentary ILA that have short GFAP+ processes that do not exit layer I, and "typical" ILA with longer GFAP+ processes that exit layer I. Pial ILA were present in all mammalian species analyzed, with typical ILA observed in Primates, Scandentia, Chiroptera, Carnivora, Artiodactyla, Hyracoidea, and Proboscidea. Subpial ILA were absent in Marsupialia, and typical subpial ILA were only found in Primate. We focused on the properties of pial ILA by investigating the molecular properties of pial ILA and confirming their astrocytic nature. We found that while the density of pial ILA somata only varied slightly, the complexity of ILA processes varied greatly across species. Primates, specifically bonobo, chimpanzee, orangutan, and human, exhibited pial ILA with the highest complexity. We showed that interlaminar processes contact neurons, pia, and capillaries, suggesting a potential role for ILA in the blood-brain barrier and facilitating communication among cortical neurons, astrocytes, capillaries, meninges, and cerebrospinal fluid.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Marisol Wolf-Ochoa
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen C Noctor
- UC Davis Medical Center, MIND Institute, Sacramento, California.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| |
Collapse
|
24
|
Swiegers J, Bhagwandin A, Sherwood CC, Bertelsen MF, Maseko BC, Hemingway J, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a lar gibbon (Hylobates lar) brain. J Comp Neurol 2018; 527:1633-1653. [PMID: 30378128 DOI: 10.1002/cne.24545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), in the brain of a lesser ape, the lar gibbon. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed a global estimate of ~67.5 million WMICs within the infracortical white matter of the gibbon brain, indicating that the WMICs are a numerically significant population, ~2.5% of the total cortical gray matter neurons that would be estimated for a primate brain the mass of that of the lar gibbon. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, ~7 million in number, with both small and large soma volumes), calretinin (~8.6 million in number, all of similar soma volume), very few WMICs containing parvalbumin, and no calbindin-immunopositive neurons. These nNOS, calretinin, and parvalbumin immunopositive WMICs, presumably all inhibitory neurons, represent ~23.1% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Busisiwe C Maseko
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Jason Hemingway
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
25
|
Spocter MA, Fairbanks J, Locey L, Nguyen A, Bitterman K, Dunn R, Sherwood CC, Geletta S, Dell LA, Patzke N, Manger PR. Neuropil Distribution in the Anterior Cingulate and Occipital Cortex of Artiodactyls. Anat Rec (Hoboken) 2018; 301:1871-1881. [DOI: 10.1002/ar.23905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy; Des Moines University; Des Moines Iowa
- College of Veterinary Medicine, Biomedical Sciences; Iowa State University; Ames Iowa
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| | | | - Lisa Locey
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Amy Nguyen
- College of Pharmacy and Health Sciences, Drake University; Des Moines Iowa
| | | | - Rachel Dunn
- Department of Anatomy; Des Moines University; Des Moines Iowa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology; The George Washington University; Washington Washington, DC
| | - Simon Geletta
- Department of Public Health; Des Moines University; Des Moines Iowa
| | - Leigh-Anne Dell
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Institute of Computational Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Nina Patzke
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
- Department of Biology; Hokkaido University; Hokkaido Japan
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg Republic of South Africa
| |
Collapse
|
26
|
Schiffmann C, Hoby S, Wenker C, Hård T, Scholz R, Clauss M, Hatt JM. When elephants fall asleep: A literature review on elephant rest with case studies on elephant falling bouts, and practical solutions for zoo elephants. Zoo Biol 2018; 37:133-145. [PMID: 29600558 DOI: 10.1002/zoo.21406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022]
Abstract
Little attention has been paid to the resting and sleeping behavior of zoo elephants so far. An important concern is when elephants avoid lying down, due to degenerative joint and foot disease, social structure, or stressful environmental changes. Inability or unwillingness to lie down for resting is an important welfare issue, as it may impair sleep. We emphasize the importance of satisfying rest in elephants by reviewing the literature on resting behavior in elephants (Loxodonta africana and Elephas maximus) as well as the documentation of four cases from European zoos and our own direct observations in a zoo group of four female African elephants during 12 entire days. The common denominator in the case reports is the occurrence of a falling bout out of a standing position subsequently to a cessation of lying rest for different periods of time. Although well-known in horses as "episodic collapse" or "excessive drowsiness," this syndrome has not been described in elephants before. To enable its detection, we recommend nocturnal video monitoring for elephant-keeping institutions. The literature evaluation as well as own observational data suggest an inverse relationship between lying rest and standing rest. Preventative measures consist of enclosure modifications that facilitate lying rest (e.g., sand hills) or standing rest in a leaning position as a substitute. Anecdotal observations suggest that the provision of appropriate horizontal environmental structures may encourage safe, sleep-conducive standing rest. We provide drawings on how to install such structures. Effects of providing such structures should be evaluated in the future.
Collapse
Affiliation(s)
- Christian Schiffmann
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland.,Elefantenhof Platschow, Ziegendorf, Germany
| | - Stefan Hoby
- Zoologischer Garten Basel, Basel, Switzerland
| | | | | | - Robert Scholz
- Zoologischer Stadtgarten Karlsruhe, Karlsruhe, Germany
| | - Marcus Clauss
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland
| | - Jean-Michel Hatt
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Musigazi GU, De Vleeschauwer S, Sciot R, Verbeken E, Depreitere B. Brain perfusion fixation in male pigs using a safer closed system. Lab Anim 2018; 52:413-417. [DOI: 10.1177/0023677217752747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue fixation methods are well established for rodents, but not for large animals. We present a simple technique for in situ brain perfusion fixation in a male porcine model, using cervical vessels for inflow and outflow and achieving a closed system. Thirty-four pigs, aged 4.7 ± 0.6 months and weighing 60.7 ± 10.9 kg, were anaesthetised and mechanically ventilated. The ipsilateral common carotid artery and external jugular vein were dissected and constituted the inflow and outflow access, respectively. The brains were perfused and fixed in situ with heparinised saline followed by buffered formaldehyde. Then, specimens (brain, cerebellum and brainstem) were extracted and processed for histology. Fixative fluid leakage was avoided, achieving a closed system. This technique minimises the exposure to toxic chemicals such as formaldehyde and associated hazards (inherent toxicity, eye irritation), thereby increasing operators’ safety. Perfusion was performed with a peristaltic pump for 20–30 minutes at an optimum rate of 0.20 l/min and required only 5 litres of the fixative. The specimens were sufficiently hardened to be extracted. High-quality tissues were available for histology analysis. This technique offers a user-friendly closed system for brain perfusion fixation which can be adapted for other tissues of the head, face and neck.
Collapse
Affiliation(s)
- Gracia U. Musigazi
- Experimental Neurosurgery and Neuroanatomy, Neurosciences, KU Leuven, Belgium
- Department of Neurosurgery, Leuven University Hospitals, Belgium
| | | | - Raf Sciot
- Department of Pathology, Leuven University Hospitals, Belgium
| | - Eric Verbeken
- Department of Pathology, Leuven University Hospitals, Belgium
| | - Bart Depreitere
- Experimental Neurosurgery and Neuroanatomy, Neurosciences, KU Leuven, Belgium
- Department of Neurosurgery, Leuven University Hospitals, Belgium
| |
Collapse
|
28
|
Jardim-Messeder D, Lambert K, Noctor S, Pestana FM, de Castro Leal ME, Bertelsen MF, Alagaili AN, Mohammad OB, Manger PR, Herculano-Houzel S. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species. Front Neuroanat 2017; 11:118. [PMID: 29311850 PMCID: PMC5733047 DOI: 10.3389/fnana.2017.00118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.
Collapse
Affiliation(s)
- Débora Jardim-Messeder
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephen Noctor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Fernanda M Pestana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Osama B Mohammad
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
29
|
Jacobs B, Garcia ME, Shea-Shumsky NB, Tennison ME, Schall M, Saviano MS, Tummino TA, Bull AJ, Driscoll LL, Raghanti MA, Lewandowski AH, Wicinski B, Ki Chui H, Bertelsen MF, Walsh T, Bhagwandin A, Spocter MA, Hof PR, Sherwood CC, Manger PR. Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals. J Comp Neurol 2017; 526:496-536. [PMID: 29088505 DOI: 10.1002/cne.24349] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Gigantopyramidal neurons, referred to as Betz cells in primates, are characterized by large somata and extensive basilar dendrites. Although there have been morphological descriptions and drawings of gigantopyramidal neurons in a limited number of species, quantitative investigations have typically been limited to measures of soma size. The current study thus employed two separate analytical approaches: a morphological investigation using the Golgi technique to provide qualitative and quantitative somatodendritic measures of gigantopyramidal neurons across 19 mammalian species from 7 orders; and unbiased stereology to compare the soma volume of layer V pyramidal and gigantopyramidal neurons in primary motor cortex between 11 carnivore and 9 primate species. Of the 617 neurons traced in the morphological analysis, 181 were gigantopyramidal neurons, with deep (primarily layer V) pyramidal (n = 203) and superficial (primarily layer III) pyramidal (n = 233) neurons quantified for comparative purposes. Qualitatively, dendritic morphology varied considerably across species, with some (sub)orders (e.g., artiodactyls, perissodactyls, feliforms) exhibiting bifurcating, V-shaped apical dendrites. Basilar dendrites exhibited idiosyncratic geometry across and within taxonomic groups. Quantitatively, most dendritic measures were significantly greater in gigantopyramidal neurons than in superficial and deep pyramidal neurons. Cluster analyses revealed that most taxonomic groups could be discriminated based on somatodendritic morphology for both superficial and gigantopyramidal neurons. Finally, in agreement with Brodmann, gigantopyramidal neurons in both the morphological and stereological analyses were larger in feliforms (especially in the Panthera species) than in other (sub)orders, possibly due to specializations in muscle fiber composition and musculoskeletal systems.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Madeleine E Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Noah B Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mackenzie E Tennison
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mark S Saviano
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Tia A Tummino
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Anthony J Bull
- Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado
| | - Lori L Driscoll
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | - Bridget Wicinski
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hong Ki Chui
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Timothy Walsh
- Smithsonian National Zoological Park, Washington, District of Columbia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa.,Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Bhagwandin A, Haagensen M, Manger PR. The Brain of the Black ( Diceros bicornis) and White ( Ceratotherium simum) African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging. Front Neuroanat 2017; 11:74. [PMID: 28912691 PMCID: PMC5583206 DOI: 10.3389/fnana.2017.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis) and white (Ceratotherium simum) rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI) to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Mark Haagensen
- Department of Radiology, Wits Donald Gordon Medical Centre, University of the WitwatersrandJohannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
31
|
Nuclear organisation of cholinergic, catecholaminergic, serotonergic and orexinergic neurons in two relatively large-brained rodent species-The springhare (Pedetes capensis) and Beecroft's scaly-tailed squirrel (Anomalurus beecrofti). J Chem Neuroanat 2017; 86:78-91. [PMID: 28916505 DOI: 10.1016/j.jchemneu.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
Abstract
The present study describes the nuclear organization of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of the springhare and Beecroft's scaly-tailed squirrel following immunohistochemical labelling. We aimed to investigate any differences in the nuclear organization of these neural systems when compared to previous data on other species of rodents, as these two rodent species have relatively large brains - 1.2 to 1.4 times larger than would be expected for mammals of their body mass and 1.7-1.9 times larger than would be expected for rodents of their body mass. A series of coronal sections were taken through two brains of each species and immunohistochemically labelled with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. Generally, the nuclear complement of these systems revealed extensive similarities between both species and to previously studied rodents. While no differences were observed in the nuclear complement of the serotonergic and orexinergic systems, some differences were observed in the nuclear complement of the cholinergic and catecholaminergic systems. These include the presence of cholinergic neurons in the cerebral cortex and nucleus of the trapezoid body in the springhare; while the Beecroft's scaly-tailed squirrel exhibited cholinergic neurons in the pretectal area of the midbrain. For the catecholaminergic system it was observed that Beecroft's scaly-tailed squirrel possessed immunoreactive neurons in the accessory olfactory bulb. Despite these four differences, most not previously observed in rodents, the remaining complement of cholinergic and catecholaminergic nuclei were identical to that observed in other rodents, including the presence of the rodent specific catecholaminergic rostral dorsal midline medullary (C3) nucleus in the medulla oblongata. Thus, even with a significant increase in relative brain size, the overall complement of nuclei forming these systems shows minimal changes in complexity within a specific mammalian order.
Collapse
|
32
|
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius
). J Comp Neurol 2017; 525:2499-2513. [DOI: 10.1002/cne.24179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo; Fredericksberg Denmark
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
33
|
Inactivity/sleep in two wild free-roaming African elephant matriarchs - Does large body size make elephants the shortest mammalian sleepers? PLoS One 2017; 12:e0171903. [PMID: 28249035 PMCID: PMC5382951 DOI: 10.1371/journal.pone.0171903] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/28/2017] [Indexed: 01/24/2023] Open
Abstract
The current study provides details of sleep (or inactivity) in two wild, free-roaming African elephant matriarchs studied in their natural habitat with remote monitoring using an actiwatch subcutaneously implanted in the trunk, a standard elephant collar equipped with a GPS system and gyroscope, and a portable weather station. We found that these two elephants were polyphasic sleepers, had an average daily total sleep time of 2 h, mostly between 02:00 and 06:00, and displayed the shortest daily sleep time of any mammal recorded to date. Moreover, these two elephants exhibited both standing and recumbent sleep, but only exhibited recumbent sleep every third or fourth day, potentially limiting their ability to enter REM sleep on a daily basis. In addition, we observed on five occasions that the elephants went without sleep for up to 46 h and traversed around 30 km in 10 h, possibly due to disturbances such as potential predation or poaching events, or a bull elephant in musth. They exhibited no form of sleep rebound following a night without sleep. Environmental conditions, especially ambient air temperature and relative humidity, analysed as wet-bulb globe temperature, reliably predict sleep onset and offset times. The elephants selected novel sleep sites each night and the amount of activity between sleep periods did not affect the amount of sleep. A number of similarities and differences to studies of elephant sleep in captivity are noted, and specific factors shaping sleep architecture in elephants, on various temporal scales, are discussed.
Collapse
|
34
|
Coimbra JP, Manger PR. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum). J Comp Neurol 2017; 525:2484-2498. [DOI: 10.1002/cne.24136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| |
Collapse
|
35
|
Davimes JG, Alagaili AN, Bennett NC, Mohammed OB, Bhagwandin A, Manger PR, Gravett N. Neurochemical organization and morphology of the sleep related nuclei in the brain of the Arabian oryx, Oryx leucoryx. J Chem Neuroanat 2017; 81:53-70. [PMID: 28163217 DOI: 10.1016/j.jchemneu.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/01/2022]
Abstract
The Arabian oryx, Oryx leucoryx, is a member of the superorder Cetartiodactyla and is native to the Arabian Desert. The desert environment can be considered extreme in which to sleep, as the ranges of temperatures experienced are beyond what most mammals encounter. The current study describes the nuclear organization and neuronal morphology of the systems that have been implicated in sleep control in other mammals for the Arabian oryx. The nuclei delineated include those revealed immunohistochemically as belonging to the cholinergic, catecholaminergic, serotonergic and orexinergic systems within the basal forebrain, hypothalamus, midbrain and pons. In addition, we examined the GABAergic neurons and their terminal networks surrounding or within these nuclei. The majority of the neuronal systems examined followed the typical mammalian organizational plan, but some differences were observed: (1) the neuronal morphology of the cholinergic laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei, as well as the parvocellular subdivision of the orexinergic main cluster, exhibited Cetartiodactyl-specific features; (2) the dorsal division of the catecholaminergic anterior hypothalamic group (A15d), which has not been reported in any member of the Artiodactyla studied to date, was present in the brain of the Arabian oryx; and (3) the catecholaminergic tuberal cell group (A12) was notably more expansive than previously seen in any other mammal. The A12 nucleus has been associated functionally to osmoregulation in other mammals, and thus its expansion could potentially be a species specific feature of the Arabian oryx given their native desert environment and the need for extreme water conservation.
Collapse
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nigel C Bennett
- SARChI Chair for Mammalian Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| |
Collapse
|
36
|
Dos Santos SE, Porfirio J, da Cunha FB, Manger PR, Tavares W, Pessoa L, Raghanti MA, Sherwood CC, Herculano-Houzel S. Cellular Scaling Rules for the Brains of Marsupials: Not as "Primitive" as Expected. BRAIN, BEHAVIOR AND EVOLUTION 2017; 89:48-63. [PMID: 28125804 DOI: 10.1159/000452856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022]
Abstract
In the effort to understand the evolution of mammalian brains, we have found that common relationships between brain structure mass and numbers of nonneuronal (glial and vascular) cells apply across eutherian mammals, but brain structure mass scales differently with numbers of neurons across structures and across primate and nonprimate clades. This suggests that the ancestral scaling rules for mammalian brains are those shared by extant nonprimate eutherians - but do these scaling relationships apply to marsupials, a sister group to eutherians that diverged early in mammalian evolution? Here we examine the cellular composition of the brains of 10 species of marsupials. We show that brain structure mass scales with numbers of nonneuronal cells, and numbers of cerebellar neurons scale with numbers of cerebral cortical neurons, comparable to what we have found in eutherians. These shared scaling relationships are therefore indicative of mechanisms that have been conserved since the first therians. In contrast, while marsupials share with nonprimate eutherians the scaling of cerebral cortex mass with number of neurons, their cerebella have more neurons than nonprimate eutherian cerebella of a similar mass, and their rest of brain has fewer neurons than eutherian structures of a similar mass. Moreover, Australasian marsupials exhibit ratios of neurons in the cerebral cortex and cerebellum over the rest of the brain, comparable to artiodactyls and primates. Our results suggest that Australasian marsupials have diverged from the ancestral Theria neuronal scaling rules, and support the suggestion that the scaling of average neuronal cell size with increasing numbers of neurons varies in evolution independently of the allocation of neurons across structures.
Collapse
Affiliation(s)
- Sandra E Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hughes DF, Walker EM, Gignac PM, Martinez A, Negishi K, Lieb CS, Greenbaum E, Khan AM. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography. PLoS One 2016; 11:e0155824. [PMID: 27196138 PMCID: PMC4873048 DOI: 10.1371/journal.pone.0155824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity.
Collapse
Affiliation(s)
- Daniel F. Hughes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Ecology & Evolutionary Biology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ellen M. Walker
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Environmental Pathobiology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Paul M. Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Anais Martinez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Environmental Pathobiology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Kenichiro Negishi
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Masters Program in Biology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Carl S. Lieb
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Arshad M. Khan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
38
|
Dell LA, Patzke N, Spocter MA, Bertelsen MF, Siegel JM, Manger PR. Organization of the sleep-related neural systems in the brain of the river hippopotamus (Hippopotamus amphibius): A most unusual cetartiodactyl species. J Comp Neurol 2016; 524:2036-58. [PMID: 26588600 DOI: 10.1002/cne.23930] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022]
Abstract
This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leigh-Anne Dell
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, 50312
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000, Fredericksberg, Denmark
| | - Jerome M Siegel
- Department of Psychiatry, University of California, Los Angeles, Neurobiology Research 151A3, Veterans Administration Sepulveda Ambulatory Medical Center, North Hills, California, 91343
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| |
Collapse
|
39
|
Dell LA, Patzke N, Spocter MA, Siegel JM, Manger PR. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena). J Comp Neurol 2016; 524:1999-2017. [PMID: 26588354 DOI: 10.1002/cne.23929] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/10/2022]
Abstract
The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leigh-Anne Dell
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, 50312
| | - Jerome M Siegel
- Department of Psychiatry, University of California, Los Angeles, Neurobiology Research 151A3, Veterans Administration Sepulveda Ambulatory Care Center, North Hills, California, 91343
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| |
Collapse
|
40
|
Kharlamova AS, Saveliev SV, Protopopov AV, Maseko BC, Bhagwandin A, Manger PR. The mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) compared with the brain of the extant African elephant (Loxodonta africana). J Comp Neurol 2015; 523:2326-43. [PMID: 26011110 DOI: 10.1002/cne.23817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 11/11/2022]
Abstract
This study presents the results of an examination of the mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) recovered from the Yakutian permafrost in Siberia, Russia. This unique specimen (from 39,440-38,850 years BP) provides the rare opportunity to compare the brain morphology of this extinct species with a related extant species, the African elephant (Loxodonta africana). An anatomical description of the preserved brain of the woolly mammoth is provided, along with a series of quantitative analyses of various brain structures. These descriptions are based on visual inspection of the actual specimen as well as qualitative and quantitative comparison of computed tomography imaging data obtained for the woolly mammoth in comparison with magnetic resonance imaging data from three African elephant brains. In general, the brain of the woolly mammoth specimen examined, estimated to weigh between 4,230 and 4,340 g, showed the typical shape, size, and gross structures observed in extant elephants. Quantitative comparative analyses of various features of the brain, such as the amygdala, corpus callosum, cerebellum, and gyrnecephalic index, all indicate that the brain of the woolly mammoth specimen examined has many similarities with that of modern African elephants. The analysis provided here indicates that a specific brain type representative of the Elephantidae is likely to be a feature of this mammalian family. In addition, the extensive similarities between the woolly mammoth brain and the African elephant brain indicate that the specializations observed in the extant elephant brain are likely to have been present in the woolly mammoth.
Collapse
Affiliation(s)
| | | | - Albert V Protopopov
- Academy of Sciences of the Sakha Republic (Yakutia), Yakutsk, Sakha Republic (Yakutia), 677007, Russia
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, Johannesburg, Republic of South Africa
| |
Collapse
|
41
|
Raghanti MA, Todd N, Hof PR. Probing the proboscidea: Lessons from the past. J Comp Neurol 2015; 523:2321-5. [PMID: 26184071 DOI: 10.1002/cne.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| | - Nancy Todd
- Biology and Environmental Studies, Manhattanville College, Purchase, New York, 10577
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York, 10029
| |
Collapse
|
42
|
Dell LA, Spocter MA, Patzke N, Karlson KÆ, Alagaili AN, Bennett NC, Muhammed OB, Bertelsen MF, Siegel JM, Manger PR. Orexinergic bouton density is lower in the cerebral cortex of cetaceans compared to artiodactyls. J Chem Neuroanat 2015; 68:61-76. [DOI: 10.1016/j.jchemneu.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
|
43
|
Intraspecific Variation of Endocranial Structures in Extant Equus: A Prelude to Endocranial Studies in Fossil Equoids. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9293-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Kazu RS, Maldonado J, Mota B, Manger PR, Herculano-Houzel S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front Neuroanat 2014; 8:128. [PMID: 25429261 PMCID: PMC4228855 DOI: 10.3389/fnana.2014.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.
Collapse
Affiliation(s)
- Rodrigo S Kazu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional, CNPq/MCT, São Paulo, Brazil
| | | | - Bruno Mota
- Instituto de Física, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand Johannesburg, South Africa
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional, CNPq/MCT, São Paulo, Brazil
| |
Collapse
|
45
|
Stoeger AS, Manger P. Vocal learning in elephants: neural bases and adaptive context. Curr Opin Neurobiol 2014; 28:101-7. [PMID: 25062469 PMCID: PMC4181794 DOI: 10.1016/j.conb.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 10/28/2022]
Abstract
In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants.
Collapse
Affiliation(s)
- Angela S Stoeger
- Department of Cognitive Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Paul Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct 2014; 220:2851-72. [PMID: 25048683 DOI: 10.1007/s00429-014-0830-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/21/2014] [Indexed: 12/24/2022]
Abstract
The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.
Collapse
|
47
|
Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfírio J, Messeder D, Mattos Feijó L, Maldonado J, Manger PR. The elephant brain in numbers. Front Neuroanat 2014; 8:46. [PMID: 24971054 PMCID: PMC4053853 DOI: 10.3389/fnana.2014.00046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (10(9)) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | - Kamilla Avelino-de-Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | - Kleber Neves
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | - Jairo Porfírio
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | - Débora Messeder
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | - Larissa Mattos Feijó
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Nacional de Neurociência TranslacionalSão Paulo, Brazil
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
48
|
Jacobs B, Johnson NL, Wahl D, Schall M, Maseko BC, Lewandowski A, Raghanti MA, Wicinski B, Butti C, Hopkins WD, Bertelsen MF, Walsh T, Roberts JR, Reep RL, Hof PR, Sherwood CC, Manger PR. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Front Neuroanat 2014; 8:24. [PMID: 24795574 PMCID: PMC4005950 DOI: 10.3389/fnana.2014.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado CollegeColorado Springs, CO, USA
| | - Nicholas L. Johnson
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado CollegeColorado Springs, CO, USA
| | - Devin Wahl
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado CollegeColorado Springs, CO, USA
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado CollegeColorado Springs, CO, USA
| | - Busisiwe C. Maseko
- Faculty of Health Sciences, School of Anatomical Sciences, University of the WitwatersrandJohannesburg, South Africa
| | | | | | - Bridget Wicinski
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Camilla Butti
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research CenterAtlanta, GA, USA
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen ZooFrederiksberg, Denmark
| | - Timothy Walsh
- Smithsonian National Zoological ParkWashington, DC, USA
| | | | - Roger L. Reep
- Department of Physiological Sciences, University of FloridaGainesville, FL, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington UniversityWashington, DC, USA
| | - Paul R. Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
49
|
In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 2013; 220:361-83. [PMID: 24178679 DOI: 10.1007/s00429-013-0660-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022]
Abstract
The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.
Collapse
|
50
|
Maseko BC, Patzke N, Fuxe K, Manger PR. Architectural Organization of the African Elephant Diencephalon and Brainstem. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:83-128. [DOI: 10.1159/000352004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022]
|