1
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Beitchman JA, Krishna G, Bromberg CE, Thomas TC. Effects of isoflurane and urethane anesthetics on glutamate neurotransmission in rat brain using in vivo amperometry. BMC Neurosci 2023; 24:52. [PMID: 37817064 PMCID: PMC10563344 DOI: 10.1186/s12868-023-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Aspects of glutamate neurotransmission implicated in normal and pathological conditions are predominantly evaluated using in vivo recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however, real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In order to maintain rigor and reproducibility within the literature between the two most common methods of anesthetized in vivo recording of glutamate, we compared glutamate signaling as a function of anesthesia and brain region in the rat strain most used in neuroscience. METHODS In the following experiments, in vivo amperometric recordings of KCl-evoked glutamate overflow and glutamate clearance kinetics (uptake rate and T80) in the cortex, hippocampus, and thalamus were performed using glutamate-selective microelectrode arrays (MEAs) in young adult male, Sprague-Dawley rats anesthetized with either isoflurane or urethane. RESULTS Potassium chloride (KCl)-evoked glutamate overflow was similar under urethane and isoflurane anesthesia in all brain regions studied. Analysis of glutamate clearance determined that the uptake rate was significantly faster (53.2%, p < 0.05) within the thalamus under urethane compared to isoflurane, but no differences were measured in the cortex or hippocampus. Under urethane, glutamate clearance parameters were region-dependent, with significantly faster glutamate clearance in the thalamus compared to the cortex but not the hippocampus (p < 0.05). No region-dependent differences were measured for glutamate overflow using isoflurane. CONCLUSIONS These data support that amperometric recordings of KCl-evoked glutamate under isoflurane and urethane anesthesia result in similar and comparable data. However, certain parameters of glutamate clearance can vary based on choice of anesthesia and brain region. In these circumstances, special considerations are needed when comparing previous literature and planning future experiments.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Caitlin E Bromberg
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA.
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Phoenix VA Healthcare System, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Beitchman JA, Krishna G, Bromberg CE, Thomas TC. Effects of isoflurane and urethane anesthetics on glutamate neurotransmission in rat brain using in vivo amperometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528856. [PMID: 36824899 PMCID: PMC9949081 DOI: 10.1101/2023.02.16.528856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aspects of glutamate neurotransmission implicated in normal and pathological conditions are often evaluated using in vivo recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In the following experiments, in vivo amperometric recordings of KCl-evoked glutamate overflow and glutamate clearance kinetics (uptake rate and T80) in the cortex, hippocampus and thalamus were performed using glutamate-selective microelectrode arrays (MEAs) in young adult male, Sprague-Dawley rats anesthetized with isoflurane or urethane. Potassium chloride (KCl)-evoked glutamate overflow was similar under urethane and isoflurane anesthesia in all brain regions studied. Analysis of glutamate clearance determined that the uptake rate was significantly faster (53.2%, p<0.05) within the thalamus under urethane compared to isoflurane, but no differences were measured in the cortex or hippocampus. Under urethane, glutamate clearance parameters were region dependent, with significantly faster glutamate clearance in the thalamus compared to the cortex but not the hippocampus (p<0.05). No region dependent differences were measured for glutamate overflow using isoflurane. These data support that amperometric recordings of glutamate under isoflurane and urethane anesthesia result in mostly similar and comparable data. However, certain parameters of glutamate uptake vary based on choice of anesthesia and brain region. Special considerations must be given to these areas when considering comparison to previous literature and when planning future experiments.
Collapse
Affiliation(s)
- Joshua A. Beitchman
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Gokul Krishna
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Caitlin E. Bromberg
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Theresa Currier Thomas
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Phoenix VA Healthcare System, Phoenix, AZ, USA
| |
Collapse
|
4
|
Engineered Nanomaterial based Implantable MicroNanoelectrode for in vivo Analysis: Technological Advancement and Commercial Aspects. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
6
|
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep 2020; 10:12777. [PMID: 32728074 PMCID: PMC7392771 DOI: 10.1038/s41598-020-69636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme-based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a significant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
Collapse
Affiliation(s)
- P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Chenggong Gong
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Kayla A Ponder
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Sandipan Pati
- UAB Epilepsy Center/Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prabhu U Arumugam
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA. .,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
7
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
8
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Geyer ED, Shetty PA, Suozzi CJ, Allen DZ, Benavidez PP, Liu J, Hollis CN, Gerhardt GA, Quintero JE, Burmeister JJ, Whitaker EE. Adaptation of Microelectrode Array Technology for the Study of Anesthesia-induced Neurotoxicity in the Intact Piglet Brain. J Vis Exp 2018. [PMID: 29806825 PMCID: PMC6101183 DOI: 10.3791/57391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Every year, millions of children undergo anesthesia for a multitude of procedures. However, studies in both animals and humans have called into question the safety of anesthesia in children, implicating anesthetics as potentially toxic to the brain in development. To date, no studies have successfully elucidated the mechanism(s) by which anesthesia may be neurotoxic. Animal studies allow investigation of such mechanisms, and neonatal piglets represent an excellent model to study these effects due to their striking developmental similarities to the human brain. This protocol adapts the use of enzyme-based microelectrode array (MEA) technology as a novel way to study the mechanism(s) of anesthesia-induced neurotoxicity (AIN). MEAs enable real-time monitoring of in vivo neurotransmitter activity and offer exceptional temporal and spatial resolution. It is hypothesized that anesthetic neurotoxicity is caused in part by glutamate dysregulation and MEAs offer a method to measure glutamate. The novel implementation of MEA technology in a piglet model presents a unique opportunity for the study of AIN.
Collapse
Affiliation(s)
- Emily D Geyer
- Department of Anesthesiology, Ohio State University College of Medicine
| | - Prithvi A Shetty
- Department of Anesthesiology, Ohio State University College of Medicine
| | | | - David Z Allen
- Department of Anesthesiology, Ohio State University College of Medicine; Medical Student Research Program, Ohio State University College of Medicine
| | - Pamela P Benavidez
- Department of Anesthesiology, Ohio State University College of Medicine; Medical Student Research Program, Ohio State University College of Medicine
| | - Joseph Liu
- Department of Anesthesiology, Ohio State University College of Medicine; Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital
| | - Charles N Hollis
- Department of Anesthesiology, Ohio State University College of Medicine
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center
| | | | - Emmett E Whitaker
- Department of Anesthesiology, Ohio State University College of Medicine; Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital;
| |
Collapse
|
10
|
Xu S, Zhang Y, Zhang S, Xiao G, Wang M, Song Y, Gao F, Li Z, Zhuang P, Chan P, Tao G, Yue F, Cai X. An integrated system for synchronous detection of neuron spikes and dopamine activities in the striatum of Parkinson monkey brain. J Neurosci Methods 2018; 304:83-91. [PMID: 29698630 DOI: 10.1016/j.jneumeth.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Synchronous detecting neuron spikes and dopamine (DA) activities in the non-human primate brain play an important role in understanding of Parkinson's disease (PD). At present, most experiments are carried out by combing of electrodes and commercial instruments, which are inconvenient, time-consuming and inefficient. NEW METHOD Herein, this study describes a novel integrated system for monitoring neuron spikes and DA activities in non-human primate brain synchronously. This system integrates an implantable sensor, a dual-function head-stage and a low noise detection instrument. METHODS The system was developed efficiently by using the key technologies of noise reduction, interference protection and differential amplification. To demonstrate the utility of this system, synchronous recordings of electrophysiological signals and DA were in vivo performed in a monkey before and after treated as a Parkinson model monkey. RESULTS The system typically exhibited input-referred noise levels of only ∼ 3 μVRMS, input impedance levels of up to 5.1 GΩ, and a sensitivity of 14.075 pA/μM for DA and could detect electrophysiological signals and DA without mutual interference. In monkey experiments, lower DA concentrations in the striatum and more intensive spikes of the Parkinson model monkey than the normal one were synchronously recorded efficiently. COMPARISON WITH EXISTING METHODS This integrated system will not only significantly simplify the experimental operation and improve the experimental efficiency, but also improve the signal quality and synchronization performance. CONCLUSIONS This integrated system, which is practical, efficient and convenient, can be widely used for the study of PD and other neurological disorders.
Collapse
Affiliation(s)
- Shengwei Xu
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Yu Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Song Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Ziyue Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Ping Zhuang
- Beijing Key Laboratory of Parkinson's Disease, Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Piu Chan
- Beijing Key Laboratory of Parkinson's Disease, Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co., Ltd., Nanning 530002, China
| | - Feng Yue
- Beijing Key Laboratory of Parkinson's Disease, Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Wincon TheraCells Biotechnologies Co., Ltd., Nanning 530002, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China.
| |
Collapse
|
11
|
In Situ Real-Time Monitoring of Glutamate and Electrophysiology from Cortex to Hippocampus in Mice Based on a Microelectrode Array. SENSORS 2016; 17:s17010061. [PMID: 28042814 PMCID: PMC5298634 DOI: 10.3390/s17010061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Changes in the structure and function of the hippocampus contribute to epilepsy, schizophrenia and other neurological or mental disorders of the brain. Since the function of the hippocampus depends heavily on the glutamate (Glu) signaling pathways, in situ real-time detection of Glu neurotransmitter release and electrophysiological signals in hippocampus is of great significance. To achieve the dual-mode detection in mouse hippocampus in vivo, a 16-channel implantable microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology. Twelve microelectrode sites were modified with platinum black for electrophysiological recording and four sites were modified with glutamate oxidase (GluOx) and 1,3-phenylenediamine (mPD) for selective electrochemical detection of Glu. The MEA was implanted from cortex to hippocampus in mouse brain for in situ real-time monitoring of Glu and electrophysiological signals. It was found that the Glu concentration in hippocampus was roughly 50 μM higher than that in the cortex, and the firing rate of concurrently recorded spikes declined from 6.32 ± 4.35 spikes/s in cortex to 0.09 ± 0.06 spikes/s in hippocampus. The present results demonstrated that the dual-mode MEA probe was capable in neurological detections in vivo with high spatial resolution and dynamical response, which lays the foundation for further pathology studies in the hippocampus of mouse models with nervous or mental disorders.
Collapse
|
12
|
Zhang S, Song Y, Wang M, Zhang Z, Fan X, Song X, Zhuang P, Yue F, Chan P, Cai X. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. Biosens Bioelectron 2016; 85:53-61. [PMID: 27155116 DOI: 10.1016/j.bios.2016.04.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Dual-mode, multielectrode recordings have become routine in rodent neuroscience research and have recently been adapted to the non-human primate. However, robust and reliable application of acute, multielectrode recording methods in monkeys especially for deep brain nucleus research remains a challenge. In this paper, We described a low cost silicon based 16-site implantable microelectrode array (MEA) chip fabricated by standard lithography technology for in vivo test. The array was 25mm long and designed to use in non-human primate models, for electrophysiological and electrochemical recording. We presented a detailed protocol for array fabrication, then showed that the device can record Spikes, LFPs and dopamine (DA) variation continuously from cortex to striatum in an esthetized monkey. Though our experiment, high-quality electrophysiological signals were obtained from the animal. Across any given microelectrode, spike amplitudes ranged from 70 to 300μV peak to peak, with a mean signal-to-noise ratio of better than 5:1. Calibration results showed the MEA probe had high sensitivity and good selectivity for DA. The DA concentration changed from 42.8 to 481.6μM when the MEA probe inserted from cortex into deep brain nucleus of striatum, which reflected the inhomogeneous distribution of DA in brains. Compared with existing methods allowing single mode (electrophysiology or electrochemistry) recording. This system is designed explicitly for dual-mode recording to meet the challenges of recording in non-human primates.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Zhiming Zhang
- University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Xinyi Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Xianteng Song
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China
| | - Ping Zhuang
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Feng Yue
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Piu Chan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 10090, China.
| |
Collapse
|
13
|
Parikh V, Naughton SX, Yegla B, Guzman DM. Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice. Psychopharmacology (Berl) 2016; 233:1361-75. [PMID: 26861892 PMCID: PMC4814303 DOI: 10.1007/s00213-016-4229-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/30/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Cognitive flexibility is a key component of executive function and is disrupted in major psychiatric disorders. Brain-derived neurotrophic factor (BDNF) exerts neuromodulatory effects on synaptic transmission and cognitive/affective behaviors. However, the causal mechanisms linking BDNF hypofunction with executive deficits are not well understood. OBJECTIVES Here, we assessed the consequences of BDNF hemizygosity on cognitive flexibility in mice performing an operant conditioning task. As dopaminergic-glutamatergic interaction in the striatum is important for cognitive processing, and BDNF heterozygous (BDNF(+/-)) mice display a higher dopamine tone in the dorsal striatum, we also assessed the effects of partial striatal dopamine depletion on task performance and glutamate release. RESULTS BDNF(+/-) mice acquired discrimination learning as well as new rule learning during set-shifting as efficiently as wild-type mice. However, partial removal of striatal dopaminergic inputs with 6-hydroxydopamine (6-OHDA) impaired these cognitive processes by impeding the maintenance of a new learning strategy in both genotypes. BDNF mutants exhibited performance impairments during reversal learning, and these deficits were associated with increased perseveration to the previously acquired strategy. Partial dopamine depletion of the striatum reversed these cognitive impairments. Additionally, reduction in depolarization-evoked glutamate release noted in the dorsal striatum of BDNF(+/-) mice was not observed in 6-OHDA-infused BDNF mutants indicating normalization of glutamatergic transmission in these animals. CONCLUSIONS Our data illustrate that BDNF signaling regulates cognitive control processes presumably by maintaining striatal dopamine-glutamate balance. Moreover, aberrations in BDNF signaling may act as a common neurobiological substrate that accounts for executive dysfunction observed in multiple psychiatric conditions.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | | | | | | |
Collapse
|
14
|
Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 2015; 244:104-13. [PMID: 24954713 PMCID: PMC4595476 DOI: 10.1016/j.jneumeth.2014.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/25/2023]
Abstract
The mammalian prefrontal cortex known as the seat of high brain functions uses a six layer distribution of minicolumnar neurons to coordinate the integration of sensory information and the selection of relevant signals for goal driven behavior. To reveal the complex functionality of these columnar microcircuits we employed simultaneous recordings with several configurations of biomorphic microelectrode arrays (MEAs) within cortical layers in adjacent minicolumns, in four nohuman primates (NHPs) performing a delayed match-to-sample (DMS) visual discrimination task. We examined: (1) the functionality of inter-laminar, and inter-columnar interactions between pairs of cells in the same or different minicolumns by use of normalized cross-correlation histograms (CCH), (2) the modulation of glutamate concentration in layer 2/3, and (3) the potential interactions within these microcircuits. The results demonstrate that neurons in both infra-granular and supra-granular layers interact through inter-laminar loops, as well as through intra-laminar to produce behavioral response signals. These results provide new insights into the manner in which prefrontal cortical microcircuitry integrates sensory stimuli used to provide behaviorally relevant signals that may be implemented in brain computer/machine interfaces (BCI/BMIs) during performance of the task.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Joshua L Fuqua
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Hascup KN, Hascup ER. Electrochemical techniques for subsecond neurotransmitter detection in live rodents. Comp Med 2014; 64:249-55. [PMID: 25296011 PMCID: PMC4170089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/12/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Alterations in neurotransmission have been implicated in numerous neurodegenerative and neuropsychiatric disorders, including Alzheimer disease, Parkinson disease, epilepsy, and schizophrenia. Unfortunately, few techniques support the measurement of real-time changes in neurotransmitter levels over multiple days, as is essential for ethologic and pharmacodynamic testing. Microdialysis is commonly used for these research paradigms, but its poor temporal and spatial resolution make this technique inadequate for measuring the rapid dynamics (milliseconds to seconds) of fast signaling neurotransmitters, such as glutamate and acetylcholine. Enzymatic microelectrode arrays (biosensors) coupled with electrochemical recording techniques have demonstrated fast temporal resolution (less than 1 s), excellent spatial resolution (micron-scale), low detection limits (≤200 nM), and minimal damage (50 to 100 μm) to surrounding brain tissue. Here we discuss the benefits, methods, and animal welfare considerations of using platinum microelectrodes on a ceramic substrate for enzyme-based electrochemical recording techniques for real-time in vivo neurotransmitter recordings in both anesthetized and awake, freely moving rodents.
Collapse
Affiliation(s)
- Kevin N Hascup
- Departments of Neurology and Pharmacology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Erin R Hascup
- Departments of Neurology and Pharmacology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
16
|
Hampson RE, Fuqua JL, Huettl PF, Opris I, Song D, Shin D, Marmarelis VZ, Berger TW, Gerhardt GA, Deadwyler SA. Conformal ceramic electrodes that record glutamate release and corresponding neural activity in primate prefrontal cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:5954-7. [PMID: 24111095 DOI: 10.1109/embc.2013.6610908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformal ceramic electrodes utilized in prior recordings of nonhuman primate prefrontal cortical layer 2/3 and layer 5 neurons were used in this study to record tonic glutamate concentration and transient release in layer 2/3 PFC. Tonic glutamate concentration increased in the Match (decision) phase of a visual delayed-match-to-sample (DMS) task, while increased transient glutamate release occurred in the Sample (encoding) phase of the task. Further, spatial vs. object-oriented DMS trials evoked differential changes in glutamate concentration. Thus the same conformal recording electrodes were capable of electrophysiological and electrochemical recording, and revealed similar evidence of neural processing in layers 2/3 and layer 5 during cognitive processing in a behavioral task.
Collapse
|
17
|
Burmeister JJ, Davis VA, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA. Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS. ACS Chem Neurosci 2013; 4:721-8. [PMID: 23650904 DOI: 10.1021/cn4000555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glutaraldehyde is widely used as a cross-linking agent for enzyme immobilization onto microelectrodes. Recent studies and prior reports indicate changes in enzyme activity and selectivity with certain glutaraldehyde cross-linking procedures that may jeopardize the performance of microelectrode recordings and lead to falsely elevated responses in biological systems. In this study, the sensitivity of glutaraldehyde cross-linked glutamate oxidase-based microelectrode arrays to 22 amino acids was tested and compared to glutamate. As expected, responses to electroactive amino acids (Cys, Tyr, Trp) were detected at both nonenzyme-coated and enzyme-coated microelectrodes sites, while the remaining amino acids yielded no detectable responses. Electroactive amino acids were effectively blocked with a m-phenylene diamine (mPD) layer and, subsequently, no responses were detected. Preliminary results on the use of poly(ethylene glycol) diglycidyl ether (PEGDE) as a potentially more reliable cross-linking agent for the immobilization of glutamate oxidase onto ceramic-based microelectrode arrays are reported and show no significant advantages over glutaraldehyde as we observe comparable selectivities and responses. These results support that glutaraldehyde-cross-linked glutamate oxidase retains sufficient enzyme specificity for accurate in vivo brain measures of tonic and phasic glutamate levels when immobilized using specific "wet" coating procedures.
Collapse
Affiliation(s)
- Jason J. Burmeister
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Verda A. Davis
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Jorge E. Quintero
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Francois Pomerleau
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Peter Huettl
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Greg A. Gerhardt
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| |
Collapse
|
18
|
Rogers ML, Boutelle MG. Real-time clinical monitoring of biomolecules. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:427-453. [PMID: 23772662 DOI: 10.1146/annurev.anchem.111808.073648] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Continuous monitoring of clinical biomarkers offers the exciting possibility of new therapies that use biomarker levels to guide treatment in real time. This review explores recent progress toward this goal. We initially consider measurements in body fluids by a range of analytical methods. We then discuss direct tissue measurements performed by implanted sensors; sampling techniques, including microdialysis and ultrafiltration; and noninvasive methods. A future directions section considers analytical methods at the cusp of clinical use.
Collapse
Affiliation(s)
- Michelle L Rogers
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
19
|
Hascup KN, Hascup ER, Littrell OM, Hinzman JM, Werner CE, Davis VA, Burmeister JJ, Pomerleau F, Quintero JE, Huettl P, Gerhardt GA. Microelectrode Array Fabrication and Optimization for Selective Neurochemical Detection. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Vasylieva N, Marinesco S. Enzyme Immobilization on Microelectrode Biosensors. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 2012. [PMID: 23189041 PMCID: PMC3504312 DOI: 10.3389/fncir.2012.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of "executive function," hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Singh YS, Sawarynski LE, Dabiri PD, Choi WR, Andrews AM. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry. Anal Chem 2011; 83:6658-66. [PMID: 21770471 DOI: 10.1021/ac2011729] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Voltammetry is widely used to investigate neurotransmission and other biological processes but is limited by poor chemical selectivity and fouling of commonly used carbon fiber microelectrodes (CFMs). We performed direct comparisons of three key coating materials purported to impart selectivity and fouling resistance to electrodes: Nafion, base-hydrolyzed cellulose acetate (BCA), and fibronectin. We systematically evaluated the impact on a range of electrode parameters. Fouling due to exposure to brain tissue was investigated using an approach that minimizes the use of animals while enabling evaluation of statistically significant populations of electrodes. We find that BCA is relatively fouling-resistant. Moreover, detection at BCA-coated CFMs can be tuned by altering hydrolysis times to minimize the impact on sensitivity losses while maintaining fouling resistance. Fibronectin coating is associated with moderate losses in sensitivity after coating and fouling. Nafion imparts increased sensitivity for dopamine and norepinephrine but not serotonin, as well as the anticipated selectivity for cationic neurotransmitters over anionic metabolites. Although Nafion has been suggested to resist fouling, both dip-coating and electrodeposition of Nafion are associated with substantial fouling, similar to levels observed at bare electrodes after exposure to brain tissue. Direct comparisons of these coatings identified unique electroanalytical properties of each that can be used to guide selection tailored to the goals and environment of specific studies.
Collapse
Affiliation(s)
- Yogesh S Singh
- Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
23
|
Talauliker PM, Price DA, Burmeister JJ, Nagari S, Quintero JE, Pomerleau F, Huettl P, Hastings JT, Gerhardt GA. Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis. J Neurosci Methods 2011; 198:222-9. [PMID: 21513736 DOI: 10.1016/j.jneumeth.2011.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Amperometric measurements using microelectrode arrays (MEAs) provide spatially and temporally resolved measures of neuromolecules in the central nervous system of rats, mice and non-human primates. Multi-site MEAs can be mass fabricated on ceramic (Al₂O₃) substrate using photolithographic methods, imparting a high level of precision and reproducibility in a rigid but durable recording device. Although the functional capabilities of MEAs have been previously documented for both anesthetized and freely moving paradigms, the performance enabling intrinsic physical properties of the MEA device have not heretofore been presented. In these studies, spectral analysis confirmed that the MEA recording sites were primarily composed of elemental platinum (Pt°). In keeping with the precision of the photolithographic process, scanning electron microscopy revealed that the Pt recording sites have unique microwell geometries post-fabrication. Atomic force microscopy demonstrated that the recording surfaces have nanoscale irregularities in the form of elevations and depressions, which contribute to increased current per unit area that exceeds previously reported microelectrode designs. The ceramic substrate on the back face of the MEA was characterized by low nanoscale texture and the ceramic sides consisted of an extended network of ridges and cavities. Thus, individual recording sites have a unique Pt° composition and surface profile that has not been previously observed for Pt-based microelectrodes. These features likely impact the physical chemistry of the device, which may influence adhesion of biological molecules and tissue as well as electrochemical recording performance post-implantation. This study is a necessary step towards understanding and extending the performance abilities of MEAs in vivo.
Collapse
Affiliation(s)
- Pooja M Talauliker
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simple and non toxic enzyme immobilization onto platinum electrodes for detection of metabolic molecules in the rat brain using silicon micro-needles. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.12.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|