1
|
Wang L, Yang Y, Hu X, Zhao S, Jiang X, Guo L, Han J, Liu T. Frequency-specific functional difference between gyri and sulci in naturalistic paradigm fMRI. Brain Struct Funct 2024; 229:431-442. [PMID: 38193918 DOI: 10.1007/s00429-023-02746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Disentangling functional difference between cortical folding patterns of gyri and sulci provides novel insights into the relationship between brain structure and function. Previous studies using resting-state functional magnetic resonance imaging (rsfMRI) have revealed that sulcal signals exhibit stronger high-frequency but weaker low-frequency components compared to gyral ones, suggesting that gyri may serve as functional integration centers while sulci are segregated local processing units. In this study, we utilize naturalistic paradigm fMRI (nfMRI) to explore the functional difference between gyri and sulci as it has proven to record stronger functional integrations compared to rsfMRI. We adopt a convolutional neural network (CNN) to classify gyral and sulcal fMRI signals in the whole brain (the global model) and within functional brain networks (the local models). The frequency-specific difference between gyri and sulci is then inferred from the power spectral density (PSD) profiles of the learned filters in the CNN model. Our experimental results show that nfMRI shows higher gyral-sulcal PSD contrast effect sizes in the global model compared to rsfMRI. In the local models, the effect sizes are either increased or decreased depending on frequency bands and functional complexity of the FBNs. This study highlights the advantages of nfMRI in depicting the functional difference between gyri and sulci, and provides novel insights into unraveling the relationship between brain structure and function.
Collapse
Affiliation(s)
- Liting Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Yang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, USA
| |
Collapse
|
2
|
Guan S, Jiang R, Chen DY, Michael A, Meng C, Biswal B. Multifractal long-range dependence pattern of functional magnetic resonance imaging in the human brain at rest. Cereb Cortex 2023; 33:11594-11608. [PMID: 37851793 DOI: 10.1093/cercor/bhad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Long-range dependence is a prevalent phenomenon in various biological systems that characterizes the long-memory effect of temporal fluctuations. While recent research suggests that functional magnetic resonance imaging signal has fractal property, it remains unknown about the multifractal long-range dependence pattern of resting-state functional magnetic resonance imaging signals. The current study adopted the multifractal detrended fluctuation analysis on highly sampled resting-state functional magnetic resonance imaging scans to investigate long-range dependence profile associated with the whole-brain voxels as specific functional networks. Our findings revealed the long-range dependence's multifractal properties. Moreover, long-term persistent fluctuations are found for all stations with stronger persistency in whole-brain regions. Subsets with large fluctuations contribute more to the multifractal spectrum in the whole brain. Additionally, we found that the preprocessing with band-pass filtering provided significantly higher reliability for estimating long-range dependence. Our validation analysis confirmed that the optimal pipeline of long-range dependence analysis should include band-pass filtering and removal of daily temporal dependence. Furthermore, multifractal long-range dependence characteristics in healthy control and schizophrenia are different significantly. This work has provided an analytical pipeline for the multifractal long-range dependence in the resting-state functional magnetic resonance imaging signal. The findings suggest differential long-memory effects in the intrinsic functional networks, which may offer a neural marker finding for understanding brain function and pathology.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu 610041, China
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Medical Equipment Department, Xiangyang No.1 People's Hospital, Xiangyang 441000, China
| | - Donna Y Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Andrew Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, United States
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
3
|
Ashourvan A, Pequito S, Bertolero M, Kim JZ, Bassett DS, Litt B. External drivers of BOLD signal's non-stationarity. PLoS One 2022; 17:e0257580. [PMID: 36121808 PMCID: PMC9484685 DOI: 10.1371/journal.pone.0257580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
A fundamental challenge in neuroscience is to uncover the principles governing how the brain interacts with the external environment. However, assumptions about external stimuli fundamentally constrain current computational models. We show in silico that unknown external stimulation can produce error in the estimated linear time-invariant dynamical system. To address these limitations, we propose an approach to retrieve the external (unknown) input parameters and demonstrate that the estimated system parameters during external input quiescence uncover spatiotemporal profiles of external inputs over external stimulation periods more accurately. Finally, we unveil the expected (and unexpected) sensory and task-related extra-cortical input profiles using functional magnetic resonance imaging data acquired from 96 subjects (Human Connectome Project) during the resting-state and task scans. This dynamical systems model of the brain offers information on the structure and dimensionality of the BOLD signal's external drivers and shines a light on the likely external sources contributing to the BOLD signal's non-stationarity. Our findings show the role of exogenous inputs in the BOLD dynamics and highlight the importance of accounting for external inputs to unravel the brain's time-varying functional dynamics.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Sérgio Pequito
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Maxwell Bertolero
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jason Z. Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Guan S, Jiang R, Bian H, Yuan J, Xu P, Meng C, Biswal B. The Profiles of Non-stationarity and Non-linearity in the Time Series of Resting-State Brain Networks. Front Neurosci 2020; 14:493. [PMID: 32595440 PMCID: PMC7300942 DOI: 10.3389/fnins.2020.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The linearity and stationarity of fMRI time series need to be understood due to their important roles in the choice of approach for brain network analysis. In this paper, we investigated the stationarity and linearity of resting-state fMRI (rs-fMRI) time-series data from the Midnight Scan Club datasets. The degree of stationarity (DS) and the degree of non-linearity (DN) were, respectively, estimated for the time series of all gray matter voxels. The similarity and difference between the DS and DN were assessed in terms of voxels and intrinsic brain networks, including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default-mode network. The test-retest scans were utilized to quantify the reliability of DS and DN. We found that DS and DN maps had overlapping spatial distribution. Meanwhile, the probability density estimate function of DS had a long tail, and that of DN had a more normal distribution. Specifically, stronger DS was present in the somatomotor, limbic, and ventral attention networks compared to other networks, and stronger DN was found in the somatomotor, visual, limbic, ventral attention, and default-mode networks. The percentage of overlapping voxels between DS and DN in different networks demonstrated a decreasing trend in the order default mode, ventral attention, somatomotor, frontoparietal, dorsal attention, visual, and limbic. Furthermore, the ICC values of DS were higher than those of DN. Our results suggest that different functional networks have distinct properties of non-stationarity and non-linearity owing to the complexity of rs-fMRI time series. Thus, caution should be taken when analyzing fMRI data (both resting-state and task-activation) using simplified models.
Collapse
Affiliation(s)
- Sihai Guan
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Runzhou Jiang
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Haikuo Bian
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLAB), Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Peng Xu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
5
|
Khambhati AN, Sizemore AE, Betzel RF, Bassett DS. Modeling and interpreting mesoscale network dynamics. Neuroimage 2018; 180:337-349. [PMID: 28645844 PMCID: PMC5738302 DOI: 10.1016/j.neuroimage.2017.06.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022] Open
Abstract
Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ann E Sizemore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard F Betzel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Bogdanov P, Dereli N, Dang XH, Bassett DS, Wymbs NF, Grafton ST, Singh AK. Learning about learning: Mining human brain sub-network biomarkers from fMRI data. PLoS One 2017; 12:e0184344. [PMID: 29016686 PMCID: PMC5634545 DOI: 10.1371/journal.pone.0184344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/22/2017] [Indexed: 01/24/2023] Open
Abstract
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.
Collapse
Affiliation(s)
- Petko Bogdanov
- Department of Computer Science, University at Albany—SUNY, 1400 Washington Ave, Albany, NY 12222, United States of America
| | - Nazli Dereli
- Ticketmaster, Los Angeles, CA, United States of America
| | - Xuan-Hong Dang
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106-5110, United States of America
| | - Danielle S. Bassett
- Complex Systems Group, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
- Department of Electrical Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Nicholas F. Wymbs
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Scott T. Grafton
- Department of Psychology and UCSB Brain Imaging Center, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Ambuj K. Singh
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106-5110, United States of America
| |
Collapse
|
7
|
Exploiting Complexity Information for Brain Activation Detection. PLoS One 2016; 11:e0152418. [PMID: 27045838 PMCID: PMC4821605 DOI: 10.1371/journal.pone.0152418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective.
Collapse
|