1
|
Singh A, Khushi, Tiwari V, Kumar A. Microparticles Mediate Lipopolysaccharide-induced Inflammation and Chronic Pain in Mouse Model. Neuromolecular Med 2024; 26:48. [PMID: 39585502 DOI: 10.1007/s12017-024-08809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/12/2024] [Indexed: 11/26/2024]
Abstract
Recent evidence highlights microparticles (MPs) as crucial players in intercellular communication among immune cells, yet their role in inflammation-induced chronic pain remains unexplored. In this study, we investigated the involvement of MPs in the progression of inflammation and associated pain using mouse models of chronic neuroinflammation induced by repeated intraperitoneal injections of lipopolysaccharide (LPS; 1 mg/kg for four consecutive days) in C57BL/6 mice. Chronic pain was analyzed at baseline (day 0) and on day 21 post-LPS injection using von Frey and the hot metal plate tests. We found a significant increase in the levels of proinflammatory mediators and activation of the TLR4-NFκB signaling pathways following LPS administration. Additionally, transcriptional upregulation of chronic pain-associated TRP channels and glutamate receptors, including TRPA1, TRPM2, and mGluR2 in the cortex and hippocampus as well as mGluR5 in the cortex, was noted on day 21 post-LPS injection. Moreover, upregulation of TRPM2, mGluR2, and mGluR5 was found in the spinal cord, along with increased TRPA1 protein expression in the brain cortex. Plasma-derived MPs were isolated, revealing a significant increase in concentration 21 days after LPS injection, accompanied by TNF-α DNA encapsulation and increased TNF-α mRNA expression within MPs. Furthermore, MPs concentration positively correlated with the expression of TRPA1, TRPM2, mGluR2, and mGluR5. These findings suggest that MPs contribute to inflammation-induced chronic pain, highlighting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Khushi
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wang Z, Li Z, Luan T, Cui G, Shu S, Liang Y, Zhang K, Xiao J, Yu W, Cui J, Li A, Peng G, Fang Y. A spatiotemporal molecular atlas of mouse spinal cord injury identifies a distinct astrocyte subpopulation and therapeutic potential of IGFBP2. Dev Cell 2024; 59:2787-2803.e8. [PMID: 39029468 DOI: 10.1016/j.devcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Spinal cord injury (SCI) triggers a cascade of intricate molecular and cellular changes that determine the outcome. In this study, we resolve the spatiotemporal organization of the injured mouse spinal cord and quantitatively assess in situ cell-cell communication following SCI. By analyzing existing single-cell RNA sequencing datasets alongside our spatial data, we delineate a subpopulation of Igfbp2-expressing astrocytes that migrate from the white matter (WM) to gray matter (GM) and become reactive upon SCI, termed Astro-GMii. Further, Igfbp2 upregulation promotes astrocyte migration, proliferation, and reactivity, and the secreted IGFBP2 protein fosters neurite outgrowth. Finally, we show that IGFBP2 significantly reduces neuronal loss and remarkably improves the functional recovery in a mouse model of SCI in vivo. Together, this study not only provides a comprehensive molecular atlas of SCI but also exemplifies how this rich resource can be applied to endow cells and genes with functional insight and therapeutic potential.
Collapse
Affiliation(s)
- Zeqing Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuxia Li
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianle Luan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhong Cui
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Shunpan Shu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyao Liang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingshu Xiao
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Wei Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ang Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Orisakwe OE, Ikpeama EU, Orish CN, Ezejiofor AN, Okolo KO, Cirovic A, Cirovic A, Nwaogazie IL, Onoyima CS. Prosopis africana exerts neuroprotective activity against quaternary metal mixture-induced memory impairment mediated by oxido-inflammatory response via Nrf2 pathway. AIMS Neurosci 2024; 11:118-143. [PMID: 38988888 PMCID: PMC11230863 DOI: 10.3934/neuroscience.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024] Open
Abstract
The beneficial effects of Prosopis africana (PA) on human health have been demonstrated; however, its protective effects against heavy metals (HM) are not yet understood. This study evaluated the potential neuroprotective effects of PA in the cerebral cortex and cerebellum. To accomplish this, we divided 35 albino Sprague Dawley rats into five groups. Group I did not receive either heavy metal mixture (HMM) or PA. Group II received a HMM of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg) orally for a period of two months. Groups III, IV, and V received HMM along with PA at doses of 500, 1000, and 1500 mg/kg, respectively. PA caused decreased levels of HM accumulation in the cerebral cortex and cerebellum and improved performance in the Barnes maze and rotarod tests. PA significantly reduced levels of IL-6 and TNF-α. PA increased concentrations of SOD, CAT, GSH, and Hmox-1 and decreased the activities of AChE and Nrf2. In addition, levels of MDA and NO decreased in groups III, IV, and V, along with an increase in the number of live neurons. In conclusion, PA demonstrates a complex neuroprotective effect with the potential to alleviate various aspects of HM-induced neurotoxicity.
Collapse
Affiliation(s)
- Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10 Mersin, Turkey
| | - Evelyn Utomoibor Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Nigeria
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinekwu Samson Onoyima
- Dept. of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
4
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Bonaldo B, Casile A, Montarolo F, Bettarelli M, Napoli F, Gotti S, Panzica G, Marraudino M. Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis. Cell Tissue Res 2023; 392:467-480. [PMID: 36750500 PMCID: PMC10172280 DOI: 10.1007/s00441-023-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, overlapping genetic, epigenetic, and environmental factors. A better definition of environmental risks is critical to understand both etiology and the sex-related differences of MS. Exposure to endocrine-disrupting compounds (EDCs) fully represents one of these risks. EDCs are natural or synthetic exogenous substances (or mixtures) that alter the functions of the endocrine system. Among synthetic EDCs, exposure to bisphenol A (BPA) has been implicated in the etiology of MS, but to date, controversial data has emerged. Furthermore, nothing is known about bisphenol S (BPS), one of the most widely used substitutes for BPA. As exposure to bisphenols will not disappear soon, it is necessary to clarify their role also in this pathological condition defining their role in disease onset and course in both sexes. In this study, we examined, in both sexes, the effects of perinatal exposure to BPA and BPS in one of the most widely used mouse models of MS, experimental autoimmune encephalomyelitis (EAE). Exposure to bisphenols seemed to be particularly deleterious in males. In fact, both BPA- and BPS-treated males showed anticipation of the disease onset and an increased motoneuron loss in the spinal cord. Overall, BPA-treated males also displayed an exacerbation of EAE course and an increase in inflammation markers in the spinal cord. Analyzing the consequences of bisphenol exposure on EAE will help to better understand the role of both xenoestrogens and endogenous estrogens on the sexually dimorphic characteristics of MS.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
6
|
Reiszadeh-Jahromi S, Haddadi M, Mousavi P, Sanadgol N. Prophylactic effects of cucurbitacin B in the EAE Model of multiple sclerosis by adjustment of STAT3/IL-23/IL-17 axis and improvement of neuropsychological symptoms. Metab Brain Dis 2022; 37:2937-2953. [PMID: 36287356 DOI: 10.1007/s11011-022-01083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system. Although remarkable progress has been made in treating MS, current therapies are less effective in protecting against the progression of the disease. Since cucurbitacins have shown an extreme range of pharmacological properties, in this study, we aimed to investigate the prophylactic effect of cucurbitacin B (CuB) in the experimental MS model. Experimental autoimmune encephalomyelitis (EAE) induced by subcutaneous immunization of MOG35-55 in C57BL/6 mice. CuB interventions (0.5 and 1 mg/kg, i.p.) were performed every other day from the first day of EAE induction. Assessment of clinical scores and motor function, inflammatory responses, and microglial activation were assessed by qRT-PCR, western blotting, and immunohistochemical (IHC) analyses. CuB (1 mg/kg) significantly decreased the population of CD45+ (P < 0.01), CD11b+ (P < 0.01) and CD45+/CD11b+ (P < 0.05) cells in cortical lesions of EAE mice. In addition, activation of STAT3 (P < 0.001), expression of IL-17 A and IL-23 A (both mRNA and protein), and transcription of Iba-1 significantly decreased. On the contrary, CuB (1 mg/kg) significantly increased the transcription of MBP and Olig-2. Furthermore, a significant decrease in the severity of EAE (P < 0.05), and an improvement in motor function (P < 0.05) and coordination (P < 0.05) were observed after treatment with a high dose of CuB. Our results suggest that CuB may have a wide-ranging effect on autoimmune responses in MS via a reduction in STAT3 activation, microgliosis, and adaptation of the IL-23/IL-17 axis. Further studies are needed to investigate the exact effect of CuB in glial cells and its efficiency and bioavailability in other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
7
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Does physical exercise improve or deteriorate treatment of multiple sclerosis with mitoxantrone? Experimental autoimmune encephalomyelitis study in rats. BMC Neurosci 2022; 23:11. [PMID: 35247984 PMCID: PMC8897955 DOI: 10.1186/s12868-022-00692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mitoxantrone has proved efficacy in treatment of multiple sclerosis (MS). The fact that physical exercise could slow down the progression of disease and improve performance is still a debatable issue, hence; we aimed at studying whether combining mitoxantrone with exercise is of value in the management of MS. Methods Thirty-six male rats were divided into sedentary and exercised groups. During a 14-day habituation period rats were subjected to exercise training on a rotarod (30 min/day) before Experimental Autoimmune Encephalomyelitis (EAE) induction and thereafter for 17 consecutive days. On day 13 after induction, EAE groups (exercised &sedentary) were divided into untreated and mitoxantrone treated ones. Disease development was evaluated by motor performance and EAE score. Cerebrospinal fluid (CSF) was used for biochemical analysis. Brain stem and cerebellum were examined histopathological and immunohistochemically. Results Exercise training alone did not add a significant value to the studied parameters, except for reducing Foxp3 immunoreactivity in EAE group and caspase-3 in the mitoxantrone treated group. Unexpectedly, exercise worsened the mitoxantrone effect on EAE score, Bcl2 and Bax. Mitoxantrone alone decreased EAE/demyelination/inflammation scores, Foxp3 immunoreactivity, and interleukin-6, while increased the re-myelination marker BDNF without any change in tumor necrosis factor-α. It clearly interrupted the apoptotic pathway in brain stem, but worsened EAE mediated changes of the anti-apoptotic Bcl2 and pro-apoptotic marker Bax in the CSF. Conclusions The neuroprotective effect of mitoxantrone was related with remyelination, immunosuppressive and anti-inflammatory potentials. Exercise training did not show added value to mitoxantrone, in contrast, it disrupts the apoptotic pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00692-1.
Collapse
|
8
|
Segal JP, Phillips S, Dubois RM, Silva JR, Haird CM, Gale D, Hopman WM, Gallivan J, Gilron I, Ghasemlou N. Weight bearing as a measure of disease progression in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 361:577730. [PMID: 34628133 DOI: 10.1016/j.jneuroim.2021.577730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Motor disability in multiple sclerosis is often modeled using experimental autoimmune encephalomyelitis (EAE) and assessed using the clinical score (CS), an observer-dependent tool that can lead to potential bias. The Advanced Dynamic Weight Bearing (ADWB) system was evaluated as an observer-independent measurement of EAE symptoms. ADWB detected weight shifts onto the front paws as mice develop hindlimb motor disability. CS and ADWB were strongly correlated, indicated that these measures are comparable and suggesting that ADWB may be an appropriate observer-independent tool for the assessment of EAE progression.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sarah Phillips
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Cortney M Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Daniel Gale
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Wilma M Hopman
- Clinical Research Centre, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Jason Gallivan
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Di Filippo M, Mancini A, Bellingacci L, Gaetani L, Mazzocchetti P, Zelante T, La Barbera L, De Luca A, Tantucci M, Tozzi A, Durante V, Sciaccaluga M, Megaro A, Chiasserini D, Salvadori N, Lisetti V, Portaccio E, Costa C, Sarchielli P, Amato MP, Parnetti L, Viscomi MT, Romani L, Calabresi P. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Rep 2021; 37:110094. [PMID: 34879272 DOI: 10.1016/j.celrep.2021.110094] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Cognition
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/psychology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Long-Term Potentiation
- Male
- Mice, Biozzi
- Mice, Inbred C57BL
- Mice, Knockout
- Neuronal Plasticity
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/metabolism
- Signal Transduction
- Spatial Learning
- Synapses/metabolism
- Synapses/pathology
- p38 Mitogen-Activated Protein Kinases
- Mice
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Livia La Barbera
- Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Antonella De Luca
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michela Tantucci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Durante
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Viviana Lisetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Teresa Viscomi
- Section of Histology and Embryology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigina Romani
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Section of Neurology, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Mah KM, Torres-Espín A, Hallworth BW, Bixby JL, Lemmon VP, Fouad K, Fenrich KK. Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Exp Neurol 2021; 340:113647. [PMID: 33600814 PMCID: PMC10443427 DOI: 10.1016/j.expneurol.2021.113647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Abel Torres-Espín
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ben W Hallworth
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - John L Bixby
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 2021; 109:1949-1962.e6. [PMID: 33991504 DOI: 10.1016/j.neuron.2021.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in the intron of the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Transcripts carrying G4C2 repeat expansions generate neurotoxic dipeptide repeat (DPR) proteins, including poly-Gly-Ala (poly-GA), which tends to form protein aggregates. Here, we demonstrate that UBQLN2, another ALS/FTD risk factor, is recruited to reduce poly-GA aggregates and alleviate poly-GA-induced neurotoxicity. UBQLN2 could recognize HSP70 ubiquitination, which facilitates the UBQLN2-HSP70-GA complex formation and promotes poly-GA degradation. ALS/FTD-related UBQLN2 mutants fail to bind HSP70 and clear poly-GA aggregates. Disruption of the interaction between UBQLN2 and HSP70 inhibits poly-GA aggregation in C9-ALS/FTD iPSC-derived neurons. Finally, enhancing HSP70 by the chemical compound 17AAG at the adult stage mitigates behavioral defects in poly-GA animals. Our findings suggest a critical role of the UBQLN2-HSP70 axis in protein aggregate clearance in C9-ALS/FTD.
Collapse
|
12
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci 2021; 277:119459. [PMID: 33836162 DOI: 10.1016/j.lfs.2021.119459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
13
|
Wetzel LA, Hurtado M, MacDowell Kaswan ZA, McCusker RH, Steelman AJ. Deletion of indoleamine 2,3 dioxygenase (Ido)1 but not Ido2 exacerbates disease symptoms of MOG 35-55-induced experimental autoimmune encephalomyelitis. Brain Behav Immun Health 2020; 7:100116. [PMID: 34589873 PMCID: PMC8474387 DOI: 10.1016/j.bbih.2020.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with pathological features of inflammation, demyelination, and neurodegeneration. Several lines of evidence suggest that the enzymes indoleamine 2,3-dioxygenase (Ido)1 and/or Ido2 influences susceptibility to autoimmune diseases. Deletion of Ido1 exacerbates experimental autoimmune encephalomyelitis (EAE) an animal model of MS. However, no data exist on the role of Ido2 in the pathogenesis of EAE. We investigated whether deletion of Ido2 affected the pathogenesis of EAE. Temporal expression of interferon gamma (Ifng), Ido1 variants, Ido2 variants, as well as genes encoding enzymes of the kynurenine pathway in the spleen and spinal cord of C57BL/6 mice with or without EAE were determined by RT-qPCR. Moreover, EAE was induced in C57BL/6, two Ido1 knockout strains (Ido1KO and Ido1TK) and one Ido2 knockout mouse strain (Ido2-/-) and disease monitored by clinical scores and weight change. Performance on the rotarod was performed on days 0, 5, 10 and 15 post induction. The extent of demyelination in the spinal cord was determined after staining with Oil red O. The development of EAE altered gene expression in both the spleen and spinal cord. Deletion of Ido1 exacerbated the clinical symptoms of EAE. In stark contrast, EAE in Ido2-/- mice did not differ clinically or histologically from control mice. These results confirm a protective role for Ido1, on the pathogenesis of MOG35-55-induced EAE in C57BL/6J mice.
Collapse
Affiliation(s)
- Lisa A. Wetzel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myrna Hurtado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zoe A. MacDowell Kaswan
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J. Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Garimella V, McVoy JS, Oh U. The contribution of cyclophilin A to immune-mediated central nervous system inflammation. J Neuroimmunol 2020; 339:577118. [PMID: 31790981 PMCID: PMC6982367 DOI: 10.1016/j.jneuroim.2019.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Cyclophilin A has multiple known functions in inflammation. Intracellular cyclophilin A modulates T helper 2 response (Th2) and extracellular cyclophilin A functions as a leukocyte chemotactic factor. The contribution of cyclophilin A to central nervous system (CNS) inflammation has not been reported. To test the hypothesis that inhibition of cyclophilin A would ameliorate immune-mediated CNS inflammation, we compared the course and neuroimmunology of experimental allergic encephalomyelitis (EAE) in cyclophilin A knockout mice and wild type littermates. There was a trend towards lower incidence of EAE in cyclophilin A knockout mice, but the clinical course of EAE among animals that manifested clinical signs of EAE was similar in cyclophilin A knockout and wild type littermates. Antigen recall response to myelin oligodendrocyte glycoprotein (MOG) peptide showed that interferon-γ release was lower in cyclophilin A knockout mice. Analysis of CNS inflammatory cells showed that CD3+ T cell infiltration into the CNS was lower in cyclophilin A knockout mice. These results showed that the loss of cyclophilin A results in altered peripheral immune activation and CNS leukocyte infiltration, but these changes did not result in a substantial change in the clinical course of EAE.
Collapse
Affiliation(s)
- Vahnee Garimella
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | - Julie Secor McVoy
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA.
| |
Collapse
|
15
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
16
|
Zhao X, Bai F, Zhang E, Zhou D, Jiang T, Zhou H, Wang Q. Electroacupuncture Improves Neurobehavioral Function Through Targeting of SOX2-Mediated Axonal Regeneration by MicroRNA-132 After Ischemic Stroke. Front Mol Neurosci 2018; 11:471. [PMID: 30618618 PMCID: PMC6306468 DOI: 10.3389/fnmol.2018.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
Abstract
Our previous studies have shown that electroacupuncture (EA) enhances neurobehavioral functional recovery after ischemic stroke, however, the underlying regulatory mechanisms remain unclear. MicroRNAs (miRNAs) are abundant in the brain and are involved in post-transcriptional gene regulation. During cerebral ischemia reperfusion, miRNAs perform numerous biological functions in the central nervous system related to regeneration and repair of damaged nerves. Our previous studies also have shown that the expression of miRNA-132 (miR-132) is obviously down-regulated after stroke by middle cerebral artery occlusion (MCAO), which can be up-regulated by EA. This study aimed to identify whether up-regulation of miR-132 by EA improved the damaged nerves after stroke and to screen the potential target of miR-132. The results showed that EA up-regulated miR-132 thus suppressing SOX2 expression in vivo after MCAO, which obviously ameliorated neurobehavioral functional recovery. Moreover, our results also suggested that up-regulated miR-132 suppressed SOX2 in primary neurons after oxygen-glucose deprivation (OGD), which promoted neurite outgrowth. In conclusion, EA enhances neurobehavioral functional recovery against ischemic stroke through targeting of SOX2-mediated axonal regeneration by miR-132.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fuhai Bai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Erfei Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dandan Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Northwest Women's and Children's Hospital, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Palle P, Ferreira FM, Methner A, Buch T. The more the merrier? Scoring, statistics and animal welfare in experimental autoimmune encephalomyelitis. Lab Anim 2018; 50:427-432. [PMID: 27909192 DOI: 10.1177/0023677216675008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a frequently used animal model for the investigation of autoimmune processes in the central nervous system. As such, EAE is useful for modelling certain aspects of multiple sclerosis, a human autoimmune disease that leads to demyelination and axonal destruction. It is an important tool for investigating pathobiology, identifying drug targets and testing drug candidates. Even though EAE is routinely used in many laboratories and is often part of the routine assessment of knockouts and transgenes, scoring of the disease course has not become standardized in the community, with at least 83 published scoring variants. Varying scales with differing parameters are used and thus limit comparability of experiments. Incorrect use of statistical analysis tools to assess EAE data is commonplace. In experimental practice the clinical score is used not only as an experimental readout, but also as a parameter to determine animal welfare actions. Often overlooked factors such as the animal's ability to sense its compromised motoric abilities, drastic though transient weight loss, and also the possibility of neuropathic pain, make the assessment of severity a difficult task and pose a problem for experimental refinement.
Collapse
Affiliation(s)
- Pushpalatha Palle
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Filipa M Ferreira
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Axel Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), Johannes Gutenberg University Medical Center Mainz, Department of Neurology, Mainz, Germany
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Fiander MD, Chedrawe MA, Lamport AC, Akay T, Robertson GS. Sagittal Plane Kinematic Gait Analysis in C57BL/6 Mice Subjected to MOG35-55 Induced Experimental Autoimmune Encephalomyelitis. J Vis Exp 2017. [PMID: 29155752 DOI: 10.3791/56032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Kinematic gait analysis in the sagittal plane has frequently been used to characterize motor deficits in multiple sclerosis (MS). We describe the application of these techniques to identify gait deficits in a mouse model of MS, known as experimental autoimmune encephalomyelitis (EAE). Paralysis and motor deficits in mice subjected to EAE are typically assessed using a clinical scoring scale. However, this scale yields only ordinal data that provides little information about the precise nature of the motor deficits. EAE disease severity has also been assessed by rotarod performance, which provides a measure of general motor coordination. By contrast, kinematic gait analysis of the hind limb in the sagittal plane generates highly precise information about how movement is impaired. To perform this procedure, reflective markers are placed on a hind limb to detect joint movement while a mouse is walking on a treadmill. Motion analysis software is used to measure movement of the markers during walking. Kinematic gait parameters are then derived from the resultant data. We show how these gait parameters can be used to quantify impaired movements of the hip, knee, and ankle joints in EAE. These techniques may be used to better understand disease mechanisms and identify potential treatments for MS and other neurodegenerative disorders that impair mobility.
Collapse
|
19
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
20
|
Yousuf MS, Zubkow K, Tenorio G, Kerr B. The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE). Neuroscience 2017; 344:178-186. [PMID: 28057537 DOI: 10.1016/j.neuroscience.2016.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Patients with multiple sclerosis (MS) often complain of neuropathic pain. According to the Gate Control Theory of Pain, spinal networks of GABAergic inhibitory interneurons are important in modulating nociceptive inputs from the periphery. Na+-K+-2Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) generally dictate the tone of GABA/glycine inhibition by regulating intracellular chloride concentrations. In this study, we investigated the role of NKCC1 and KCC2 in neuropathic pain observed in the animal model, experimental autoimmune encephalomyelitis (EAE), a commonly used model to study the pathophysiology of MS. Quantitative real-time polymerase chain reactions (qRT-PCR) analysis revealed no change in NKCC1 mRNA transcripts in dorsal root ganglia throughout EAE disease course. However, NKCC1 and KCC2 mRNA levels in the dorsal spinal cord were significantly reduced at disease onset and peak only to recover by the chronic time point. Similarly, Western blot data revealed a significant downregulation of NKCC1 and KCC2 in the dorsal spinal cord at disease onset but an upregulation of NKCC1 protein in the dorsal root ganglia at this time point. Treatment with bumetanide, an NKCC inhibitor, had no effect on mechanical hypersensitivity seen in mice with EAE even though it reversed the changes in the levels of NKCC1 and KCC2. We noted that bumetanide treatment, while effective at reversing the changes in monomeric KCC2 levels was ineffective at reversing the changes in oligomeric KCC2 which remained repressed. These results indicate that mechanical hypersensitivity in EAE is not mediated by altered levels of NKCC1.
Collapse
MESH Headings
- Animals
- Bumetanide/pharmacology
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Expression/drug effects
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Neuralgia/pathology
- Peptide Fragments
- RNA, Messenger/metabolism
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 2/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kasia Zubkow
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Bradley Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
21
|
Fiander MD, Stifani N, Nichols M, Akay T, Robertson GS. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behav Brain Res 2017; 317:95-108. [DOI: 10.1016/j.bbr.2016.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
|