1
|
Tang Y, Chaillon A, Gianella S, Wong LM, Li D, Simermeyer TL, Porrachia M, Ignacio C, Woodworth B, Zhong D, Du J, de la Parra Polina E, Kirchherr J, Allard B, Clohosey ML, Moeser M, Sondgeroth AL, Whitehill GD, Singh V, Dashti A, Smith DM, Eron JJ, Bar KJ, Chahroudi A, Joseph SB, Archin NM, Margolis DM, Jiang G. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J Clin Invest 2023; 133:e167417. [PMID: 37317962 PMCID: PMC10266791 DOI: 10.1172/jci167417] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Brain microglia (MG) may serve as a human immunodeficiency virus 1 (HIV) reservoir and ignite rebound viremia following cessation of antiretroviral therapy (ART), but they have yet to be proven to harbor replication-competent HIV. Here, we isolated brain myeloid cells (BrMCs) from nonhuman primates and rapid autopsy of people with HIV (PWH) on ART and sought evidence of persistent viral infection. BrMCs predominantly displayed microglial markers, in which up to 99.9% of the BrMCs were TMEM119+ MG. Total and integrated SIV or HIV DNA was detectable in the MG, with low levels of cell-associated viral RNA. Provirus in MG was highly sensitive to epigenetic inhibition. Outgrowth virus from parietal cortex MG in an individual with HIV productively infected both MG and PBMCs. This inducible, replication-competent virus and virus from basal ganglia proviral DNA were closely related but highly divergent from variants in peripheral compartments. Phenotyping studies characterized brain-derived virus as macrophage tropic based on the ability of the virus to infect cells expressing low levels of CD4. The lack of genetic diversity in virus from the brain suggests that this macrophage-tropic lineage quickly colonized brain regions. These data demonstrate that MG harbor replication-competent HIV and serve as a persistent reservoir in the brain.
Collapse
Affiliation(s)
- Yuyang Tang
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Sara Gianella
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Lilly M. Wong
- University of North Carolina (UNC) HIV Cure Center, and
| | - Dajiang Li
- University of North Carolina (UNC) HIV Cure Center, and
| | | | | | | | | | - Daniel Zhong
- University of North Carolina (UNC) HIV Cure Center, and
| | - Jiayi Du
- University of North Carolina (UNC) HIV Cure Center, and
| | | | | | | | | | - Matt Moeser
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy L. Sondgeroth
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gregory D. Whitehill
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Joseph J. Eron
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Katherine J. Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Sarah B. Joseph
- University of North Carolina (UNC) HIV Cure Center, and
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie M. Archin
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guochun Jiang
- University of North Carolina (UNC) HIV Cure Center, and
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Girardin S, Ihle SJ, Menghini A, Krubner M, Tognola L, Duru J, Fruh I, Müller M, Ruff T, Vörös J. Engineering circuits of human iPSC-derived neurons and rat primary glia. Front Neurosci 2023; 17:1103437. [PMID: 37250404 PMCID: PMC10213452 DOI: 10.3389/fnins.2023.1103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Novel in vitro platforms based on human neurons are needed to improve early drug testing and address the stalling drug discovery in neurological disorders. Topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons have the potential to become such a testing system. In this work, we build in vitro co-cultured circuits of human iPSC-derived neurons and rat primary glial cells using microfabricated polydimethylsiloxane (PDMS) structures on microelectrode arrays (MEAs). Our PDMS microstructures are designed in the shape of a stomach, which guides axons in one direction and thereby facilitates the unidirectional flow of information. Such circuits are created by seeding either dissociated cells or pre-aggregated spheroids at different neuron-to-glia ratios. Furthermore, an antifouling coating is developed to prevent axonal overgrowth in undesired locations of the microstructure. We assess the electrophysiological properties of different types of circuits over more than 50 days, including their stimulation-induced neural activity. Finally, we demonstrate the inhibitory effect of magnesium chloride on the electrical activity of our iPSC circuits as a proof-of-concept for screening of neuroactive compounds.
Collapse
Affiliation(s)
- Sophie Girardin
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Stephan J. Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Arianna Menghini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Magdalena Krubner
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Leonardo Tognola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Isabelle Fruh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Müller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Aktories P, Petry P, Kierdorf K. Microglia in a Dish—Which Techniques Are on the Menu for Functional Studies? Front Cell Neurosci 2022; 16:908315. [PMID: 35722614 PMCID: PMC9204042 DOI: 10.3389/fncel.2022.908315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia build the first line of defense in the central nervous system (CNS) and play central roles during development and homeostasis. Indeed, they serve a plethora of diverse functions in the CNS of which many are not yet fully described and more are still to be discovered. Research of the last decades unraveled an implication of microglia in nearly every neurodegenerative and neuroinflammatory disease, making it even more challenging to elucidate molecular mechanisms behind microglial functions and to modulate aberrant microglial behavior. To understand microglial functions and the underlying signaling machinery, many attempts were made to employ functional in vitro studies of microglia. However, the range of available cell culture models is wide and they come with different advantages and disadvantages for functional assays. Here we aim to provide a condensed summary of common microglia in vitro systems and discuss their potentials and shortcomings for functional studies in vitro.
Collapse
Affiliation(s)
- Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Katrin Kierdorf
| |
Collapse
|
4
|
Zelenka L, Pägelow D, Krüger C, Seele J, Ebner F, Rausch S, Rohde M, Lehnardt S, van Vorst K, Fulde M. Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. J Neurosci Methods 2022; 366:109420. [PMID: 34808220 DOI: 10.1016/j.jneumeth.2021.109420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The crosstalk and reactivity of the cell type glia, especially microglia and astrocytes, have progressively gathered research attention in understanding proper brain function regulated by the innate immune response. Therefore, methods to isolate highly viable and pure glia for the analysis on a cell-specific level are indispensable. NEW METHOD We modified previously established techniques: Animal numbers were reduced by multiple microglial harvests from the same mixed glial culture, thereby maximizing microglial yields following the principles of the 3Rs (replacement, reduction, and refinement). We optimized Magnetic-activated cell sorting (MACS®) of microglia and astrocytes by applying cultivated primary glial cell suspensions instead of directly sorting dissociated single cell suspension. RESULTS We generated highly viable and pure microglia and astrocytes derived from a single mixed culture with a purity of ~99%, as confirmed by FACS analysis. Field emission scanning electron microscopy (FESEM) demonstrated integrity of the MACS-purified glial cells. Tumor necrosis factor (TNF) and Interleukin-10 (IL-10) ELISA confirmed pro- and anti-inflammatory responses to be functional in purified glia, but significantly weakened compared to non-purified cells, further highlighting the importance of cellular crosstalk for proper immune activation. COMPARISON WITH EXISTING METHOD(S) Unlike previous studies that either isolated a single type of glia or displayed a substantial proportion of contamination with other cell types, we achieved isolation of both microglia and astrocytes at an increased purity (99-100%). CONCLUSIONS We have created an optimized protocol for the efficient purification of both primary microglia and astrocytes. Our results clearly demonstrate the importance of purity in glial cell cultivation in order to examine immune responses, which particularly holds true for astrocytes. We propose the novel protocol as a tool to investigate the cell type-specific crosstalk between microglia and astrocytes in the frame of CNS diseases.
Collapse
Affiliation(s)
- Laura Zelenka
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dennis Pägelow
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Seele
- University Medical Center Göttingen, Institute of Neuropathology, Göttingen, Germany
| | - Friederike Ebner
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Sebastian Rausch
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
5
|
Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain 2020; 160:2724-2742. [PMID: 31365471 DOI: 10.1097/j.pain.0000000000001670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. However, its therapeutic potential on SCI-CNP remains to be elucidated. Here, we demonstrated for the first time that intravenous DHA administrations with 3-day intervals (250 nmol/kg; starting 30 minutes after injury and maintained for 6 weeks) effectively prevented SCI-CNP development in a clinically relevant rat contusion model. SCI-CNP was assessed by a novel sensory profiling approach combining evoked pain measures and pain-related ethologically relevant rodent behaviours (burrowing, thigmotaxis, and place/escape avoidance) to mimic those for measuring human (sensory, affective, cognitive, and spontaneous) pain. Strikingly, already established SCI-CNP could be abolished partially by similar DHA administrations, starting from the beginning of week 4 after injury and maintained for 4 weeks. At spinal (epicenter and L5 dorsal horns) and supraspinal (anterior cingulate cortex) levels, both treatment regimens potently suppressed microglial and astrocyte activation, which underpins SCI-CNP pathogenesis. Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.
Collapse
|
6
|
Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019; 39:8330-8346. [PMID: 31409666 DOI: 10.1523/jneurosci.0374-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.
Collapse
|
7
|
Izumisawa Y, Tanaka-Yamamoto K, Ciriello J, Kitamura N, Shibuya I. The cytosolic Ca2+ concentration in acutely dissociated subfornical organ (SFO) neurons of rats: Spontaneous Ca2+ oscillations and Ca2+ oscillations induced by picomolar concentrations of angiotensin II. Brain Res 2019; 1704:137-149. [DOI: 10.1016/j.brainres.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|