1
|
Davis AD, Scott MW, Pond AK, Hurst AJ, Yousef T, Kraeutner SN. Transformation but not generation of motor images is disrupted following stimulation over the left inferior parietal lobe. Neuropsychologia 2024; 204:109013. [PMID: 39401545 DOI: 10.1016/j.neuropsychologia.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Motor imagery (MI) involves the generation, maintenance, and transformation of motor images; yet, the neural underpinnings of each stage are not well understood. Here, we investigated the role of the left inferior parietal lobe (IPL) in the stages of MI. Healthy participants (N = 20) engaged in a MI task (making judgments about hands presented on a screen; hand laterality judgment task) over two days. Past literature demonstrates the mental rotation of hands in this task involves implicit MI (i.e., where MI occurs spontaneously in the absence of explicit instructions). During the task, active (Day A; 120% resting motor threshold) or sham (Day B; placebo) neuronavigated transcranial magnetic stimulation (TMS) was applied to the left IPL (location determined from past neuroimaging work) on 50% of trials at 250, 500, or 750ms post-stimulus onset, corresponding to different stages of MI. A/B days were randomized across participants. Linear mixed effects (LME) modelling conducted on reaction time and accuracy revealed that longer reaction times were observed when TMS was delivered at 750ms after trial onset, and more greatly for active vs. sham stimulation. This effect was exacerbated for palm-vs. back-view stimuli and for left vs. right hands. Accuracy overall was decreased for active vs. sham stimulation, and to a greater extent for palm-vs. back-view stimuli. Findings suggest that the left IPL is involved in image transformation. Overall this work informs on the neural underpinnings of the stages of MI.
Collapse
Affiliation(s)
- Alisha D Davis
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Matthew W Scott
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - AnnaMae K Pond
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Austin J Hurst
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Tareq Yousef
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Kelowna, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Mussigmann T, Bardel B, Casarotto S, Senova S, Rosanova M, Vialatte F, Lefaucheur JP. Classical, spaced, or accelerated transcranial magnetic stimulation of motor cortex for treating neuropathic pain: A 3-arm parallel non-inferiority study. Neurophysiol Clin 2024; 54:103012. [PMID: 39278041 DOI: 10.1016/j.neucli.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France
| | - Benjamin Bardel
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Suhan Senova
- Structure Douleur Chronique, Service de Neurochirurgie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France; Inserm U955, NeuroPsychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - François Vialatte
- Institut Pour la Pratique et l'Innovation en PSYchologie appliquée (Institut PI-Psy), Draveil, France
| | - Jean-Pascal Lefaucheur
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.
| |
Collapse
|
3
|
Norred MA, Zuschlag ZD, Madore MR, Philip NS, Kozel FA. Sleep as a predictor of improved response to transcranial magnetic stimulation for depression (SPIRiTeD). J Affect Disord 2024; 362:9-13. [PMID: 38944289 DOI: 10.1016/j.jad.2024.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an evidence-based approach to treatment- resistant Major Depressive Disorder (TRD). Sleep dysfunction is associated with poor outcomes in TRD, however, the impacts of sleep dysfunction on TMS treatment has yet to be defined. This study examined the association between sleep dysfunction and improvement in depression symptoms with TMS treatment for TRD. METHODS A retrospective observational cohort study was conducted examining all Veterans receiving TMS treatments through the "VA TMS Clinical Pilot Program" over a three-year period. The Patient Health Questionnaire (PHQ-9) sleep item was utilized to assess sleep dysfunction. The association between sleep dysfunction improvements during TMS treatment with depression outcomes was analyzed. RESULTS 94.3 % (N = 778) of Veterans reported baseline sleep dysfunction. Chi-square analysis demonstrated higher rates of depression remission at the completion of TMS treatment for those with sleep improvement at weeks 1, 3 and 6 (all p < .001). ANOVA comparing sleep improvements and end of treatment PHQ-8 score (modified to remove sleep item) found a statistically significant difference in mean improvements of depression scores at all 3 time points. LIMITATIONS Limitations include those that are inherent to retrospective studies, as well as limitations in using the PHQ-9 sleep item as the primary means to assess sleep dysfunction. CONCLUSION This study reports on the largest sample size to date examining the relationship between sleep dysfunction and TMS treatment outcomes for MDD, and found that improvement in sleep dysfunction was associated with greater reductions in end of treatment depression symptoms including higher depression remission rates.
Collapse
Affiliation(s)
- Michael A Norred
- James A. Haley Veterans Hospital, Mental Health and Behavioral Sciences Service, Tampa, FL, United States; University of South Florida, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, United States.
| | - Zachary D Zuschlag
- James A. Haley Veterans Hospital, Mental Health and Behavioral Sciences Service, Tampa, FL, United States; University of South Florida, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, United States
| | - Michelle R Madore
- VA Palo Alto Health Care System, Mental Illness Research Education and Clinical Center, Palo Alto, CA, United States; Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| | - Noah S Philip
- Veterans Affairs Providence Health Care System, Center for Neurorestoration and Neurotechnology, Providence, RI, United States; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, United States
| | - F Andrew Kozel
- Florida State University, College of Medicine, Department of Behavioral Sciences and Social Medicine, Tallahassee, FL, United States
| |
Collapse
|
4
|
Schlesinger O, Kundu R, Isaev D, Choi JY, Goetz SM, Turner DA, Sapiro G, Peterchev AV, Di Martino JM. Scalp surface estimation and head registration using sparse sampling and 3D statistical models. Comput Biol Med 2024; 178:108689. [PMID: 38875907 PMCID: PMC11265975 DOI: 10.1016/j.compbiomed.2024.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.
Collapse
Affiliation(s)
- Oded Schlesinger
- Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA.
| | - Raj Kundu
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, 27710, NC, USA; Boston University School of Medicine, Boston, 02118, MA, USA
| | - Dmitry Isaev
- Department of Biomedical Engineering, Duke University, Durham, 27708, NC, USA
| | - Jessica Y Choi
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, 27710, NC, USA
| | - Stefan M Goetz
- Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, 27710, NC, USA; Department of Neurosurgery, Duke University, Durham, 27710, NC, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University, Durham, 27710, NC, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA; Department of Biomedical Engineering, Duke University, Durham, 27708, NC, USA
| | - Angel V Peterchev
- Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA; Department of Psychiatry & Behavioral Sciences, Duke University, Durham, 27710, NC, USA; Department of Neurosurgery, Duke University, Durham, 27710, NC, USA; Department of Biomedical Engineering, Duke University, Durham, 27708, NC, USA
| | - J Matias Di Martino
- Department of Electrical and Computer Engineering, Duke University, Durham, 27708, NC, USA; Universidad Católica del Uruguay, Montevideo, 11600, Uruguay
| |
Collapse
|
5
|
Meinzer M, Shahbabaie A, Antonenko D, Blankenburg F, Fischer R, Hartwigsen G, Nitsche MA, Li SC, Thielscher A, Timmann D, Waltemath D, Abdelmotaleb M, Kocataş H, Caisachana Guevara LM, Batsikadze G, Grundei M, Cunha T, Hayek D, Turker S, Schlitt F, Shi Y, Khan A, Burke M, Riemann S, Niemann F, Flöel A. Investigating the neural mechanisms of transcranial direct current stimulation effects on human cognition: current issues and potential solutions. Front Neurosci 2024; 18:1389651. [PMID: 38957187 PMCID: PMC11218740 DOI: 10.3389/fnins.2024.1389651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.
Collapse
Affiliation(s)
- Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Alireza Shahbabaie
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Waltemath
- Core Unit Data Integration Center, University Medicine Greifswald, Greifswald, Germany
| | | | - Harun Kocataş
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | | | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Miro Grundei
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Teresa Cunha
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dayana Hayek
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Sabrina Turker
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Frederik Schlitt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Yiquan Shi
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Asad Khan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Michael Burke
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Steffen Riemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Filip Niemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE Site Greifswald), Greifswald, Germany
| |
Collapse
|
6
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
7
|
Casarotto S, Hassan G, Rosanova M, Sarasso S, Derchi CC, Trimarchi PD, Viganò A, Russo S, Fecchio M, Devalle G, Navarro J, Massimini M, Comanducci A. Dissociations between spontaneous electroencephalographic features and the perturbational complexity index in the minimally conscious state. Eur J Neurosci 2024; 59:934-947. [PMID: 38440949 DOI: 10.1111/ejn.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Simone Russo
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
8
|
Sinisalo H, Rissanen I, Kahilakoski OP, Souza VH, Tommila T, Laine M, Nyrhinen M, Ukharova E, Granö I, Soto AM, Matsuda RH, Rantala R, Guidotti R, Kičić D, Lioumis P, Mutanen T, Pizzella V, Marzetti L, Roine T, Stenroos M, Ziemann U, Romani GL, Ilmoniemi RJ. Modulating brain networks in space and time: Multi-locus transcranial magnetic stimulation. Clin Neurophysiol 2024; 158:218-224. [PMID: 38184469 DOI: 10.1016/j.clinph.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Affiliation(s)
- Heikki Sinisalo
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| | - Ilkka Rissanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | | | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland; Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Timo Tommila
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mikael Laine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mikko Nyrhinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; AMI Centre, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Elena Ukharova
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ida Granö
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ana M Soto
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Renan H Matsuda
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Robin Rantala
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Dubravko Kičić
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
9
|
Carroll EE, Der-Nigoghossian C, Alkhachroum A, Appavu B, Gilmore E, Kromm J, Rohaut B, Rosanova M, Sitt JD, Claassen J. Common Data Elements for Disorders of Consciousness: Recommendations from the Electrophysiology Working Group. Neurocrit Care 2023; 39:578-585. [PMID: 37606737 DOI: 10.1007/s12028-023-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society's Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group. METHODS After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into "disease core," "basic," "supplemental," and "exploratory." Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs. RESULTS After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group. CONCLUSIONS Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.
Collapse
Affiliation(s)
- Elizabeth E Carroll
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | | | | | - Brian Appavu
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Emily Gilmore
- Divisions of Neurocritical Care and Emergency Neurology and Epilepsy, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Yale New Haven Hospital, New Haven, CT, USA
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Benjamin Rohaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, Centre national de la recherche scientifique, Assistance Publique-Hôpitaux de Paris, Neurosciences, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jacobo Diego Sitt
- Paris Brain Institute (ICM), Centre national de la recherche scientifique, Paris, France
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
10
|
Hernandez-Pavon JC, San Agustín A, Wang MC, Veniero D, Pons JL. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects. Clin Neurophysiol 2023; 154:169-193. [PMID: 37634335 DOI: 10.1016/j.clinph.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Cortico-cortical paired associative stimulation (ccPAS) is a form of dual-site transcranial magnetic stimulation (TMS) entailing a series of single-TMS pulses paired at specific interstimulus intervals (ISI) delivered to distant cortical areas. The goal of this article is to systematically review its efficacy in inducing plasticity in humans focusing on stimulation parameters and hypotheses of underlying neurophysiology. METHODS A systematic review of the literature from 2009-2023 was undertaken to identify all articles utilizing ccPAS to study brain plasticity and connectivity. Six electronic databases were searched and included. RESULTS 32 studies were identified. The studies targeted connections within the same hemisphere or between hemispheres. 28 ccPAS studies were in healthy participants, 1 study in schizophrenia, and 1 in Alzheimer's disease (AD) patients. 2 additional studies used cortico-cortical repetitive paired associative stimulation (cc-rPAS) in generalized anxiety disorder (GAD) patients. Outcome measures include electromyography (EMG), behavioral measures, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI). ccPAS seems to be able to modulate brain connectivity depending on the ISI. CONCLUSIONS ccPAS can be used to modulate corticospinal excitability, brain activity, and behavior. Although the stimulation parameters used across studies reviewed in this paper are varied, ccPAS is a promising approach for basic research and potential clinical applications. SIGNIFICANCE Recent advances in neuroscience have caused a shift of interest from the study of single areas to a more complex approach focusing on networks of areas that orchestrate brain activity. Consequently, the TMS community is also witnessing a change, with a growing interest in targeting multiple brain areas rather than a single locus, as evidenced by an increasing number of papers using ccPAS. In light of this new enthusiasm for brain connectivity, this review summarizes existing literature and stimulation parameters that have proven effective in changing electrophysiological, behavioral, or neuroimaging-derived measures.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Arantzazu San Agustín
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid, Spain; PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Max C Wang
- Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Qiu X, He Z, Cao X, Zhang D. Transcranial magnetic stimulation and transcranial direct current stimulation affect explicit but not implicit emotion regulation: a meta-analysis. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:15. [PMID: 37726856 PMCID: PMC10510188 DOI: 10.1186/s12993-023-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Emotion regulation (ER) refers to the process through which people influence the occurrence, experience, and expression of emotions. It can be established in an explicit (voluntary) or implicit (automatic) way, both of which are essential for mental and physical well-being. Recent evidence has highlighted the potential of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) targeting the prefrontal cortex (PFC) to modulate ER. However, previous studies have only evaluated the effects of TMS and tDCS on explicit ER, leaving implicit ER relatively unexplored. In this review and meta-analysis, we systematically evaluated the effects of TMS and tDCS over the PFC on the two forms of ER, using both subjective and physiological response as outcome indicators. Twenty-seven studies were included in our study. Both subjective (Hedges' g = - 0.20) and physiological (Hedges' g = - 0.65) results indicated a significant effect of TMS and tDCS targeting PFC on down-regulation of explicit ER, but not implicit ER (Hedges' g = - 0.04). Moreover, moderation analysis indicated that the effect of TMS and tDCS on the down-regulating of subjective experience was moderated by several factors, including stimulation method, target area, target hemisphere, and stimulation timing. Specifically, our results showed that applying TMS or targeting the right PFC, particularly the right ventrolateral prefrontal cortex, or using offline TMS and tDCS produced a larger stimulation effect on ER. In summary, these findings suggest that TMS and tDCS has a positive effect on explicit, but not implicit ER. The distinct TMS and tDCS effect on the two forms of ER help deepen our understanding of TMS and tDCS use and provide valuable insights for the development of tailored TMS and tDCS protocols for explicit and implicit regulation.
Collapse
Affiliation(s)
- Xiufu Qiu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zhenhong He
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Xueying Cao
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
12
|
Sun W, Wu Q, Gao L, Zheng Z, Xiang H, Yang K, Yu B, Yao J. Advancements in Transcranial Magnetic Stimulation Research and the Path to Precision. Neuropsychiatr Dis Treat 2023; 19:1841-1851. [PMID: 37641588 PMCID: PMC10460597 DOI: 10.2147/ndt.s414782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has become increasingly popular in clinical practice in recent years, and there have been significant advances in the principles and stimulation modes of TMS. With the development of multi-mode and precise stimulation technology, it is crucial to have a comprehensive understanding of TMS. The neuroregulatory effects of TMS can vary depending on the specific mode of stimulation, highlighting the importance of exploring these effects through multimodal application. Additionally, the use of precise TMS therapy can help enhance our understanding of the neural mechanisms underlying these effects, providing us with a more comprehensive perspective. This article aims to review the mechanism of action, stimulation mode, multimodal application, and precision of TMS.
Collapse
Affiliation(s)
- Wei Sun
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Qiao Wu
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Li Gao
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu Institute of Neurological Diseases, Chengdu City, Sichuan Province, People’s Republic of China
| | - Zhong Zheng
- Neurobiological Detection Center, West China Hospital Affiliated to Sichuan University, Chengdu City, Sichuan Province, People’s Republic of China
| | - Hu Xiang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Kun Yang
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Bo Yu
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| | - Jing Yao
- Department of Psychiatry, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang City, Sichuan Province, People’s Republic of China
| |
Collapse
|
13
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
14
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
15
|
Edlow BL, Fecchio M, Bodien YG, Comanducci A, Rosanova M, Casarotto S, Young MJ, Li J, Dougherty DD, Koch C, Tononi G, Massimini M, Boly M. Measuring Consciousness in the Intensive Care Unit. Neurocrit Care 2023; 38:584-590. [PMID: 37029315 PMCID: PMC11421303 DOI: 10.1007/s12028-023-01706-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 04/09/2023]
Abstract
Early reemergence of consciousness predicts long-term functional recovery for patients with severe brain injury. However, tools to reliably detect consciousness in the intensive care unit are lacking. Transcranial magnetic stimulation electroencephalography has the potential to detect consciousness in the intensive care unit, predict recovery, and prevent premature withdrawal of life-sustaining therapy.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Silvia Casarotto
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Darin D Dougherty
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christof Koch
- MindScope Program, Allen Institute, Seattle, WA, USA
- Tiny Blue Dot Foundation, Santa Monica, CA, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marcello Massimini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Hu AM, Huang CY, He JG, Wu L. Effect of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on post-stroke dysmnesia: A preliminary study. Clin Neurol Neurosurg 2023; 231:107797. [PMID: 37263069 DOI: 10.1016/j.clineuro.2023.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study examined the effect of repetitive transcranial magnetic stimulation (rTMS) combined with transcranial direct current stimulation (tDCS) as a bimodal neuromodulatory approach for post-stroke dysmnesia. METHODS Thirty-four patients with post-stroke dysmnesia were randomly allocated into a sham group treated with neither rTMS nor tDCS, a group treated with rTMS, and a group treated with a combination of rTMS and tDCS. All three groups received cognitive rehabilitation training for 4 weeks. The memory function of each group before and after the intervention was assessed using the Montreal Cognitive Assessment (MoCA) and Rivermead Behavioral Memory Test (RBMT) scales, as well as in terms of the Mismatch Negativity(MMN)and P300 of event-related potentials. RESULTS The sham, rTMS, and rTMS-tDCS groups all showed improvement in the total MoCA score after the intervention. Delayed recall, a MoCA item, scored better in the rTMS-tDCS group than in the rTMS and sham groups. Delayed processing, an RBMT item, scored better in the rTMS-tDCS combination group than in the rTMS and sham groups. MMN and P300 latency was significantly shorter in the rTMS-tDCS combination group. CONCLUSION rTMS-tDCS bimodal stimulation was more effective than cognitive rehabilitation or rTMS alone in treating patients with post-stroke dysmnesia, offering new possibilities for enhancing cognitive function and treating post-stroke dysmnesia.
Collapse
Affiliation(s)
- An-Ming Hu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Cui-Ying Huang
- Affiliated Hospital of Jining Medical University, Shandong 272007, China
| | - Jian-Gen He
- Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing 102211, China.
| |
Collapse
|
17
|
Matsuda RH, Souza VH, Kirsten PN, Ilmoniemi RJ, Baffa O. MarLe: Markerless estimation of head pose for navigated transcranial magnetic stimulation. Phys Eng Sci Med 2023; 46:887-896. [PMID: 37166586 DOI: 10.1007/s13246-023-01263-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Navigated transcranial magnetic stimulation (nTMS) is a valuable tool for non-invasive brain stimulation. Currently, nTMS requires fixing of markers on the patient's head. Head marker displacements lead to changes in coil placement and brain stimulation inaccuracy. A markerless neuronavigation method is needed to increase the reliability of nTMS and simplify the nTMS protocol. In this study, we introduce and release MarLe, a Python markerless head tracker neuronavigation software for TMS. This novel software uses computer-vision techniques combined with low-cost cameras to estimate the head pose for neuronavigation. A coregistration algorithm, based on a closed-form solution, was designed to track the patient's head and the TMS coil referenced to the individual's brain image. We show that MarLe can estimate head pose based on real-time video processing. An intuitive pipeline was developed to connect the MarLe and nTMS neuronavigation software. MarLe achieved acceptable accuracy and stability in a mockup nTMS experiment. MarLe allows real-time tracking of the patient's head without any markers. The combination of face detection and a coregistration algorithm can overcome nTMS head marker displacement concerns. MarLe can improve reliability, simplify, and reduce the protocol time of brain intervention techniques such as nTMS.
Collapse
Affiliation(s)
- Renan H Matsuda
- Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, Ribeirão Preto, 3900, 14040-901, SP, Brazil.
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2, Espoo, 02150, Finland.
| | - Victor H Souza
- Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, Ribeirão Preto, 3900, 14040-901, SP, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2, Espoo, 02150, Finland
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora - MG, Cascatinha, Brazil
| | - Petrus N Kirsten
- Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, Ribeirão Preto, 3900, 14040-901, SP, Brazil
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2, Espoo, 02150, Finland
| | - Oswaldo Baffa
- Department of Physics, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, Ribeirão Preto, 3900, 14040-901, SP, Brazil
| |
Collapse
|
18
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
19
|
Julkunen P, Kimiskidis VK, Belardinelli P. Special issue on TMS-EEG methods, data analysis and processing. J Neurosci Methods 2023; 383:109735. [PMID: 36374722 DOI: 10.1016/j.jneumeth.2022.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Italy; Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
20
|
Gassmann L, Gordon PC, Ziemann U. Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG. Brain Stimul 2022; 15:1354-1369. [PMID: 36180039 DOI: 10.1016/j.brs.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebellum provides important input to the cerebral cortex but its assessment is difficult. Cerebellar brain inhibition tested by paired-coil transcranial magnetic stimulation (TMS) is limited to the motor cortex. Here we sought to measure responses to cerebellar TMS (cbTMS) throughout the cerebral cortex using electroencephalography (EEG). METHODS Single-pulse TMS was applied with an induced upward current to the right cerebellar hemisphere in 46 healthy volunteers while recording EEG. Multiple control conditions, including TMS of right occipital cortex, cbTMS with induced downward current, and a sham condition modified specifically for cbTMS were tested to provide evidence for the specificity of the EEG responses evoked by cbTMS with an upward induced current. RESULTS Distinct EEG response components could be specifically attributed to cbTMS, namely a left-hemispheric prefrontal positive deflection 25 ms after cbTMS, and a subsequent left-hemispheric parietal negative deflection peaking at 45 ms. In the time-frequency-response analysis, cbTMS induced a left-hemispheric prefrontal power increase in the high-beta frequency band. These responses were not seen in the control and sham conditions. CONCLUSIONS The EEG responses observed in this highly controlled experimental design may cautiously be attributed to reflect specific signatures of the activation of the cerebello-dentato-thalamo-cortical pathway by cbTMS. Therefore, these responses may provide biomarkers for assessing the integrity of this pathway, a proposition that will need further testing in clinical populations.
Collapse
Affiliation(s)
- Lukas Gassmann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro Caldana Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|