1
|
Chiavelli C, Prapa M, Rovesti G, Silingardi M, Neri G, Pugliese G, Trudu L, Dall'Ora M, Golinelli G, Grisendi G, Vinet J, Bestagno M, Spano C, Papapietro RV, Depenni R, Di Emidio K, Pasetto A, Nascimento Silva D, Feletti A, Berlucchi S, Iaccarino C, Pavesi G, Dominici M. Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma. NPJ Precis Oncol 2024; 8:26. [PMID: 38302615 PMCID: PMC10834575 DOI: 10.1038/s41698-024-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) remains a deadly tumor. Treatment with chemo-radiotherapy and corticosteroids is known to impair the functionality of lymphocytes, potentially compromising the development of autologous CAR T cell therapies. We here generated pre-clinical investigations of autologous anti-GD2 CAR T cells tested against 2D and 3D models of GBM primary cells. We detected a robust antitumor effect, highlighting the feasibility of developing an autologous anti-GD2 CAR T cell-based therapy for GBM patients.
Collapse
Affiliation(s)
- Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Silingardi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Leucid Bio Ltd., Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Lucia Trudu
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vito Papapietro
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Anna Pasetto
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurosurgery Unit, University of Verona, Verona, Italy
| | - Silvia Berlucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
2
|
Sánchez-Vera I, Escudero E, Muñoz Ú, Sádaba MC. IgM to phosphatidylcholine in multiple sclerosis patients: from the diagnosis to the treatment. Ther Adv Neurol Disord 2023; 16:17562864231189919. [PMID: 37599706 PMCID: PMC10437209 DOI: 10.1177/17562864231189919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system. It affects young people, and a considerable percentage of patients need the help of a wheelchair in 15 years of evolution. Currently, there is not a specific technique for the diagnosis of MS. The detection of oligoclonal IgG bands (OIgGBs) is the most sensitive assay for it, but it is not standardizable, only reference laboratories develop it, and uses cerebrospinal fluid. To obtain this sample, a lumbar puncture is necessary, an invasive proceeding with important side effects. It is important to develop and implement standard assays to obtain a rapid diagnosis because the earlier the treatment, the better the evolution of the disease. There are numerous modifying disease therapies, which delay the progression of the disease, but they have important side effects, and a considerable percentage of patients give up the treatment. In addition, around 40% of MS patients do not respond to the therapy and the disease progresses. Numerous researches have been focused on the characterization of predictive biomarkers of response to treatment, in order to help physicians to decide when to change to a second-line treatment, and then the best therapeutic option. Here, we review the new biomarkers for the diagnosis and response to treatment in MS. We draw attention in a new assay, the detection of serum IgM to phosphatidylcholine, that showed a similar sensitivity as OIgGBs and predicts the response to disease modifying treatments.
Collapse
Affiliation(s)
- Isabel Sánchez-Vera
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Escudero
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Úrsula Muñoz
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María C. Sádaba
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (INMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid 28668, Spain
| |
Collapse
|
3
|
Nezvedová M, Jha D, Váňová T, Gadara D, Klímová H, Raška J, Opálka L, Bohačiaková D, Spáčil Z. Single Cerebral Organoid Mass Spectrometry of Cell-Specific Protein and Glycosphingolipid Traits. Anal Chem 2023; 95:3160-3167. [PMID: 36724094 PMCID: PMC10016744 DOI: 10.1021/acs.analchem.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral organoids are a prolific research topic and an emerging model system for neurological diseases in human neurobiology. However, the batch-to-batch reproducibility of current cultivation protocols is challenging and thus requires a high-throughput methodology to comprehensively characterize cerebral organoid cytoarchitecture and neural development. We report a mass spectrometry-based protocol to quantify neural tissue cell markers, cell surface lipids, and housekeeping proteins in a single organoid. Profiled traits probe the development of neural stem cells, radial glial cells, neurons, and astrocytes. We assessed the cell population heterogeneity in individually profiled organoids in the early and late neurogenesis stages. Here, we present a unifying view of cell-type specificity of profiled protein and lipid traits in neural tissue. Our workflow characterizes the cytoarchitecture, differentiation stage, and batch cultivation variation on an individual cerebral organoid level.
Collapse
Affiliation(s)
- Markéta Nezvedová
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Tereza Váňová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Darshak Gadara
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Hana Klímová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Jan Raška
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Lukáš Opálka
- Department of Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové 500 05, Czech Republic
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
4
|
de Billy E, Pellegrino M, Orlando D, Pericoli G, Ferretti R, Businaro P, Ajmone-Cat MA, Rossi S, Petrilli LL, Maestro N, Diomedi-Camassei F, Pezzullo M, De Stefanis C, Bencivenga P, Palma A, Rota R, Del Bufalo F, Massimi L, Weber G, Jones C, Carai A, Caruso S, De Angelis B, Caruana I, Quintarelli C, Mastronuzzi A, Locatelli F, Vinci M. Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a potent anti-tumor activity in diffuse midline glioma H3K27M-mutant. Neuro Oncol 2022; 24:1150-1163. [PMID: 34964902 PMCID: PMC9248389 DOI: 10.1093/neuonc/noab300] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG) H3K27M-mutant, including diffuse intrinsic pontine glioma (DIPG), are pediatric brain tumors associated with grim prognosis. Although GD2-CAR T-cells demonstrated significant anti-tumor activity against DMG H3K27M-mutant in vivo, a multimodal approach may be needed to more effectively treat patients. We investigated GD2 expression in DMG/DIPG and other pediatric high-grade gliomas (pHGG) and sought to identify chemical compounds that would enhance GD2-CAR T-cell anti-tumor efficacy. METHODS Immunohistochemistry in tumor tissue samples and immunofluorescence in primary patient-derived cell lines were performed to study GD2 expression. We developed a high-throughput cell-based assay to screen 42 kinase inhibitors in combination with GD2-CAR T-cells. Cell viability, western blots, flow-cytometry, real time PCR experiments, DIPG 3D culture models, and orthotopic xenograft model were applied to investigate the effect of selected compounds on DIPG cell death and CAR T-cell function. RESULTS GD2 was heterogeneously, but widely, expressed in the tissue tested, while its expression was homogeneous and restricted to DMG/DIPG H3K27M-mutant cell lines. We identified dual IGF1R/IR antagonists, BMS-754807 and linsitinib, able to inhibit tumor cell viability at concentrations that do not affect CAR T-cells. Linsitinib, but not BMS-754807, decreases activation/exhaustion of GD2-CAR T-cells and increases their central memory profile. The enhanced anti-tumor activity of linsitinib/GD2-CAR T-cell combination was confirmed in DIPG models in vitro, ex vivo, and in vivo. CONCLUSION Our study supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for treating patients affected by DMG/DIPG and, potentially, by pHGG.
Collapse
Affiliation(s)
- Emmanuel de Billy
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Marsha Pellegrino
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Domenico Orlando
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Roberta Ferretti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Pietro Businaro
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | | | - Sabrina Rossi
- Department of Laboratories-Pathology Unit, Bambino Gesù Children’s
Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Nicola Maestro
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | | | - Marco Pezzullo
- Research Laboratories, Bambino Gesù Children’s
Hospital-IRCCS, Rome, Italy
| | | | - Paola Bencivenga
- Research Laboratories, Bambino Gesù Children’s
Hospital-IRCCS, Rome, Italy
| | - Alessia Palma
- Research Laboratories, Bambino Gesù Children’s
Hospital-IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Luca Massimi
- Department of Pediatric Neurosurgery, Catholic University Medical
School, Rome, Italy
| | - Gerrit Weber
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer
Research, Sutton, UK
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s
Hospital-IRCCS, Rome, Italy
| | - Simona Caruso
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Ignazio Caruana
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico
II, Naples, Italy
| | - Angela Mastronuzzi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome,
Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù
Children’s Hospital–IRCCS, Rome, Italy
| |
Collapse
|
5
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
6
|
Wieczorek A, Manzitti C, Garaventa A, Gray J, Papadakis V, Valteau-Couanet D, Zachwieja K, Poetschger U, Pribill I, Fiedler S, Ladenstein R, Lode HN. Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials. Cancers (Basel) 2022; 14:cancers14081919. [PMID: 35454826 PMCID: PMC9026788 DOI: 10.3390/cancers14081919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Neurotoxicity is an off-tumour, on-target side effect of GD2-directed immunotherapy with monoclonal antibodies. Here, we report the frequency, management and outcome of patients enrolled in two prospective clinical trials who experienced severe neurotoxicity during immunotherapy with the anti-GD2 antibody dinutuximab beta (DB) administered as short-term infusion (HR-NBL1/SIOPEN study, randomisation R2, EudraCT 2006-001489-17) or as long-term infusion (HR-NBL1/SIOPEN study, randomisation R4, EudraCT 2006-001489-17 and LTI/SIOPEN study, EudraCT 2009-018077-31), either alone or with subcutaneous interleukin-2 (scIL-2). The total number of patients included in this analysis was 1102. Overall, 44/1102 patients (4.0%) experienced Grade 3/4 neurotoxicities (HR-NBL1 R2, 21/406; HR-NBL1 R4, 8/408; LTI study, 15/288), including 27 patients with severe neurotoxicities (2.5%). Events occurred predominantly in patients receiving combined treatment with DB and scIL-2. Neurotoxicity was treated using dexamethasone, prednisolone, intravenous immunoglobulins and, in two patients, plasmapheresis, which was highly effective. While neurological recovery was observed in 16 of 21 patients with severe neurotoxicities, 5/1102 (0.45%) patients experienced persistent and severe neurological deficits. In conclusion, severe neurotoxicity is most commonly observed in patients receiving DB with scIL-2. Considering the lack of clinical benefit for IL-2 in clinical trials so far, the administration of IL-2 alongside DB is not recommended.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Pediatric Hematology Oncology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Carla Manzitti
- Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.M.); (A.G.)
| | - Alberto Garaventa
- Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.M.); (A.G.)
| | - Juliet Gray
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK;
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Agia Sofia Children’s Hospital, 11527 Athens, Greece;
| | | | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ulrike Poetschger
- Department for Studies and Statistics and Integrated Research, Children’s Cancer Research Institute, 1090 Vienna, Austria; (U.P.); (I.P.)
| | - Ingrid Pribill
- Department for Studies and Statistics and Integrated Research, Children’s Cancer Research Institute, 1090 Vienna, Austria; (U.P.); (I.P.)
| | - Stefan Fiedler
- Department for Studies and Statistics and Integrated Research at the Children’s Cancer Research Institute of the St. Anna Children’s Hospital and Department of Paediatrics, Medical University, 1090 Vienna, Austria; (S.F.); (R.L.)
| | - Ruth Ladenstein
- Department for Studies and Statistics and Integrated Research at the Children’s Cancer Research Institute of the St. Anna Children’s Hospital and Department of Paediatrics, Medical University, 1090 Vienna, Austria; (S.F.); (R.L.)
| | - Holger N. Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-6300
| |
Collapse
|
7
|
Papadakis V, Kelaidi C, Zisaki K, Antoniadi K, Pitsoulakis G, Polychronopoulou S. Dinutuximab beta-related severe neurotoxicity: Resolution with the use of plasmapheresis. Pediatr Blood Cancer 2022; 69:e29465. [PMID: 34913569 DOI: 10.1002/pbc.29465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kalliopi Zisaki
- Department of Blood Banking, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kondylia Antoniadi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Georgios Pitsoulakis
- Department of Tomography Imaging, Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
8
|
Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, Geraghty AC, Good Z, Mochizuki AY, Gillespie SM, Toland AMS, Mahdi J, Reschke A, Nie EH, Chau IJ, Rotiroti MC, Mount CW, Baggott C, Mavroukakis S, Egeler E, Moon J, Erickson C, Green S, Kunicki M, Fujimoto M, Ehlinger Z, Reynolds W, Kurra S, Warren KE, Prabhu S, Vogel H, Rasmussen L, Cornell TT, Partap S, Fisher PG, Campen CJ, Filbin MG, Grant G, Sahaf B, Davis KL, Feldman SA, Mackall CL, Monje M. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022; 603:934-941. [PMID: 35130560 PMCID: PMC8967714 DOI: 10.1038/s41586-022-04489-4] [Citation(s) in RCA: 412] [Impact Index Per Article: 206.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.
Collapse
Affiliation(s)
- Robbie G Majzner
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Kristen W Yeom
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Shabnum Patel
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Harshini Chinnasamy
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Rebecca M Richards
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Li Jiang
- Division of Pediatric Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Valentin Barsan
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Zinaida Good
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Aaron Y Mochizuki
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Shawn M Gillespie
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Jasia Mahdi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Agnes Reschke
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Esther H Nie
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle J Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Maria Caterina Rotiroti
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Christopher W Mount
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Christina Baggott
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sharon Mavroukakis
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jennifer Moon
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Courtney Erickson
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sean Green
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michael Kunicki
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Fujimoto
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Zach Ehlinger
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Warren Reynolds
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sreevidya Kurra
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine E Warren
- Division of Pediatric Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Snehit Prabhu
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Lindsey Rasmussen
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Timothy T Cornell
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Paul G Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cynthia J Campen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mariella G Filbin
- Division of Pediatric Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bita Sahaf
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Steven A Feldman
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Division of Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Michelle Monje
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Repajic M, Husain S, Ghassemi A, Kondradzhyan M, Liu A. Amyotrophic lateral sclerosis in a patient who recovered from Miller Fisher Syndrome: The role of GQ1b antibody revisited. Brain Behav Immun Health 2021; 13:100231. [PMID: 34589746 PMCID: PMC8474546 DOI: 10.1016/j.bbih.2021.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 10/26/2022] Open
Abstract
Miller Fisher Syndrome (MFS), a variant of Guillain Barre Syndrome (GBS), and amyotrophic lateral sclerosis (ALS) are two rare neuromuscular diseases that are usually unrelated. While ganglioside antibodies have a common relation with MFS and GBS, they have also been found in association, albeit less commonly, with ALS. A patient experiencing MFS and then ALS in tandem has never been documented. We discuss a case demonstrating these findings, with GQ1b elevated on both occasions. The pathophysiologic role of GQ1b is explored.
Collapse
Affiliation(s)
- Michael Repajic
- Neurology, Adventist Health White Memorial, Los Angeles, CA, USA
| | - Syed Husain
- Neurology, Adventist Health White Memorial, Los Angeles, CA, USA
| | - Azadeh Ghassemi
- Internal Medicine, Connecticut Institute for Communities, Danbury, CT, USA
| | | | - Antonio Liu
- Neurology, Adventist Health White Memorial, Los Angeles, CA, USA
| |
Collapse
|
10
|
Kido K, Wada S, Oka Y, Terada Y, Inoue M, Hamano T. Multifocal motor neuropathy and visual pathway impairment: A case report. Clin Neurophysiol Pract 2021; 6:191-193. [PMID: 34307969 PMCID: PMC8258779 DOI: 10.1016/j.cnp.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background Multifocal motor neuropathy (MMN) occasionally presents with cranial nerve involvement. However, no MMN cases with visual pathway impairment demonstrated by visual evoked potential (VEP) have been reported. Case report A 36-year-old man was admitted to our hospital with progressive muscular weakness. On admission, neurological findings revealed bilateral muscle weakness and atrophy of the distal upper limbs. The blood tests were positive for GM-1 ganglioside antibodies. Nerve conduction studies revealed bilateral conduction block in the median nerve. He was diagnosed with MMN. Intravenous immunoglobulin treatment improved muscle weakness and blurred vision, which was not a complaint when he was first seen. Moreover, VEP showed a post-treatment shortening of P100 latency. These treatment effects were consistently observed for 3.5 years. Significance Our findings suggested that MMN could affect the visual pathway through autoimmune mechanisms.
Collapse
Affiliation(s)
- Keisuke Kido
- Center for Sleep-related Disorders, Kansai Electric Power Hospital, Osaka, Japan.,Division of Sleep Medicine, Kansai Electric Power Medical Research Institute, Osaka, Japan
| | - Shinichi Wada
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan
| | - Yuwa Oka
- Division of Clinical Neurology, Kansai Electric Power Medical Research Institute, Osaka, Japan.,Department of Neurology, Kitano Hospital, Osaka, Japan
| | - Yuta Terada
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Inoue
- Department of Neurology, Osaka City General Hospital, Osaka, Japan
| | - Toshiaki Hamano
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan.,Division of Clinical Neurology, Kansai Electric Power Medical Research Institute, Osaka, Japan
| |
Collapse
|
11
|
Chin LK, Son T, Hong JS, Liu AQ, Skog J, Castro CM, Weissleder R, Lee H, Im H. Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research. ACS NANO 2020; 14:14528-14548. [PMID: 33119256 PMCID: PMC8423498 DOI: 10.1021/acsnano.0c07581] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs), actively shed from a variety of neoplastic and host cells, are abundant in blood and carry molecular markers from parental cells. For these reasons, EVs have gained much interest as biomarkers of disease. Among a number of different analytical methods that have been developed, surface plasmon resonance (SPR) stands out as one of the ideal techniques given its sensitivity, robustness, and ability to miniaturize. In this Review, we compare different SPR platforms for EV analysis, including conventional SPR, nanoplasmonic sensors, surface-enhanced Raman spectroscopy, and plasmonic-enhanced fluorescence. We discuss different surface chemistries used to capture targeted EVs and molecularly profile their proteins and RNAs. We also highlight these plasmonic platforms' clinical applications, including cancers, neurodegenerative diseases, and cardiovascular diseases. Finally, we discuss the future perspective of plasmonic sensing for EVs and their potentials for commercialization and clinical translation.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Taehwang Son
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ai-Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Johan Skog
- Exosome Diagnostics, a Bio-techne brand, Waltham, MA 02451, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Rudajev V, Novotny J. The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation. MEMBRANES 2020; 10:membranes10090226. [PMID: 32916822 PMCID: PMC7558528 DOI: 10.3390/membranes10090226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
Ganglioside GM1 is the most common brain ganglioside enriched in plasma membrane regions known as lipid rafts or membrane microdomains. GM1 participates in many modulatory and communication functions associated with the development, differentiation, and protection of neuronal tissue. It has, however, been demonstrated that GM1 plays a negative role in the pathophysiology of Alzheimer's disease (AD). The two features of AD are the formation of intracellular neurofibrillary bodies and the accumulation of extracellular amyloid β (Aβ). Aβ is a peptide characterized by intrinsic conformational flexibility. Depending on its partners, Aβ can adopt different spatial arrangements. GM1 has been shown to induce specific changes in the spatial organization of Aβ, which lead to enhanced peptide accumulation and deleterious effect especially on neuronal membranes containing clusters of this ganglioside. Changes in GM1 levels and distribution during the development of AD may contribute to the aggravation of the disease.
Collapse
|
13
|
Sorokin M, Kholodenko I, Kalinovsky D, Shamanskaya T, Doronin I, Konovalov D, Mironov A, Kuzmin D, Nikitin D, Deyev S, Buzdin A, Kholodenko R. RNA Sequencing-Based Identification of Ganglioside GD2-Positive Cancer Phenotype. Biomedicines 2020; 8:E142. [PMID: 32486168 PMCID: PMC7344710 DOI: 10.3390/biomedicines8060142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes. To this end, we compared RNA sequencing data from human tumor biopsy material from experimental samples and public databases as well as from GD2-positive and GD2-negative cancer cell lines, for expression levels of genes encoding enzymes involved in ganglioside biosynthesis. We identified a 2-gene expression signature combining ganglioside synthase genes ST8SIA1 and B4GALNT1 that serves as a more efficient predictor of GD2-positive phenotype (Matthews Correlation Coefficient (MCC) 0.32, 0.88, and 0.98 in three independent comparisons) compared to the individual ganglioside biosynthesis genes (MCC 0.02-0.32, 0.1-0.75, and 0.04-1 for the same independent comparisons). No individual gene showed a higher MCC score than the expression signature MCC score in two or more comparisons. Our diagnostic approach can hopefully be applied for pan-cancer prediction of GD2 phenotypes using gene expression data.
Collapse
Affiliation(s)
- Maxim Sorokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Omicsway Corp., 340 S Lemon Ave, 6040, Walnut, CA 91789, USA
| | - Irina Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia;
| | - Daniel Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Tatyana Shamanskaya
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Igor Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| | - Dmitry Konovalov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Aleksei Mironov
- Skolkovo Institute of Science and Technology, 3, Nobelya St., 121205 Moscow, Russia;
| | - Denis Kuzmin
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
| | - Daniil Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
- Oncobox ltd., 121205 Moscow, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| |
Collapse
|
14
|
Cavdarli S, Delannoy P, Groux-Degroote S. O-acetylated Gangliosides as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030741. [PMID: 32192217 PMCID: PMC7140702 DOI: 10.3390/cells9030741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
O-acetylation of sialic acid residues is one of the main modifications of gangliosides, and modulates ganglioside functions. O-acetylation of gangliosides is dependent on sialyl-O-acetyltransferases and sialyl-O-acetyl-esterase activities. CAS1 Domain-Containing Protein 1 (CASD1) is the only human sialyl-O-acetyltransferases (SOAT) described until now. O-acetylated ganglioside species are mainly expressed during embryonic development and in the central nervous system in healthy adults, but are re-expressed during cancer development and are considered as markers of cancers of neuroectodermal origin. However, the specific biological roles of O-acetylated gangliosides in developing and malignant tissues have not been extensively studied, mostly because of the requirement of specific approaches and tools for sample preparation and analysis. In this review, we summarize our current knowledge of ganglioside biosynthesis and expression in normal and pathological conditions, of ganglioside O-acetylation analysis and expression in cancers, and of the possible use of O-acetylated gangliosides as targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- OGD2 Pharma, Institut de Recherche en Santé de l’Université de Nantes, 44007 Nantes, France
| | - Philippe Delannoy
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Institut pour la Recherche sur le Cancer de Lille – IRCL – Place de Verdun, F-59000 Lille, France
| | - Sophie Groux-Degroote
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, F-59000 Lille, France; (S.C.); (P.D.)
- Correspondence:
| |
Collapse
|
15
|
Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson's Disease. ASN Neuro 2019; 10:1759091418781889. [PMID: 29932343 PMCID: PMC6024349 DOI: 10.1177/1759091418781889] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder involving the selective loss of dopamine-producing neurons in the substantia nigra (SN). Differences in disease presentation, prevalence, and age of onset have been reported between males and females with PD. The content and composition of the major glycosphingolipids, phospholipids, and cholesterol were evaluated in the SN from 12 PD subjects and in 18 age-matched, neurologically normal controls. Total SN ganglioside sialic acid content and water content (%) were significantly lower in the male PD subjects than in the male controls. The content of all major gangliosides were reduced in the male PD subjects to some degree, but the neuronal-enriched gangliosides, GD1a and GT1b, were most significantly reduced. The distribution of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was also significantly lower in the male PD subjects than in the male controls. However, the distribution of myelin-enriched cerebrosides and sulfatides was significantly higher in the male PD subjects than in the male controls suggesting myelin sparing in the male PD subjects. No elevation was detected for astrocytosis-linked GD3. These neurochemical changes provide evidence of selective neuronal loss in SN of the males with PD without robust astrocytosis. In contrast to the SN lipid abnormalities found in the male PD subjects, no significant abnormalities were found in the female PD subjects for SN water content or for any major SN lipids. These data indicate sex-related differences in SN lipid abnormalities in PD.
Collapse
Affiliation(s)
- T N Seyfried
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - H Choi
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - A Chevalier
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - D Hogan
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Z Akgoc
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - J S Schneider
- 2 Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G. Glycosphingolipid metabolism in cell fate specification. J Cell Sci 2018; 131:131/24/jcs219204. [PMID: 30559216 DOI: 10.1242/jcs.219204] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic plasma membranes that consist of a ceramide backbone linked to a glycan moiety. Both the ceramide and the glycan parts of GSLs display structural variations that result in a remarkable repertoire of diverse compounds. This diversity of GSLs is exploited during embryogenesis, when different GSLs are produced at specific developmental stages and along several differentiation trajectories. Importantly, plasma membrane receptors interact with GSLs to modify their activities. Consequently, two otherwise identical cells can respond differently to the same stimulus owing to their different GSL composition. The metabolic reprograming of GSLs is in fact a necessary part of developmental programs, as its impairment results in developmental failure or tissue-specific defects. Moreover, single-cell variability is emerging as a fundamental player in development: GSL composition displays cell-to-cell variability in syngeneic cell populations owing to the regulatory gene expression circuits involved in microenvironment adaptation and in differentiation. Here, we discuss how GSLs are synthesized and classified and review the role of GSLs in the establishment and maintenance of cell identity. We further highlight the existence of the regulatory circuits that modify GSL pathways and speculate how GSL heterogeneity might contribute to developmental patterning.
Collapse
Affiliation(s)
- Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Laura Capolupo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Jaipreet Singh Loomba
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Lucia Sticco
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy .,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, Masserini M, Morasso C. Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging. Anal Chem 2018; 90:8873-8880. [DOI: 10.1021/acs.analchem.8b00941] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
- Nanomedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Alice Gualerzi
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Renzo Vanna
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Andrea Sguassero
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Furio Gramatica
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Marzia Bedoni
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Massimo Masserini
- Nanomedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Carlo Morasso
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
18
|
Gangliosides in Inflammation and Neurodegeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:265-287. [PMID: 29747817 DOI: 10.1016/bs.pmbts.2018.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gangliosides play roles in the regulation of cell signaling that are mediated via membrane microdomains, lipid rafts. In this review, functions of gangliosides in the maintenance of nervous systems with a focus on regulation of inflammation and neurodegeneration are addressed. During analyses of various ganglioside-lacking mutant mice, we demonstrated that nervous tissues exhibited inflammatory reactions and subsequent neurodegeneration. Among inflammation-related genes, factors of the complement system showed up-regulation with aging. Analyses of architectures and compositions of lipid rafts in nervous tissues from these mutant mice revealed that dysfunctions of complement regulatory proteins based on disrupted lipid rafts were main factors to induce the inflammatory reactions resulting in neurodegeneration. Ganglioside changes in development and senescence, and implication of them in the integrity of cell membranes and cellular phenotypes in physiological and pathological conditions including Alzheimer disease have been summarized. Novel directions to further analyze mechanisms for ganglioside functions in membrane microdomains have been also addressed.
Collapse
|
19
|
GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis. J Neurosci 2017; 37:9925-9938. [PMID: 28899916 DOI: 10.1523/jneurosci.0103-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro, and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination.SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo, by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression.
Collapse
|
20
|
Su D, Ma J, Yang J, Kang Y, Lv M, Li Y. Monosialotetrahexosy-1 ganglioside attenuates diabetes-associated cerebral ischemia/reperfusion injury through suppression of the endoplasmic reticulum stress-induced apoptosis. J Clin Neurosci 2017; 41:54-59. [DOI: 10.1016/j.jocn.2017.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
|
21
|
Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: A mass spectrometry characterization. Biochimie 2017; 137:56-68. [DOI: 10.1016/j.biochi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
22
|
Marconi S, Acler M, Lovato L, De Toni L, Tedeschi E, Anghileri E, Romito S, Cordioli C, Bonetti B. Anti-GD2-like IgM autoreactivity in multiple sclerosis patients. Mult Scler 2016; 12:302-8. [PMID: 16764343 DOI: 10.1191/135248506ms1279oa] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Seric IgM autoreactivity in 100 multiple sclerosis (MS) and 106 control (70 of whom had other neurological diseases) patients was assessed either by immunohistochemistry on normal human CNS tissue or to GD2, GD1a, GD3 by ELISA and thin layer chromatography (TLC) techniques. By double immunohistochemistry, we found that 44% of the total MS population showed seric IgM reactivity to oligodendrocytes and myelin, this finding being particularly frequent in patients with secondary progressive MS. In the non-MS cohort, positive signals were seen only in one patient. In all cases, extraction of lipids from CNS sections abolished the immunoreactivity. Among the gangliosides investigated by ELISA, anti-GD2-like IgM autoantibodies were detected in the serum of 30% of MS patients, a subgroup of whom (below 10%) reacted also with GD1a and/or GD3. More than 85% of MS cases with anti-GD2-like IgM immunoreactivity by ELISA showed also IgM anti-oligodendrocyte/myelin staining by immunohistochemistry. However, no immunostaining in MS sera was observed when gangliosides were resolved by TLC. A positive correlation with neurological disability was observed, as the Expanded Disability Status Scale of MS patients with anti-GD2-like IgM autoreactivity by ELISA was significantly worse than seronegative MS cases. The results of the present study enforce the role of glycolipids as potential autoantigens and of IgM autoantibodies in MS pathogenesis.
Collapse
Affiliation(s)
- S Marconi
- Section of Neurology, Department of Neurological Sciences and Vision, University of Verona, 37134 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain. J Control Release 2016; 228:120-131. [DOI: 10.1016/j.jconrel.2016.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/31/2016] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
|
24
|
Ling ZM, Tang Y, Li YQ, Luo HX, Liu LL, Tu QQ, Zhou LH. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT. PLoS One 2015; 10:e0127685. [PMID: 26010770 PMCID: PMC4444271 DOI: 10.1371/journal.pone.0127685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/17/2015] [Indexed: 01/10/2023] Open
Abstract
Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.
Collapse
Affiliation(s)
- Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Hao-Xuan Luo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Lin-Lin Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Qing-Qiang Tu
- Small Animal Molecular Imaging Center, Laboratories of Translational Medicine and Clinical Research, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
- * E-mail:
| |
Collapse
|
25
|
Lolli F, Rovero P, Chelli M, Papini AM. Toward biomarkers in multiple sclerosis: new advances. Expert Rev Neurother 2014; 6:781-94. [PMID: 16734525 DOI: 10.1586/14737175.6.5.781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis is an autoimmune disease that commonly affects young adults. If initially characterized by acute relapses, it is later followed by only incomplete remission. Over years, progressive disability and irreversible deficit lead to chronic neurological deficits in the majority of patients. The clinical course is protracted and unpredictable, and no biological marker is useful in predicting the evolution of autoaggression and disability. It is difficult to diagnose and to monitor disease progression after the initial symptoms or even during the major clinical manifestations, and it is difficult to treat. In this review, the authors report recent advances in the field, focusing on the search of new antigens as a marker of the disease, in their relevance to the pathophysiology and diagnosis of the disease.
Collapse
Affiliation(s)
- Francesco Lolli
- Laboratorio Interdipartimentale di Chimica & Biologia dei Peptidi & Proteine, Polo Scientifico e Tecnologico, Università degli Studi di Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
26
|
Serb AF, Sisu E, Vukelić Z, Zamfir AD. Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1561-1570. [PMID: 23280744 DOI: 10.1002/jms.3116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids are involved in many brain functions at the cell and molecular level. Compositional and structural elucidation of GGs in mixtures extracted from human brain is essential for correlating their profile with the specialized function of each brain area in health and disease. As a part of our ongoing study on GG expression and structure in different healthy and diseased brain regions, in this work, a preliminary investigation of GGs in a specimen of human caudate nucleus (CN) was carried out using an advanced mass spectrometry (MS) technique. By chip-nanoelectrospray MS performed on a NanoMate robot coupled to a high capacity ion trap instrument, 81 GG components were detected in human CN in only 1.5 min of signal acquisition. Although the native GG mixture from CN was found dominated by mono-, di- and trisialylated GGs with a slight dominance of disialylated forms (GD), four tetrasialylated structures (GQ) and two pentasialylated (GP) species were also identified. Additionally, species with unusually long fatty acid chains, exceeding 30 carbon atoms in their ceramide (Cer) composition, and several glycoforms modified by fucosyl (Fuc), O-acetyl (O-Ac) and/or lactonization were discovered. By tandem MS (MS(2) ) using collision-induced dissociation, two atypical mono and disialylated species with long-chain fatty acids in their Cer could be confirmed and structurally characterized. These results may be a starting point for new GG-based approaches in the study of CN functions and ethiopathogenesis of CN-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alina F Serb
- Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. 2A, Timisoara, Romania
| | | | | | | |
Collapse
|
27
|
Pernber Z, Blennow K, Bogdanovic N, Månsson JE, Blomqvist M. Altered distribution of the gangliosides GM1 and GM2 in Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 33:174-88. [PMID: 22572791 DOI: 10.1159/000338181] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder where β-amyloid tends to aggregate and form plaques. Lipid raft-associated ganglioside GM1 has been suggested to facilitate β-amyloid aggregation; furthermore, GM1 and GM2 are increased in lipid rafts isolated from cerebral cortex of AD cases. AIM/METHOD The distribution of GM1 and GM2 was studied by immunohistochemistry in the frontal and temporal cortex of AD cases. Frontotemporal dementia (FTD) was included as a contrast group. RESULTS The distribution of GM1 and GM2 changes during the process of AD (n = 5) and FTD (n = 3) compared to controls (n = 5). Altered location of the GM1-positive small circular structures seems to be associated with myelin degradation. In the grey matter, the staining of GM1-positive plasma membranes might reflect neuronal loss in the AD/FTD tissue. The GM1-positive compact bundles were only visible in cells located in the AD frontal grey matter, possibly reflecting raft formation of GM1 and thus a pathological connection. Furthermore, our results suggest GM2 to be enriched within vesicles of pyramidal neurons of the AD/FTD brain. CONCLUSION Our study supports the biochemical finding of ganglioside accumulation in cellular membranes of AD patients and shows a redistribution of these molecules.
Collapse
Affiliation(s)
- Z Pernber
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Molndal, Sweden
| | | | | | | | | |
Collapse
|
28
|
Flangea C, Serb A, Sisu E, Zamfir AD. Reprint of: chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:897-917. [PMID: 21958495 DOI: 10.1016/j.bbalip.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/11/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023]
Abstract
In the past few years, a considerable effort was invested in interfacing mass spectrometry (MS) to microfluidics-based systems for electrospray ionization (ESI). Since its first introduction in biological mass spectrometry, chip-based ESI demonstrated a high potential to discover novel structures of biomarker value. Therefore, recently, microfluidics for electrospray in conjunction with advanced MS instruments able to perform multistage fragmentation were introduced also in glycolipid research. This review is focused on the strategies, which allowed a successful application of chip technology for ganglioside mapping and sequencing by ESI MS and tandem MS (MS/MS). The first part of the review is dedicated to the progress of MS methods in brain ganglioside research, which culminated with the introduction of two types of microfluidic devices: the NanoMate robot and a polymer microchip for electrospray. In the second part a systematic description of most relevant results obtained by using MS in combination with the two chip systems is presented. Chip-based ESI accomplishments for determination of ganglioside expression and structure in normal brain regions and brain pathologies such as neurodegenerative diseases and primary brain tumors are described together with some considerations upon the perspectives of microfluidics-MS to be routinely introduced in biomedical investigation.
Collapse
Affiliation(s)
- Corina Flangea
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Arad, Romania
| | | | | | | |
Collapse
|
29
|
Chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:513-35. [DOI: 10.1016/j.bbalip.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/11/2011] [Accepted: 06/08/2011] [Indexed: 01/06/2023]
|
30
|
Al-Mayhani MTF, Grenfell R, Narita M, Piccirillo S, Kenney-Herbert E, Fawcett JW, Collins VP, Ichimura K, Watts C. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature. Neuro Oncol 2011; 13:830-45. [PMID: 21798846 PMCID: PMC3145476 DOI: 10.1093/neuonc/nor088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/13/2011] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2- cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Colin Watts
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge (M.T.F.A-M., S.P., E.K-H., J.W.F., C.W.); MRC Laboratory of Molecular Biology, University of Cambridge (R.G.); CRUK Cancer Research Institute, University of Cambridge (M.N.); Division of Molecular Histopathology, Department of Pathology, University of Cambridge (V.P.C., K.I.); Department of Neurosurgery, University of Cambridge (C.W.), Cambridge, UK
| |
Collapse
|
31
|
Zhang JZ, Jing L, Ma Y, Guo FY, Chang Y, Li PA. Monosialotetrahexosy-1 ganglioside attenuates diabetes-enhanced brain damage after transient forebrain ischemia and suppresses phosphorylation of ERK1/2 in the rat brain. Brain Res 2010; 1344:200-8. [PMID: 20546707 DOI: 10.1016/j.brainres.2010.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022]
Abstract
Monosialotetrahexosy-1 ganglioside (GM1) has been shown to reduce brain damage induced by cerebral ischemia. The objective of this study is to determine whether GM1 is able to ameliorate hyperglycemia-exacerbated ischemic brain damage in hyperglycemia-recruited areas such as the hippocampal CA3 sub regions and the cingulated cortex. Histologic stainings of Haematoxylin and Eosin, Nissl body, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and phospho-ERK1/2 were performed on brain sections that have been subjected to 15 min of forebrain ischemia with reperfusion of 0, 1, 3, and 6h in normoglycemic, hyperglycemic and GM1-pretreated hyperglycemic groups. The results showed that GM1 ameliorated ischemic neuronal injuries in the CA3 area and cingulated cortex of the hyperglycemic animals after ischemia and reperfusion. Immunohistochemistry of phospho-ERK1/2 revealed that the neuroprotective effects of GM1 were associated with suppression of phospho-ERK1/2. The results suggest that GM1 attenuates diabetic-augmented ischemic neuronal injuries probably through suppression of ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Jian-Zhong Zhang
- Department of Pathology, Ningxia Medical University, Yinchuan 750004, PR China.
| | | | | | | | | | | |
Collapse
|
32
|
Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009; 15:1011-29. [PMID: 19692432 DOI: 10.1177/1352458509106708] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myelin lipids have long been thought to play intriguing roles in the pathogenesis of multiple sclerosis (MS). This review summarizes current understanding of the molecular basis of MS with emphasis on the: (i.) physico-chemical properties, organization and accessibility of the lipids and their distribution within the myelin multilayer; (ii.) characterization of myelin lipid structures, and structure-function relationships relevant to MS mechanisms, and; (iii.) immunogenic and other features of lipids in MS including molecular mimicry, lipid enzyme genetic knockouts, glycolipid-reactive NKT cells, and monoclonal antibody-induced remyelination. New findings associate anti-lipid antibodies with pathophysiological biomarkers and suggest clinical utility. The structure of CD1d-lipid complexed with the lipophilic invariant T cell receptor (iTCR) may be crucial to understanding MS pathogenesis, and design of lipid antigen-specific therapeutics. Novel immuno-modulatory tools for treatment of autoimmune diseases including MS in which there is both constraint of inflammation and stimulation of remyelination are now emerging.
Collapse
Affiliation(s)
- M Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | |
Collapse
|
33
|
IgM anti-GQ1b monoclonal antibody inhibits voltage-dependent calcium current in cerebellar granule cells. Exp Neurol 2009; 219:74-80. [DOI: 10.1016/j.expneurol.2009.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/02/2009] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
|
34
|
Iorio R, Capone F, Iannaccone E, Willison HJ, Modoni A, Tonali PA, Silvestri G. SIADH in a patient with sensory ataxic neuropathy with anti-disialosyl antibodies (CANOMAD). J Neurol 2009; 256:1177-9. [PMID: 19252770 DOI: 10.1007/s00415-009-5071-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/30/2009] [Accepted: 02/10/2009] [Indexed: 11/29/2022]
|
35
|
Shioiri Y, Kurimoto A, Ako T, Daikoku S, Ohtake A, Ishida H, Kiso M, Suzuki K, Kanie O. Energy-Resolved Structural Details Obtained from Gangliosides. Anal Chem 2008; 81:139-45. [DOI: 10.1021/ac801611z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Shioiri
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ayako Kurimoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takuro Ako
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shusaku Daikoku
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuko Ohtake
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Kiso
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Katsuhiko Suzuki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Osamu Kanie
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
36
|
Sotgiu S, Musumeci S, Marconi S, Gini B, Bonetti B. Different content of chitin-like polysaccharides in multiple sclerosis and Alzheimer's disease brains. J Neuroimmunol 2008; 197:70-3. [PMID: 18485490 DOI: 10.1016/j.jneuroim.2008.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/21/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Chitin is an insoluble N-acetyl-glucosamine polymer coating fungi cell wall and several human parasites. It is hydrolysed by chitotriosidase (Chit); however, as chitin is absent in humans, the significance of human Chit activity is unknown. The level of plasma Chit activity positively correlates with Alzheimer's disease (AD) and multiple sclerosis (MS). A recent study revealed the presence of potentially detrimental chitin-like substances in AD brain by Calcofluor histochemistry, whilst its search in MS brains has never been described to date. Through a comparative immunohistochemical analysis we confirm the presence of abundant chitin-like deposition in AD brains but fail to demonstrate it in MS brains. Interestingly, co-localization of beta-amyloid, Calcofluor and the nuclear marker DAPI was observed. Therefore, Chit production in MS patients is induced by mechanisms other than those operating in AD. Microglia-derived Chit activity in MS may counterbalance the naturally occurring glucosamine aggregation, protecting the brain from the chitin-like substance deposition.
Collapse
Affiliation(s)
- Stefano Sotgiu
- Dipartimento di Neuroscienze e Scienze Materno-Infantili, University of Sassari, Italy.
| | | | | | | | | |
Collapse
|
37
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|