1
|
Superti F, Russo R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants (Basel) 2024; 13:1228. [PMID: 39456481 PMCID: PMC11505271 DOI: 10.3390/antiox13101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a bioactive molecule with significant health effects. The biological action of ALA has been ascribed to the characteristic antioxidant properties of the oxidized form (ALA) and its reduced counterpart the dihydrolipoic acid (DHLA) system. The ALA/DHLA combination represents an ideal antioxidant since it can quench radicals, is able to chelate metals, is amphiphilic, and has no major adverse effects. This unique system is able to scavenge reactive oxygen species, exerting a major effect on tissue levels of reduced forms of other antioxidants, including glutathione. For this reason, ALA is also known as the "antioxidant of antioxidants". This review analyzes the antioxidant, anti-inflammatory, and neuroprotective effects of ALA and discusses its applications as an ameliorative tool for chronic diseases and those associated with oxidative stress. Results from in vitro and in vivo studies demonstrated that ALA modulates various oxidative stress pathways suggesting its application, alone or in combination with other functional substances, as a useful support in numerous conditions, in which the balance oxidant-antioxidant is disrupted, such as neurodegenerative disorders. Based on several successful clinical studies, it has been also established that oral ALA supplements are clinically useful in relieving the complications of diabetes and other disorders including cardiovascular diseases and nerve discomforts suggesting that ALA can be considered a useful approach to improving our health.
Collapse
Affiliation(s)
- Fabiana Superti
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, RM, Italy;
- Association for Research on Integrative Oncology Therapies, (ARTOI) Foundation, Via Ludovico Micara, 73, 00165 Rome, RM, Italy
| | - Rosario Russo
- Giellepi S.p.A., Via G. Verdi, 41/Q, 20831 Seregno, MB, Italy
| |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
3
|
Induction of ICAM1 in Brain Vessels is Implicated in an Early AD Pathogenesis by Modulating Neprilysin. Neuromolecular Med 2022:10.1007/s12017-022-08726-x. [PMID: 35948857 DOI: 10.1007/s12017-022-08726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Intercellular adhesion molecule 1 (ICAM1) is a vessel adhesion protein induced during brain vascular inflammation, which could be closely linked with the development of Alzheimer's disease (AD). This study investigated the effect of ICAM1 on amyloid-degrading enzymes (ADEs) in endothelial cells and their potential involvement in inflammation and AD progression. TNF-α treatment increased ICAM1 in human brain microvascular endothelial cells (HBMVECs) but decreased the neprilysin (NEP) protein level. Knock-down of ICAM1 using siRNA enhanced NEP, which increased the degradation of amyloid-β. In the brains of 4-month-old AD transgenic mice (APPswe/PSEN1dE9), there were significantly higher levels of ICAM1 expression and amyloid deposits but lower levels of NEP and insulin-degrading enzymes (IDE), demonstrating an inverse correlation of ICAM1 with NEP and IDE expression. Further studies demonstrated significantly increased GFAP protein levels in the brain, specifically localized near blood vessels, of both TNF-α-injected and 4-month-old AD transgenic mice. Taken together, the induction of ICAM1 in endothelial cells suppresses NEP expression, accelerating the accumulation of amyloid-β in blood vessels. It also enhances leukocyte adhesion to blood vessels stimulating the migration of leukocytes into the brain, subsequently triggering brain inflammation.
Collapse
|
4
|
Córdova-Martínez A, Caballero-García A, Pérez-Valdecantos D, Roche E, Noriega-González DC. Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines 2022; 10:1051. [PMID: 35625788 PMCID: PMC9138404 DOI: 10.3390/biomedicines10051051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral neuropathies constitute a group of disorders affecting the peripheral nervous system. Neuropathies have multiple causes such as infections (i.e., COVID-19), diabetes, and nutritional (low vitamin levels), among others. Many micronutrients, such as vitamins (A, C, D, E, B6, B12, and folate), certain minerals (Fe, Mg, Zn, Se, and Cu), and ω-3 fatty acids have immunomodulatory effects. Therefore, they may play an instrumental role in the treatment of COVID-19 infection. However, many COVID-19 patients can undergo neuropathy. In this context, there is a wealth of information on a variety of first-, second-, and third-line treatment options. This review focuses on the application of nutraceutical strategies in order to improve the symptomatology of neuropathy and neuropathic pain in patients that suffered from COVID-19. Our aim is to provide an alternative vision to traditional medical-pharmacological treatment through nutraceuticals.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Daniel Pérez-Valdecantos
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - David César Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
5
|
Alpha-Lipoic Acid Inhibits Spontaneous Diabetes and Autoimmune Recurrence in Non-Obese Diabetic Mice by Enhancing Differentiation of Regulatory T Cells and Showed Potential for Use in Cell Therapies for the Treatment of Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23031169. [PMID: 35163121 PMCID: PMC8835933 DOI: 10.3390/ijms23031169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by the destruction of β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective treatment for T1D. However, the survival of islet grafts is often disrupted by recurrent autoimmunity. Alpha-lipoic acid (ALA) has been reported to have immunomodulatory effects and, therefore, may have therapeutic potential in the treatment of T1D. In this study, we investigated the therapeutic potential of ALA in autoimmunity inhibition. We treated non-obese diabetic (NOD) mice with spontaneous diabetes and islet-transplantation mice with ALA. The onset of diabetes was decreased and survival of the islet grafts was extended. The populations of Th1 cells decreased, and regulatory T cells (Tregs) increased in ALA-treated mice. The in vitro Treg differentiation was significantly increased by treatment with ALA. The adoptive transfer of ALA-differentiated Tregs into NOD recipients improved the outcome of the islet grafts. Our results showed that in vivo ALA treatment suppressed spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Tregs. Our study also demonstrated the therapeutic potential of ALA in Treg-based cell therapies and islet transplantation used in the treatment of T1D.
Collapse
|
6
|
Kelishadi MR, Naeini AA, Khorvash F, Askari G, Heidari Z. The beneficial effect of Alpha-lipoic acid supplementation as a potential adjunct treatment in episodic migraines. Sci Rep 2022; 12:271. [PMID: 34997178 PMCID: PMC8742085 DOI: 10.1038/s41598-021-04397-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
The current study was performed to evaluate the effects of alpha-lipoic acid (ALA) supplementation on lactate, nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) levels, and clinical symptoms in women with episodic migraines. Considering the inclusion and exclusion criteria, ninety-two women with episodic migraines participated in this randomized, double-blind, placebo-controlled, parallel-design trial. The participants were randomly assigned to receive either 300 mg/day ALA or placebo, twice per day for 12 weeks. The primary outcomes included headache severity, headache frequency per month, and duration of attacks and the secondary outcomes included lactate (a marker of mitochondrial function), NO, and VCAM-1 serum levels were measured at baseline and the end of the intervention. At the end of the study, there was a significant decrease in lactate serum levels (- 6.45 ± 0.82 mg/dl vs - 2.27 ± 1.17 mg/dl; P = 0.039) and VCAM-1 (- 2.02 ± 0.30 ng/ml vs - 1.21 ± 0.36 ng/ml; P = 0.025) in the ALA as compared to the placebo group. In addition, the severity (P < 0.001), frequency (P = 0.001), headache impact test (HIT-6) (P < 0.001), headache dairy results (HDR) (P = 0.003), and migraine headache index score (MHIS) (P < 0.001) had significantly decreased in the intervention as compared to the control group. No significant changes were observed for NO levels and duration of migraine pains. ALA supplementation can be considered a potential adjunct treatment in patients with migraine due to its improving mitochondrial and endothelial functions and clinical symptoms.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Xie H, Yang X, Cao Y, Long X, Shang H, Jia Z. Role of lipoic acid in multiple sclerosis. CNS Neurosci Ther 2021; 28:319-331. [PMID: 34964271 PMCID: PMC8841304 DOI: 10.1111/cns.13793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Lipoic acid (LA) is an endogenous antioxidant that exists widely in nature. Supplementation with LA is a promising approach to improve the outcomes of patients with multiple sclerosis (MS). This systematic review aimed to provide a comprehensive overview of both in vitro and in vivo studies describing the pharmacokinetics, efficacy, safety, and mechanism of LA in MS‐related experiments and clinical trials. A total of 516 records were identified by searching five databases, including PubMed, Web of Science, Embase, Scopus, and Cochrane Library. Overall, we included 20 studies reporting LA effects in cell and mouse models of MS and 12 studies reporting LA effects in patients with MS. Briefly, cell experiments revealed that LA protected neurons by inhibiting the expression of inflammatory mediators and activities of immune cells. Experimental autoimmune encephalomyelitis mouse experiments demonstrated that LA consistently reduced the number of infiltrating immune cells in the central nervous system and decreased the clinical disability scores. Patients with MS showed relatively stable Expanded Disability Status Scale scores and better walking performance with few adverse events after the oral administration of LA. Notably, heterogeneity of this evidence existed among modeling methods, LA usage, MS stage, and trial duration. In conclusion, this review provides evidence for the anti‐inflammatory and antioxidative effects of LA in both in vitro and in vivo experiments; therefore, patients with MS may benefit from LA administration. Whether LA can be a routine supplementary therapy warrants further study.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiufang Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Chigurupati S, Alhowail A, Abdeen A, Ibrahim SF, Vargas-De-La-Cruz C, Sachdeva M, Bhatia S, Al-Harrasi A, Bungau S. Decrypting the potential role of α-lipoic acid in Alzheimer's disease. Life Sci 2021; 284:119899. [PMID: 34450170 DOI: 10.1016/j.lfs.2021.119899] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases with motor disturbances, cognitive decline, and behavioral impairment. It is characterized by the extracellular aggregation of amyloid-β plaques and the intracellular accumulation of tau protein. AD patients show a cognitive decline, which has been associated with oxidative stress, as well as mitochondrial dysfunction. Alpha-lipoic acid (α-LA), a natural antioxidant present in food and used as a dietary supplement, has been considered a promising agent for the prevention or treatment of neurodegenerative disorders. Despite multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects, to date only a few studies have examined its effects in humans. Studies performed in animal models of memory loss associated with aging and AD have shown that α-LA improves memory in a variety of behavioral paradigms. Furthermore, molecular mechanisms underlying α-LA effects have also been investigated. Accordingly, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies. In addition, it has been shown that α-LA reverses age-associated loss of neurotransmitters and their receptors. The review article aimed at summarizing and discussing the main studies investigating the neuroprotective effects of α-LA on cognition as well as its molecular effects, to improve the understanding of the therapeutic potential of α-LA in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with α-LA.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh, Egypt
| | - Samah F Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, College of Medicine, Cairo University, Cairo, Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Monika Sachdeva
- Fatima College of Health Sciences, Alain, United Arab Emirates
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Wen ZH, Huang SY, Kuo HM, Chen CT, Chen NF, Chen WF, Tsui KH, Liu HT, Sung CS. Fumagillin Attenuates Spinal Angiogenesis, Neuroinflammation, and Pain in Neuropathic Rats after Chronic Constriction Injury. Biomedicines 2021; 9:biomedicines9091187. [PMID: 34572376 PMCID: PMC8470034 DOI: 10.3390/biomedicines9091187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: Angiogenesis in the central nervous system is visible in animal models of neuroinflammation and bone cancer pain. However, whether spinal angiogenesis exists and contributes to central sensitization in neuropathic pain remains unclear. This study analyzes the impact of angiogenesis on spinal neuroinflammation in neuropathic pain. Methods: Rats with chronic constriction injury (CCI) to the sciatic nerve underwent the implantation of an intrathecal catheter. Fumagillin or vascular endothelial growth factor-A antibody (anti-VEGF-A) was administered intrathecally. Nociceptive behaviors, cytokine immunoassay, Western blot, and immunohistochemical analysis assessed the effect of angiogenesis inhibition on CCI-induced neuropathic pain. Results: VEGF, cluster of differentiation 31 (CD31), and von Willebrand factor (vWF) expressions increased after CCI in the ipsilateral lumbar spinal cord compared to that in the contralateral side of CCI and control rats from post-operative day (POD) 7 to 28, with a peak at POD 14. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations, but not IL-10 levels, also increased in the ipsilateral spinal cord after CCI. Fumagillin and anti-VEGF-A reduced CCI-induced thermal hyperalgesia from POD 5 to 14 and mechanical allodynia from POD 3 to 14. Fumagillin reduced CCI-upregulated expressions of angiogenic factors and astrocytes. Furthermore, fumagillin decreased TNF-α and IL-6 amounts and increased IL-10 levels at POD 7 and 14, but not IL-1β concentrations. Conclusions: Fumagillin significantly ameliorates CCI-induced nociceptive sensitization, spinal angiogenesis, and astrocyte activation. Our results suggest that angiogenesis inhibitor treatment suppresses peripheral neuropathy-induced central angiogenesis, neuroinflammation, astrocyte activation, and neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chao-Ting Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: or ; Tel.: +886-2-2875-7549; Fax: +886-2-2875-1597
| |
Collapse
|
10
|
Theodosis-Nobelos P, Papagiouvannis G, Tziona P, Rekka EA. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol Biol Rep 2021; 48:6539-6550. [PMID: 34420148 DOI: 10.1007/s11033-021-06643-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Lipoic acid (LA) is globally known and its supplements are widely used. Despite its importance for the organism it is not considered a vitamin any more. The multiple metabolic forms and the differences in kinetics (absorption, distribution and excretion), as well as the actions of its enantiomers are analysed in the present article together with its biosynthetic path. The proteins involved in the transfer, biotransformation and activity of LA are mentioned. Furthermore, the safety and the toxicological profile of the compound are commented, together with its stability issues. Mechanisms of lipoic acid intervention in the human body are analysed considering the antioxidant and non-antioxidant characteristics of the compound. The chelating properties, the regenerative ability of other antioxidants, the co-enzyme activity and the signal transduction by the implication in various pathways will be discussed in order to be elucidated the pleiotropic effects of LA. Finally, lipoic acid integrating analogues are mentioned under the scope of the multiple pharmacological actions they acquire towards degenerative conditions.
Collapse
Affiliation(s)
| | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | - Paraskevi Tziona
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
11
|
Rochette L, Ghibu S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int J Mol Sci 2021; 22:7979. [PMID: 34360751 PMCID: PMC8348748 DOI: 10.3390/ijms22157979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Fernandez-Carbonell C, Charvet LE, Krupp LB. Enhancing Mood, Cognition, and Quality of Life in Pediatric Multiple Sclerosis. Paediatr Drugs 2021; 23:317-329. [PMID: 33997945 PMCID: PMC8275506 DOI: 10.1007/s40272-021-00451-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Pediatric-onset multiple sclerosis (POMS), representing approximately 5% of all MS cases, affects the central nervous system during its ongoing development. POMS is most commonly diagnosed during adolescence but can occur in younger children as well. For pediatric patients with MS, it is critical to manage the full impact of the disease and monitor for any effects on school and social functioning. Disease management includes not only disease-modifying therapies but also strategies to optimize wellbeing. We review the interventions with the highest evidence of ability to improve the disease course and quality of life in POMS. High levels of vitamin D and a diet low in saturated fat are associated with lower relapse rates. Exercise ameliorates fatigue and sleep. Behavioral strategies for sleep hygiene and mood regulation can also improve fatigue and perceived health. POMS management should be addressed holistically, including assessing overall symptom burden as well as the psychological and functional impact of the disease.
Collapse
Affiliation(s)
| | - Leigh E Charvet
- NYU Langone Pediatric Multiple Sclerosis Center, New York, NY, USA
| | - Lauren B Krupp
- NYU Langone Pediatric Multiple Sclerosis Center, New York, NY, USA
| |
Collapse
|
13
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
14
|
Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals (Basel) 2021; 11:ani11051454. [PMID: 34069383 PMCID: PMC8158713 DOI: 10.3390/ani11051454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary A review of human and animal studies involving alpha-lipoic acid supplementation was conducted to determine the utility of alpha-lipoic acid in dog food. The present literature shows that alpha-lipoic acid has utility as a nutritive additive at concentrations of 2.7–4.94 mg/kg body weight/day and improves antioxidant capacity in dogs. Abstract Alpha-lipoic acid (a-LA) is used as a nutritive additive in dog food. Therefore, we performed a systematic review of studies published to date in PubMed, Google Scholar, Cochrane Library and MedlinePlus involving alpha-lipoic acid supplementation, which included human clinical trials as well as animal studies, to evaluate its utility as a supplement in foods for healthy, adult dogs. While an upper limit of alpha-lipoic acid intake in humans has not been conclusively determined, the levels for oral intake of a-LA have been better defined in animals, and distinct differences based on species have been described. The maximum tolerated oral dose of a-LA in dogs has been reported as 126 mg/kg body weight and the LD50 as 400 to 500 mg/kg body weight. The antioxidant, anti-inflammatory and neuro-protective benefits of alpha-lipoic acid in dogs were observed at concentrations much lower than the maximum tolerated dose or proposed LD50. At concentrations of 2.7–4.94 mg/kg body weight/day, alpha-lipoic acid is well tolerated and posed no health risks to dogs while providing improved antioxidant capacity. This review thereby supports the utility of alpha-lipoic acid as an effective nutritive additive in dog food.
Collapse
|
15
|
Anthony RM, MacLeay JM, Jewell DE, Brejda JJ, Gross KL. Alpha-Lipoic Acid Is an Effective Nutritive Antioxidant for Healthy Adult Dogs. Animals (Basel) 2021; 11:274. [PMID: 33499039 PMCID: PMC7912130 DOI: 10.3390/ani11020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/28/2023] Open
Abstract
This study was designed to determine the effect of alpha-lipoic acid on the glutathione status in healthy adult dogs. Following a 15 month baseline period during which dogs were fed a food containing no alpha-lipoic acid, dogs were randomly allocated into four groups. Groups were then fed a nutritionally complete and balanced food with either 0, 75, 150 or 300 ppm of alpha-lipoic acid added for 6 months. Evaluations included physical examination, body weight, food intake, hematology, serum biochemistry profile and measurements of glutathione in plasma and erythrocyte lysates. Throughout, blood parameters remained within reference ranges, dogs were healthy and body weight did not change significantly. A significant increase of 0.05 ng/mL of total glutathione in red blood cell (RBC) lysate for each 1 mg/kg bodyweight/day increase in a-LA intake was observed. In addition, a significant increase was observed for GSH, GSSG and total glutathione in RBC lysate at Month 6. We conclude that alpha-lipoic acid, as part of a complete and balanced food, was associated with increasing glutathione activity in healthy adult dogs.
Collapse
Affiliation(s)
- Reshma M. Anthony
- Hill’s Pet Nutrition, Inc., 1035 NE 43rd Street, Topeka, KS 66617, USA; (J.M.M.); (K.L.G.)
| | - Jennifer M. MacLeay
- Hill’s Pet Nutrition, Inc., 1035 NE 43rd Street, Topeka, KS 66617, USA; (J.M.M.); (K.L.G.)
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - John J. Brejda
- Alpha Statistical Consulting, 1220 South 25th, Lincoln, NE 68502, USA;
| | - Kathy L. Gross
- Hill’s Pet Nutrition, Inc., 1035 NE 43rd Street, Topeka, KS 66617, USA; (J.M.M.); (K.L.G.)
| |
Collapse
|
16
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
17
|
Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J Nutr Biochem 2020; 89:108560. [PMID: 33249188 DOI: 10.1016/j.jnutbio.2020.108560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.
Collapse
|
18
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
19
|
|
20
|
Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen JT. On the Neuroprotective Effects of Naringenin: Pharmacological Targets, Signaling Pathways, Molecular Mechanisms, and Clinical Perspective. Biomolecules 2019; 9:E690. [PMID: 31684142 PMCID: PMC6920995 DOI: 10.3390/biom9110690] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
As a group of progressive, chronic, and disabling disorders, neurodegenerative diseases (NDs) affect millions of people worldwide, and are on the rise. NDs are known as the gradual loss of neurons; however, their pathophysiological mechanisms have not been precisely revealed. Due to the complex pathophysiological mechanisms behind the neurodegeneration, investigating effective and multi-target treatments has remained a clinical challenge. Besides, appropriate neuroprotective agents are still lacking, which raises the need for new therapeutic agents. In recent years, several reports have introduced naturally-derived compounds as promising alternative treatments for NDs. Among natural entities, flavonoids are multi-target alternatives affecting different pathogenesis mechanisms in neurodegeneration. Naringenin is a natural flavonoid possessing neuroprotective activities. Increasing evidence has attained special attention on the variety of therapeutic targets along with complex signaling pathways for naringenin, which suggest its possible therapeutic applications in several NDs. Here, in this review, the neuroprotective effects of naringenin, as well as its related pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective, are described. Moreover, the need to develop novel naringenin delivery systems is also discussed to solve its widespread pharmacokinetic limitation.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student's Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol 7383198616, Iran.
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, Brazil.
| | - Ghada E Abd-ElGhani
- Department of Chemistry, Faculty of Science, University of Mansoura, 35516 Mansoura, Egypt.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
| |
Collapse
|
21
|
Evans E, Piccio L, Cross AH. Use of Vitamins and Dietary Supplements by Patients With Multiple Sclerosis: A Review. JAMA Neurol 2019; 75:1013-1021. [PMID: 29710293 DOI: 10.1001/jamaneurol.2018.0611] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Surveys of patients with multiple sclerosis report that most are interested in modifying their diet and using supplements to potentially reduce the severity and symptoms of the disease. This review provides an updated overview of the current state of evidence for the role that vitamins and dietary supplements play in multiple sclerosis and its animal models, with an emphasis on recent studies, and addresses biological plausibility and safety issues. Observations Several vitamins and dietary supplements have been recently explored both in animal models and by patients with multiple sclerosis. Most human trials have been small or nonblinded, limiting their generalizability. Biotin and vitamin D are currently being tested in large randomized clinical trials. Smaller trials are ongoing or planned for other supplements such as lipoic acid and probiotics. The results of these studies may help guide clinical recommendations. Conclusions and Relevance At the present time, the only vitamin with sufficient evidence to support routine supplementation for patients with multiple sclerosis is vitamin D. Vitamin deficiencies should be avoided. It is important for clinicians to know which supplements their patients are taking and to educate patients on any known efficacy data, along with any potential medication interactions and adverse effects of individual supplements. Given that dietary supplements and vitamins are not subject to the same regulatory oversight as prescription pharmaceuticals in the United States, it is recommended that vitamins and supplements be purchased from reputable manufacturers with the United States Pharmacopeia designation.
Collapse
Affiliation(s)
- Emily Evans
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Laura Piccio
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| | - Anne H Cross
- Department of Neurology, Neuroimmunology Section, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
22
|
Ismawati, Mukhyarjon, Asni E, Romus I. The effect of alpha-lipoic acid on expression of VCAM-1 in type 2 diabetic rat. Anat Cell Biol 2019; 52:176-182. [PMID: 31338234 PMCID: PMC6624340 DOI: 10.5115/acb.2019.52.2.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/01/2019] [Accepted: 02/22/2019] [Indexed: 11/27/2022] Open
Abstract
Macrovascular diabetes complications are generally caused by a process called atherosclerosis. Evidences suggest that to initiate atherosclerosis, oxidated low-density lipoprotein (oxLDL) has to promote the expression of adhesion molecule. Several studies have evidenced the relevance of oxidative stress and atherosclerosis. However, the protective effect of alpha-lipoic acid (ALA) at atherosclerosis still needs to be explored. This study is aimed at investigating the concentration of plasma oxLDL and the expression of adhesion molecule of type 2 diabetes mellitus (DM) using rat model. Eighteen male rats were segregated into three groups labeled as control group, DM group and DM+ALA group. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg) followed by nicotinamide (110 mg/kg). ALA was administered at a dose of 60 mg/kg body weight/day throughout the feeding period of 3 weeks. Plasma oxLDL concentration was measured by enzyme-linked immunosorbent assays and expression of vascular cell adhesion molecule-1 (VCAM-1) was measured by immunohistochemistry. Expression of abdominal aortic adhesion molecule was assessed by calculation with Adobe Photoshop CS3. Analysis of variance test was used to compare the concentration of plasma oxLDL and expression of adhesion molecule. A P-value of 0.05 was considered statistically significant. Plasma oxLDL was lower in diabetic rat+ALA compared with the diabetic rat. Percentage of area VCAM-1 in DM+ALA group was lower than DM group. There were no significant differences between groups in intensity of VCAM-1. In conclusion, ALA showed protective effects against early atherosclerosis in diabetic rats.
Collapse
Affiliation(s)
- Ismawati
- Department of Biochemistry, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Mukhyarjon
- Department of Internal Medicine, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Enikarmila Asni
- Department of Biochemistry, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| | - Ilhami Romus
- Department of Pathology Anatomy, Faculty of Medicine, Riau University, Pekanbaru, Indonesia
| |
Collapse
|
23
|
Di Nicuolo F, D'Ippolito S, Castellani R, Rossi ED, Masciullo V, Specchia M, Mariani M, Pontecorvi A, Scambia G, Di Simone N. Effect of alpha-lipoic acid and myoinositol on endometrial inflammasome from recurrent pregnancy loss women. Am J Reprod Immunol 2019; 82:e13153. [PMID: 31148259 DOI: 10.1111/aji.13153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
PROBLEM A significant increased expression/activation of one of the most well-characterized inflammasomes, the NAcht leucine-rich-repeat protein-3 (NALP-3), in the endometrium from idiopathic recurrent pregnancy loss women (RPL) has been previously found by our research group. We therefore, suggested this event as being one of the molecular mechanisms altering endometrial inflammatory status during early pregnancy. In the present research, we attempt to investigate whether molecules with anti-inflammatory activity, alpha-lipoic acid (ALA), and/or myoinositol affect the endometrial NALP-3 expression and activation. METHOD OF STUDY Women with a history of idiopathic RPL (n = 30) were included in the study and compared to a control group (n = 15). Endometrial tissues were collected by hysteroscopy during the mid-luteal phase. RPL women underwent a three-month prescription of tablets containing ALA plus myoinositol (Sinopol® ). After treatment, hysteroscopic biopsies were repeated in RPL patients. Inflammasome expression was evaluated by immunohistochemical and Western blot analysis. NALP-3 activation was studied by quantifying the secretion of both caspase-1 and interleukin (IL)-1ß and IL-18 through ELISA. In ex vivo experiments, the effects of each molecule on endometrial inflammasome were studied. RESULTS Sinopol® significantly reduced the RPL endometrial inflammasome expression and activation. ALA, but not myoinositol, significantly reduced the endometrial inflammasome expression and activity. CONCLUSION Our data suggest a role for ALA on RPL inflammasome. Understanding the mechanisms involved in RPL and the observation that specific molecules are able to interfere with such complex at the endometrium might provide new rational design approaches to a personalized evaluation of endometrial status and, ultimately, a targeted medicine.
Collapse
Affiliation(s)
- Fiorella Di Nicuolo
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Silvia D'Ippolito
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Roberta Castellani
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Esther Diana Rossi
- U.O.C. di Anatomia Patologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Valeria Masciullo
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Monia Specchia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Marco Mariani
- Istituto di Sanità Pubblica, Sezione di Igiene, Università Cattolica Del Sacro Cuore, Roma, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C di Endocrinologia e Diabetologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
24
|
Šabanović M, Jašić M, Odobašić A, Aleksovska ES, Pavljašević S, Bajraktarević A, Čepo DV. Alpha Lipoic Acid Reduces Symptoms and Inflammation Biomarkers in Patients with Chronic Hemorrhoidal Illness. INT J VITAM NUTR RES 2019; 88:281-290. [PMID: 31140940 DOI: 10.1024/0300-9831/a000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Oral dietary supplementation is becoming increasingly popular as an addition to classical approaches for the prevention and treatment of hemorrhoidal disease. Aim: To examine the effect of orally administrated alpha lipoic acid (ALA), known for its antioxidant and anti-inflammatory properties, in the treatment of patients with permanent symptoms of hemorrhoidal disease. Methods: Patients with second- and third-degree hemorrhoids (n = 100) were enrolled into a randomized, open label, single-center trial. The study group (n = 50) was treated with 200 mg of orally administered ALA once a day during the 12-week period, the control group (n = 50) did not receive any treatment. Results: There were no significant differences in demographics, diagnosis, or exposure to major risk factors between the study and placebo group at baseline. ALA significantly improved subjective efficacy variables, such as pain and discomfort (p < 0.01) as well as objective signs of the disease, such as bleeding (p < 0.01), in comparison to the control group. Furthermore, the 3-month treatment significantly reduced the number of patients with positive C-reactive protein (CRP) value (serum CRP > 5 mg/L) from 18% before to only 2% after the treatment (χ2 = 4.65; p < 0.01). Average leukocyte count has also been significantly reduced in the treatment group (p < 0.01) from 7.29 × 109/L before to 6.18 × 109/L after treatment. Conclusions: The obtained results indicate that ALA is effective in the treatment of second- and third-degree hemorrhoids. Larger, double-blind controlled trials are needed to confirm the results and to investigate optimal treatment regimens.
Collapse
Affiliation(s)
- Marizela Šabanović
- 1 Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Midhat Jašić
- 1 Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Amer Odobašić
- 2 Surgery Clinic, University Clinical Center Tuzla, Tuzla, Bosnia and Herzegovina
| | | | - Suzana Pavljašević
- 4 Clinic of Ophthalmology Health Center Tuzla, Tuzla, Bosnia and Herzegovina
| | - Amila Bajraktarević
- 5 Department of Family medicine, Tuzla Primary Health Care Home, Tuzla, Bosnia and Herzegovina
| | - Dubravka Vitali Čepo
- 6 Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
Chaudhary P, Marracci G, Pocius E, Galipeau D, Morris B, Bourdette D. Effects of lipoic acid on primary murine microglial cells. J Neuroimmunol 2019; 334:576972. [PMID: 31176014 DOI: 10.1016/j.jneuroim.2019.576972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
The anti-oxidant lipoic acid (LA) is beneficial in murine models of multiple sclerosis (MS) and has recently been shown to slow brain atrophy in secondary progressive MS. The mechanism of these effects by LA is incompletely understood but may involve effects on microglia. The objective of this study is to understand how LA affects microglial cells. We cultured primary microglial cells from C57BL/6 adult mice brains and stimulated the cells with lipopolysaccharide (LPS) and interferon gamma (IFN-γ) in the presence or absence of LA. We demonstrate the inhibition of phagocytosis, rearrangement of actin, and formation of membrane blebs in stimulated microglia in the presence of LA. These experiments suggest that LA causes changes in microglial actin, which may lead to alterations in phagocytosis, mobility, and migration.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America.
| | - Gail Marracci
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, United States of America
| | - Edvinas Pocius
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - Danielle Galipeau
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - Brooke Morris
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - Dennis Bourdette
- Department of Neurology, L226, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; Research, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, United States of America
| |
Collapse
|
26
|
Waslo C, Bourdette D, Gray N, Wright K, Spain R. Lipoic Acid and Other Antioxidants as Therapies for Multiple Sclerosis. Curr Treat Options Neurol 2019; 21:26. [PMID: 31056714 DOI: 10.1007/s11940-019-0566-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS), when oxidative forces outweigh endogenous and nutritional antioxidant defenses, contributes to the pathophysiology of multiple sclerosis (MS). Evidence of OS is found during acute relapses, in active inflammatory lesions, and in chronic, longstanding plaques. OS results in both ongoing inflammation and neurodegeneration. Antioxidant therapies are a rational strategy for people with MS with all phenotypes and disease durations. PURPOSE OF REVIEW: To understand the function of OS in health and disease, to examine the contributions of OS to MS pathophysiology, and to review current evidence for the effects of selected antioxidant therapies in people with MS (PwMS) with a focus on lipoic acid (LA). RECENT FINDINGS: Studies of antioxidant interventions in both animal and in vivo models result in reductions in serum markers of OS and increases in levels and activity of antioxidant enzymes. Antioxidant trials in PwMS, while generally underpowered, detect short-term improvements in markers of OS and antioxidant defenses, and to a lesser extent, in clinical symptoms (fatigue, depression). The best evidence to date is a 2-year trial of LA in secondary progressive MS which demonstrated a significant reduction of whole-brain atrophy and trend toward improvement in walking speed. Antioxidant therapy is a promising approach to treat MS across the spectrum and duration of disease. Rigorous and well-powered trials are needed to determine their therapeutic benefits.
Collapse
Affiliation(s)
- Carin Waslo
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Nora Gray
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Kirsten Wright
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Rebecca Spain
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Rahimlou M, Asadi M, Banaei Jahromi N, Mansoori A. Alpha-lipoic acid (ALA) supplementation effect on glycemic and inflammatory biomarkers: A Systematic Review and meta- analysis. Clin Nutr ESPEN 2019; 32:16-28. [PMID: 31221283 DOI: 10.1016/j.clnesp.2019.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Several randomized clinical trials (RCTs) have investigated the effect of Alpha - Lipoic Acid (ALA) supplementation on metabolic parameters, with conflicting results. Therefore, the present study assessed the effect of ALA on some glycemic and inflammatory parameters. METHODS A comprehensive literature search was conducted up from inception to July 2018 on PubMed, Scopus, Cochrane databases, Google Scholar, ProQuest, Web of Science, and Embase. From among eligible trials, 41 articles were selected for the meta-analysis. Two reviewers independently assessed the risk of bias and extracted data from the included studies. Meta-analyses using the random-effects model were performed to analyze the data. RESULTS Based on the Cochrane risk of bias tool, 19 articles had a good quality, 16 trials had a poor quality and 6 trials had a fair quality. The results demonstrated the significant effect of ALA on Fasting Blood Sugar (FBS) (weighted mean difference (WMD)) = -6.57, 95% confidence interval (CI: -11.91 to -1.23, P = 0.016), Hemoglobin A1c (HbA1c) (WMD = -0.35, 95% CI: -0.55 to -0.15, P = 0.004), Tumor Necrosis Factor Alpha (TNF-α) (WMD = -1.57, 95% CI: -2.29 to -0.85, P < 0.05), Interleukin 6 levels (IL-6) (WMD = -1.15, 95% CI: -1.58 to -0.72, P < 0.001), and C-reactive protein (CRP) (WMD = -0.31, 95% CI: -0.47 to -0.16, P > 0.001). No effect was detected for ALA on insulin and the homeostatic model assessment of insulin resistance (HOMA-IR). CONCLUSIONS These findings suggest that ALA is a viable supplement to improve some of the glycemic and inflammatory biomarkers.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| | - Maryam Asadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nasrin Banaei Jahromi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
28
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
29
|
Therapeutic Advances and Challenges in the Treatment of Progressive Multiple Sclerosis. Drugs 2018; 78:1549-1566. [DOI: 10.1007/s40265-018-0984-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Micili SC, Goker A, Kuscu K, Ergur BU, Fuso A. α-Lipoic Acid Vaginal Administration Contrasts Inflammation and Preterm Delivery in Rats. Reprod Sci 2018; 26:128-138. [PMID: 29631479 DOI: 10.1177/1933719118766266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
α-Lipoic acid (ALA) is a safe natural molecule involved in the immunomodulation of many physiological processes. Orally administered ALA has been reported to treat several inflammatory pathologies and support pregnancy. Our study aimed at testing ALA vaginal administration in female Wistar rats evaluating its tissue distribution (experiment I), impact on implantation process (experiment II), and effectiveness in contrasting induced preterm birth (experiment III). In experiment I, rats were intravaginally treated with 50 mg/kg or 500 mg/kg ALA, or with a physiologic solution, for 4 days. α-Lipoic acid distribution in uterus and cervical tissues was evaluated by immunohistochemical analyses. In experiment II, rats received intravaginally the above treatments for 5 days, then they were mated and, if pregnant, included in the experiment to evaluate both implantation rate and the content of implantation mediators in uterus tissues. In experiment III, pregnant rats were pretreated with placebo or with vaginal ALA for 4 days and then induced to delivery with mifepristone plus PGE2 on the 19th day of pregnancy. The delivery time was recorded, and the messenger RNA (mRNA) levels of pro-inflammatory cytokines were detected in the uterine tissues by real-time polymerase chain reaction. Immunohistochemistry was also performed. Results showed that vaginal ALA was well absorbed and distributed. The treatment did not affect the implantation process and was able to significantly revert mifepristone plus prostaglandin E2 effects, delaying the timing of delivery and significantly decreasing mRNA synthesis and release of pro-inflammatory cytokines. We provide for the first time new information on vaginal ALA use, even during pregnancy, opening a perspective for further studies.
Collapse
Affiliation(s)
- Serap Cilaker Micili
- 1 Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Asli Goker
- 2 Department of Obstetrics and Gynecology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Kemal Kuscu
- 2 Department of Obstetrics and Gynecology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Bekir Ugur Ergur
- 1 Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Andrea Fuso
- 3 Department of Surgery "P. Valdoni," Sapienza University of Rome, Roma, Italy
| |
Collapse
|
31
|
Protection from spinal cord ischemia-reperfusion damage with alpha-lipoic acid preconditioning in an animal model. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:138-145. [PMID: 32082723 DOI: 10.5606/tgkdc.dergisi.2018.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate whether preconditioning with alpha-lipoic acid has any protective effect in neuronal damage in an experimental spinal cord ischemia-reperfusion injury model. Methods Eighteen adult male New Zealand rabbits (2.4-3.5 kg) were equally divided into sham, control and treatment groups. The abdominal aorta was occluded for 30 min proximally 1 cm below the renal artery and distally 1 cm above the bifurcation using aneurysm clips in control and treatment groups. Treatment group received intraperitoneal 100 mg/kg lipoic acid 20 min before aortic cross-clamping. The animals were sacrificed 48 hours after the operation and spinal cord segments between L2 and L5 were removed for biochemical and histopathological analysis. Levels of glutathione, malondialdehyde, total nitrate/nitrite, advanced oxidation protein products, catalase, superoxide dismutase, and glutathione peroxidase were examined in spinal cord. Results Preconditioning with alpha-lipoic acid demonstrated significantly favorable effects in all measured parameters of oxidative stress. Histopathological evaluation of the tissues also demonstrated significantly decreased neuronal degeneration, axonal damage, and microglial and astrocytic infiltration in the treatment group compared to the control group. Conclusion The results of this study indicate that alpha-lipoic acid administration before aortic cross-clamping has significant neuroprotective effect on spinal cord injury in rabbits.
Collapse
|
32
|
Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, Shakouri SK. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr Neurosci 2017; 22:306-316. [DOI: 10.1080/1028415x.2017.1386755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Seifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Khalili
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Multiple Sclerosis Research Center, Tehran, Iran
| | - Habib Khaledyan
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Amiri Moghadam
- Faculty of Medicine, Department of Community Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azimeh Izadi
- Faculty of Nutrition and Food Science, Department of Biochemistry and Diet Therapy, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seied Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Fiedler SE, Yadav V, Kerns AR, Tsang C, Markwardt S, Kim E, Spain R, Bourdette D, Salinthone S. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects. Mol Neurobiol 2017; 55:6037-6049. [PMID: 29143287 DOI: 10.1007/s12035-017-0813-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/27/2017] [Indexed: 02/05/2023]
Abstract
Lipoic acid (LA) exhibits antioxidant and anti-inflammatory properties; supplementation reduces disease severity and T lymphocyte migration into the central nervous system in a murine model of multiple sclerosis (MS), and administration in secondary progressive MS (SPMS) subjects reduces brain atrophy compared to placebo. The mechanism of action (MOA) of LA's efficacy in suppression of MS pathology is incompletely understood. LA stimulates production of the immunomodulator cyclic AMP (cAMP) in vitro. To determine whether cAMP could be involved in the MOA of LA in vivo, we performed a clinical trial to examine whether LA stimulates cAMP production in healthy control and MS subjects, and whether there are differences in the bioavailability of LA between groups. We administered 1200 mg of oral LA to healthy control, relapsing remitting MS (RRMS) and SPMS subjects, and measured plasma LA and cAMP levels in peripheral blood mononuclear cells (PBMCs). There were no significant differences between the groups in pharmacokinetic (PK) parameters. Healthy and SPMS subjects had increased cAMP at 2 and 4 h post-LA treatment compared to baseline, while RRMS subjects showed decreases in cAMP. Additionally, plasma concentrations of prostaglandin E2 (PGE2, a known cAMP stimulator) were significantly lower in female RRMS subjects compared to female HC and SPMS subjects 4 h after LA ingestion. These data indicate that cAMP could be part of the MOA of LA in SPMS, and that there is a divergent response to LA in RRMS subjects that may have implications in the efficacy of immunomodulatory drugs. This clinical trial, "Defining the Anti-inflammatory Role of Lipoic Acid in Multiple Sclerosis," NCT00997438, is registered at https://clinicaltrials.gov/ct2/show/record/NCT00997438 .
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Vijayshree Yadav
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Amelia R Kerns
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Catherine Tsang
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Sheila Markwardt
- OCTRI Biostatistics and Design Program, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Edward Kim
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Rebecca Spain
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sonemany Salinthone
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Khalili M, Soltani M, Moghadam SA, Dehghan P, Azimi A, Abbaszadeh O. Effect of alpha-lipoic acid on asymmetric dimethylarginine and disability in multiple sclerosis patients: A randomized clinical trial. Electron Physician 2017; 9:4899-4905. [PMID: 28894553 PMCID: PMC5587011 DOI: 10.19082/4899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/14/2017] [Indexed: 01/17/2023] Open
Abstract
Background Multiple Sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system. Oxidative stress plays a major role in the onset and progression of MS. Asymmetric dimethylarginine (ADMA) formation is dependent on oxidative stress status. Objective We examined whether alpha-lipoic acid (ALA) as a potent antioxidant could improve the Expanded Disability Status Scale (EDSS) and decrease plasma level of ADMA in multiple sclerosis patients. Methods In a randomized, double-blinded clinical trial conducted at Sina Hospital in Tehran, Iran, from September 2009 to July 2011, 24 patients with relapsing-remitting MS were divided into a treatment group receiving ALA (1200mg/day) for 12 weeks and a control group receiving placebo. Then patients’ EDSS and Plasma levels of ADMA were measured at baseline and 12 weeks later. Statistical analysis was done by SPSS software version 16 using the K-S test, Chi square, Mann–Whitney U-test and Wilcoxon test. Results The plasma levels of ADMA in the intervention group were decreased significantly (p=0.04). Also, no patient had increased EDSS score in the supplement group, where 2 out of 12 patients in the placebo group experienced so. Comparing the serum level of ADMA between the two groups failed to show any significant change in the supplement group compared with the control group. Conclusion Considering that ADMA is produced by oxidative stress in MS patients and leads to increase of inflammation, ALA may have the potential of beneficial effects in them, in part, by decreasing the plasma level of ADMA and stopping progression. Trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the Irct ID: No. IRCT138812222602N2. Funding The authors received no financial support for the research, authorship, and/or publication of this article.
Collapse
Affiliation(s)
- Mohammad Khalili
- Ph.D. of Nutrition, Assistant Professor, Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shirin Amiri Moghadam
- M.D., Ph.D. of Nutrition, Assistant Professor, Department of community medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parvin Dehghan
- Ph.D. of Nutrition, Assistant Professor, Department of Food Science and Technology, Faculty of Nutrition and food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Azimi
- M.D., Neurologist, Assistant Professor, Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Abbaszadeh
- M.D., Research Development and Coordination Center, faculty of Medicine, Deputy of Research and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Benedek G, Chaudhary P, Meza-Romero R, Calkins E, Kent G, Offner H, Bourdette D, Vandenbark AA. Sex-dependent treatment of chronic EAE with partial MHC class II constructs. J Neuroinflammation 2017; 14:100. [PMID: 28477623 PMCID: PMC5420407 DOI: 10.1186/s12974-017-0873-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
Background One of the main challenges in treating multiple sclerosis (MS) is reversing the effects of accumulated damage in the central nervous system (CNS) of progressive MS subjects. While most of the available drugs for MS subjects are anti-inflammatory and thus are limited to relapsing-remitting MS subjects, it is not clear to what extent their effects are capable of inducing axonal repair and remyelination in subjects with chronic MS. Methods A chronic model of experimental autoimmune encephalomyelitis (EAE) was used to evaluate the potency of partial MHC (pMHC) class II constructs in treating progressive EAE. Results We demonstrated an estrogen receptor alpha (ERα)-dependent increased dose requirement for effective treatment of female vs. male mice using pMHC. Such treatment using 100-μg doses of RTL342M or DRα1-mMOG-35-55 constructs significantly reversed clinical severity and showed a clear trend for inhibiting ongoing CNS damage, demyelination, and infiltration of inflammatory cells into the CNS in male mice. In contrast, WT female mice required larger 1-mg doses for effective treatment, although lower 100-μg doses were effective in ovariectomized or ERα-deficient mice with EAE. Conclusions These findings will assist in the design of future clinical trials using pMHC for treatment of progressive MS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0873-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Priya Chaudhary
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Evan Calkins
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Gail Kent
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neurology Service, VA Portland Health Care System, Portland, OR, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA. .,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA. .,Department of Neurology, Oregon Health & Science University, Portland, OR, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA. .,Research Service R&D31, VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
| |
Collapse
|
36
|
Wang D, Li SP, Fu JS, Zhang S, Bai L, Guo L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. J Neurophysiol 2016; 116:2173-2179. [PMID: 27535376 DOI: 10.1152/jn.00510.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
The mouse autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), is primarily characterized as dysfunction of the blood-brain barrier (BBB). Resveratrol exhibits anti-inflammatory, antioxidative, and neuroprotective activities. We investigated the beneficial effects of resveratrol in protecting the integrity of the BBB in EAE mice and observed improved clinical outcome in the EAE mice after resveratrol treatment. Evans blue (EB) extravasation was used to detect the disruption of BBB. Western blot were used to detected the tight junction proteins and adhesion molecules zonula occludens-1 (ZO-1), occludin, ICAM-1, and VCAM-1. Inflammatory factors inducible nitric oxide synthase (iNOS), IL-1β, and arginase 1 were evaluated by quantitative RT-PCR (qPCR) and IL-10 by ELISA. NADPH oxidase (NOX) levels were evaluated by qPCR, and its activity was analyzed by lucigenin-derived chemiluminescence. Resveratrol at doses of 25 and 50 mg/kg produced a dose-dependent decrease in EAE paralysis and EB leakage, ameliorated EAE-induced loss of tight junction proteins ZO-1, occludin, and claudin-5, as well as repressed the EAE-induced increase in adhesion proteins ICAM-1 and VCAM-1. In addition, resveratrol suppressed the EAE-induced overexpression of proinflammatory transcripts iNOS and IL-1β and upregulated the expression of anti-inflammatory transcripts arginase 1 and IL-10 cytokine in the brain. Furthermore, resveratrol downregulated the overexpressed NOX2 and NOX4 in the brain and suppressed NADPH activity. Resveratrol ameliorates the clinical severity of MS through maintaining the BBB integrity in EAE mice.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Shi-Ping Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Jin-Sheng Fu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Sheng Zhang
- Department of Emergency, Xingtai People's Hospital, Xingtai, Hebei, People's Republic of China
| | - Lin Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| |
Collapse
|
37
|
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 2016; 13:1695-1708. [DOI: 10.1080/17425247.2016.1200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Monastra
- Department of Experimental Medicine, University la Sapienza, Rome, Italy
| | - Sara De Grazia
- Department of Research and Development, LO.LI. Pharma, Rome, Italy
| | | | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University, Manisa, Turkey
| | - Vittorio Unfer
- Department of Medical Sciences, UNIIPUS – Private Swiss University Institute, Chiasso, Switzerland
| |
Collapse
|
38
|
Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, Du X, Zhu J, Xie X. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun 2016; 7:11120. [PMID: 27040771 PMCID: PMC4822006 DOI: 10.1038/ncomms11120] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches.
Collapse
Affiliation(s)
- Changsheng Du
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhui Duan
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Wei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yingying Cai
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hui Chai
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Lv
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiling Du
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Zhu
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
39
|
Sternberg Z. Promoting sympathovagal balance in multiple sclerosis; pharmacological, non-pharmacological, and surgical strategies. Autoimmun Rev 2016; 15:113-23. [DOI: 10.1016/j.autrev.2015.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D. Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 2015; 289:68-74. [PMID: 26616873 DOI: 10.1016/j.jneuroim.2015.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023]
Abstract
Cortical lesions are a crucial part of MS pathology and it is critical to determine that new MS therapies have the ability to alter cortical inflammatory lesions given the differences between white and gray matter lesions. We tested lipoic acid (LA) in a mouse focal cortical EAE model. Brain sections were stained with antibodies against CD4, CD11b and galectin-3. Compared with vehicle, treatment with LA significantly decreased CD4+ and galectin-3+ immune cells in the brain. LA treated mice had fewer galectin-3+ cells with no projections indicating decrease in the number of infiltrating monocytes. LA significantly reduces inflammation in a focal cortical model of MS.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Gail Marracci
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States; Research, Department of Veteran Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, United States
| | - Danielle Galipeau
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Edvinas Pocius
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Brooke Morris
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, L226, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States; Research, Department of Veteran Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, United States; Neurology Services, Department of Veteran Affairs Medical Center, Portland, OR 97239, United States
| |
Collapse
|
41
|
Plemel JR, Juzwik CA, Benson CA, Monks M, Harris C, Ploughman M. Over-the-counter anti-oxidant therapies for use in multiple sclerosis: A systematic review. Mult Scler 2015; 21:1485-95. [PMID: 26286700 DOI: 10.1177/1352458515601513] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/27/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Anti-oxidant compounds that are found in over-the-counter (OTC) supplements and foods are gaining interest as treatments for multiple sclerosis (MS). They are widely used by patients, sometimes without a clear evidence base. OBJECTIVE We conducted a systematic review of animal and clinical research to determine the evidence for the benefits of OTC anti-oxidants in MS. METHODS Using predefined criteria, we searched key databases. Two authors scrutinized all studies against inclusion/exclusion criteria, assessed study risk-of-bias and extracted results. RESULTS Of the 3507 titles, 145 met criteria and included compounds, α(alpha)-lipoic acid (ALA), anti-oxidant vitamins, Ginkgo biloba, quercetin, resveratrol and epigallocatechin-3-gallate (ECGC). The strongest evidence to support OTC anti-oxidants was for compounds EGCG and ALA in animal models; both consistently showed anti-inflammatory/anti-oxidant effects and reduced neurological impairment. Only vitamin E, Ginkgo biloba and ALA were examined for efficacy in pilot clinical trials with either conflicting evidence or evidence of no benefit. CONCLUSION OTC anti-oxidants EGCG and ALA show the most consistent benefit, however only in preclinical studies. There is no evidence that they alter MS relapses or progression. Future work should focus on testing more of these therapies for clinical efficacy before recommending them to MS patients.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Canada
| | - Camille A Juzwik
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Canada
| | - Curtis A Benson
- Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - Michael Monks
- Recovery & Performance Laboratory, Memorial University, Canada
| | - Chelsea Harris
- Recovery & Performance Laboratory, Memorial University, Canada
| | | |
Collapse
|
42
|
Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, Nah SY, Cho IH. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells. Mol Neurobiol 2015; 53:1977-2002. [PMID: 25846819 DOI: 10.1007/s12035-015-9131-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/22/2015] [Indexed: 11/26/2022]
Abstract
The effects of Korean red ginseng extract (KRGE) on autoimmune disorders of the nervous system are not clear. We investigated whether KRGE has a beneficial effect on acute and chronic experimental autoimmune encephalomyelitis (EAE). Pretreatment (daily from 10 days before immunization with myelin basic protein peptide) with KRGE significantly attenuated clinical signs and loss of body weight and was associated with the suppression of spinal demyelination and glial activation in acute EAE rats, while onset treatment (daily after the appearance of clinical symptoms) did not. The suppressive effect of KRGE corresponded to the messenger RNA (mRNA) expression of proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin [IL]-1β), chemokines (RANTES, monocyte chemotactic protein-1 [MCP-1], and macrophage inflammatory protein-1α [MIP-1α]), adhesion molecules (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], and platelet endothelial cell adhesion molecule [PECAM-1]), and inducible nitric oxide synthase in the spinal cord after immunization. Interestingly, in acute EAE rats, pretreatment with KRGE significantly reduced the population of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells in the spinal cord and lymph nodes, corresponding to the downregulation of mRNA expression of IFN-γ, IL-17, and IL-23 in the spinal cord. On the other hand, KRGE pretreatment increased the population of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of these rats, corresponding to the upregulation of mRNA expression of Foxp3 in the spinal cord. Interestingly, intrathecal pretreatment of rats with ginsenosides (Rg1 and Rb1) significantly decreased behavioral impairment. These results strongly indicate that KRGE has a beneficial effect on the development and progression of EAE by suppressing T helper 1 (Th1) and Th17 T cells and upregulating regulatory T cells. Additionally, pre- and onset treatment with KRGE alleviated neurological impairment of myelin oligodendrocyte glycoprotein(35-55)-induced mouse model of chronic EAE. These results warrant further investigation of KRGE as preventive or therapeutic strategies for autoimmune disorders, such as multiple sclerosis.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/pathology
- Chemokines/metabolism
- Chronic Disease
- Demyelinating Diseases/complications
- Demyelinating Diseases/drug therapy
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Fibronectins/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Inflammation/complications
- Inflammation/drug therapy
- Inflammation/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/pathology
- Panax/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred Lew
- Spinal Cord/drug effects
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Minhee Jang
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Jonghee Choi
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
- Brain Korea 21 Plus Program, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Byung Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, 356-706, Republic of Korea
| | - Do Young Kim
- Barrow Neurological Institute and St. Joseph's Medical Center, Phoenix, AZ, 85013, USA
| | - Sung-Hoon Kim
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Yi-Seong Kwak
- Central Research Institute, Korea Ginseng Corporation, Daejeon, 305-805, Republic of Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Jong-Hwan Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Byung-Joon Chang
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Brain Korea 21 Plus Program, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
43
|
Abstract
PURPOSE To evaluate the efficacy of α-lipoic acid (ALA) in reducing scarring after trabeculectomy. MATERIALS AND METHODS Eighteen adult New Zealand white rabbits underwent trabeculectomy. During trabeculectomy, thin sponges were placed between the sclera and Tenon's capsule for 3 minutes, saline solution, mitomycin-C (MMC) and ALA was applied to the control group (CG) (n=6 eyes), MMC group (MMCG) (n=6 eyes), and ALA group (ALAG) (n=6 eyes), respectively. After surgery, topical saline and ALA was applied for 28 days to the control and ALAGs, respectively. Filtrating bleb patency was evaluated by using 0.1% trepan blue. Hematoxylin and eosin and Masson trichrome staining for toxicity, total cellularity, and collagen organization; α-smooth muscle actin immunohistochemistry staining performed for myofibroblast phenotype identification. RESULTS Clinical evaluation showed that all 6 blebs (100%) of the CG had failed, whereas there were only 2 failures (33%) in the ALAG and no failures in the MMCG on day 28. Histologic evaluation showed significantly lower inflammatory cell infiltration in the ALAGs and CGs than the MMCG. Toxicity change was more significant in the MMCG than the control and ALAGs. Collagen was better organized in the ALAG than control and MMCGs. In immunohistochemistry evaluation, ALA significantly reduced the population of cells expressing α-smooth muscle action. CONCLUSIONS ΑLA prevents and/or reduces fibrosis by inhibition of inflammation pathways, revascularization, and accumulation of extracellular matrix. It can be used as an agent for delaying tissue regeneration and for providing a more functional-permanent fistula.
Collapse
|
44
|
Hwang JS, An JM, Cho H, Lee SH, Park JH, Han IO. A dopamine-alpha-lipoic acid hybridization compound and its acetylated form inhibit LPS-mediated inflammation. Eur J Pharmacol 2015; 746:41-9. [DOI: 10.1016/j.ejphar.2014.10.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
|
45
|
Li SP, Han JY, Sun P, Wu GY, Bai XY. Effect of SP-A/B in lipoic acid on acute paraquat poisoning. World J Emerg Med 2014; 5:57-62. [PMID: 25215149 DOI: 10.5847/wjem.j.issn.1920-8642.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study was undertaken to observe the concentration of SP-A/B and the pulmonary surfactant in the lung tissue of rats with acute lung injury/acute respiratory distress syndrome caused by paraquat poisoning after the treatment of metabolic antioxidant-lipoic acid and whether its influence was related to TNF-α. METHODS Sixty-six male Sprage-Dawley rats were randomly divided into three groups: normal control group (NS group), 6 rats; paraquat poisoning group (PQ group), 30 rats; and paraquat+lipoic acid treatment group (LA group), 30 rats. The rats in the PQ and LA groups were subdivided into 3-, 6-, 12-, 24-, 48-hour subgroups, with 6 rats in each group. After the rats were sacrificed, lung tissue from the same part was taken from the rats. After HE staining, histological changes were observed in the tissue under a light microscope. Lung tissue was also taken to test the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Whole blood (0.8 mL) without anticoagulant was drawn from the tail vein of rats for the determination of the TNF-α level. The total RNA of the lung tissue was collected, and the Rt-PCR method was used to measure the levels of SP-A and SP-B mRNA. RESULTS HE staining showed that histopathological changes were milder in the LA group than in the PQ group. There were significant differences in MDA and SOD levels between different intervals both in intergroups and intragroups except the 3-hour subgroup (P<0.01). Likewise, the significant differences in the levels of TNF-α were also present between the three groups and between different intervals (P<0.01). The significant differences in SP-A mRNA and SP-B mRNA amplification ratio were seen between the three groups at the same intervals (P<0.01), but the differences between different intervals in the PQ group were statistically significant (P<0.05). The differences between different intervals in the LA group were statistically significant (P<0.01). CONCLUSION Lipoic acid in acute paraquat poisoning could diminish lung tissue damage by regulating directly tumor necrosis factor and indirectly the content of pulmonary surfactant so as to reduce pulmonary edema, improve lung compliance, and finally protect lung tissues.
Collapse
Affiliation(s)
- Shou-Peng Li
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji-Yuan Han
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Yan Wu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Yan Bai
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
46
|
Luo X, Tai WL, Sun L, Qiu Q, Xia Z, Chung SK, Cheung CW. Central administration of C-X-C chemokine receptor type 4 antagonist alleviates the development and maintenance of peripheral neuropathic pain in mice. PLoS One 2014; 9:e104860. [PMID: 25119456 PMCID: PMC4132096 DOI: 10.1371/journal.pone.0104860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/12/2014] [Indexed: 11/18/2022] Open
Abstract
Aim To explore the roles of C-X-C chemokine receptor type 4 (CXCR4) in spinal processing of neuropathic pain at the central nervous system (CNS). Methods Peripheral neuropathic pain (PNP) induced by partial sciatic nerve ligation (pSNL) model was assessed in mice. Effects of a single intrathecal (central) administration of AMD3100 (intrathecal AMD3100), a CXCR4 antagonist, on pain behavior and pain-related spinal pathways and molecules in the L3-L5 spinal cord segment was studied compare to saline treatment. Results Rotarod test showed that intrathecal AMD3100 did not impair mice motor function. In pSNL-induced mice, intrathecal AMD3100 delayed the development of mechanical allodynia and reversed the established mechanical allodynia in a dose-dependent way. Moreover, intrathecal AMD3100 downregulated the activation of JNK1 and p38 pathways and the protein expression of p65 as assessed by western blotting. Real-time PCR test also demonstrated that substance P mRNA was decreased, while adrenomedullin and intercellular adhesion molecule mRNA was increased following AMD3100 treatment. Conclusion Our results suggest that central (spinal) CXCR4 is involved in the development and maintenance of PNP and the regulation of multiple spinal molecular events under pain condition, implicating that CXCR4 would potentially be a therapeutic target for chronic neuropathic pain.
Collapse
Affiliation(s)
- Xin Luo
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Wai Lydia Tai
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Qiu Qiu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
| | - Sookja Kim Chung
- Department of Anatomy, The University of Hong Kong, HKSAR, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
- * E-mail:
| |
Collapse
|
47
|
Khalili M, Azimi A, Izadi V, Eghtesadi S, Mirshafiey A, Sahraian MA, Motevalian A, Norouzi A, Sanoobar M, Eskandari G, Farhoudi M, Amani F. Does lipoic acid consumption affect the cytokine profile in multiple sclerosis patients: a double-blind, placebo-controlled, randomized clinical trial. Neuroimmunomodulation 2014; 21:291-6. [PMID: 24821457 DOI: 10.1159/000356145] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A limited amount of data exists regarding the effect of lipoic acid (LA), an oral antioxidant supplement, on cytokine profiles among multiple sclerosis (MS) patients. OBJECTIVE We aimed to assess the effect of daily consumption of LA on the cytokine profiles in MS patients. METHODS In this double-blind, placebo-controlled, randomized clinical trial, 52 relapsing-remitting MS patients with an age range of 18-50 years were recruited into 2 groups: LA consumption (1,200 mg/day) or placebo. Patients followed their prescribed supplements for 12 weeks. Fasting blood samples for cytokine profile measurement were collected at baseline and after the intervention. Anthropometric parameters were measured based on the standard guidelines. RESULTS INF-γ, ICAM-1, TGF-β and IL-4 were significantly reduced in the LA group compared to the placebo group [(INF-γ: 0.82 ± 0.2 vs. 0.2 ± 0.2 pg/ml, p < 0.0001), (ICAM-1: 20.2 ± 9.4 vs. 8 ± 10 ng/ml, p = 0.0001), (TGF-β: 103.1 ± 20.2 vs. 54.9 ± 26 ng/ml, p < 0.0001) and (IL-4: 0.1 ± 0.1 vs. 1.02 ± 1.7 ng/ml, p = 0.0112)]. No significant changes in TNF-α, IL-6, EDSS and MMP-9 were found between the LA and placebo groups (p = 0.6, p = 0.8, p = 0.09 and p = 0.8, respectively). CONCLUSION The results suggested that consumption of 1,200 mg LA per day beneficially affects several inflammatory cytokines including INF-γ, ICAM-1 TGF-β and IL-4. Further investigations are needed to verify the beneficial role of LA on other cytokine profiles among MS patients.
Collapse
Affiliation(s)
- Mohammad Khalili
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, Motevalian A, Norouzi A, Moftakhar S, Azimi A. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci 2013; 17:16-20. [PMID: 23485514 DOI: 10.1179/1476830513y.0000000060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Multiple sclerosis is a neurodegenerative and demyelinating disease of central nervous system. High levels of oxidative stress are associated with inflammation and play an important role in pathogenesis of multiple sclerosis. This double-blind, randomized controlled clinical study was carried out to determine the effect of daily consumption of lipoic acid on oxidative stress among multiple sclerosis patients. METHODS A total of 52 relapsing-remitting multiple sclerosis patients, aged 18-50 years with Expanded Disability Status Scale ≤5.5 were assigned to consume either lipoic acid (1200 mg/day) or placebo capsules for 12 weeks. Fasting blood samples were collected before the first dose taken and 12 hours after the last. Dietary intakes were obtained by using 3-day dietary records. RESULTS Consumption of lipoic acid resulted in a significant improvement of total antioxidant capacity (TAC) in comparison to the placebo group (P = 0.004). Although a significant change of TAC (-1511 mmol/L, P = 0.001) was found within lipoic acid group, other markers of oxidative stress including superoxide dismutase activity, glutathione peroxidase activity, and malondialdehyde levels were not affected by lipoic acid consumption. DISCUSSION These results suggest that 1200 mg of lipoic acid improves serum TAC among multiple sclerosis patients but does not affect other markers of oxidative stress.
Collapse
|
49
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
50
|
α-Lipoic acid enhances endogenous peroxisome-proliferator-activated receptor-γ to ameliorate experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 2013; 125:329-40. [PMID: 23550596 DOI: 10.1042/cs20120560] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ALA (α-lipoic acid) is a natural, endogenous antioxidant that acts as a PPAR-γ (peroxisome-proliferator-activated receptor-γ) agonist to counteract oxidative stress. Thus far, the antioxidative and immunomodulatory effects of ALA on EAE (experimental autoimmune encephalomyelitis) are not well understood. In this study, we found that ALA restricts the infiltration of inflammatory cells into the CNS (central nervous system) in MOG (myelin oligodendrocyte glycoprotein)-EAE mice, thus reducing the disease severity. In addition, we revealed that ALA significantly suppresses the number and percentage of encephalitogenic Th1 and Th17 cells and increases splenic Treg-cells (regulatory T-cells). Strikingly, we further demonstrated that ALA induces endogenous PPAR-γ centrally and peripherally but has no effect on HO-1 (haem oxygenase 1). Together, these data suggest that ALA can up-regulate endogenous systemic and central PPAR-γ and enhance systemic Treg-cells to inhibit the inflammatory response and ameliorate MOG-EAE. In conclusion, our data provide the first evidence that ALA can augment the production of PPAR-γ in vivo and modulate adaptive immunity both centrally and peripherally in EAE and may reveal further antioxidative and immunomodulatory mechanisms for the application of ALA in human MS (multiple sclerosis).
Collapse
|