1
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
2
|
Gurski F, Shirvanchi K, Rajendran V, Rajendran R, Megalofonou FF, Böttiger G, Stadelmann C, Bhushan S, Ergün S, Karnati S, Berghoff M. Anti-inflammatory and remyelinating effects of fexagratinib in experimental multiple sclerosis. Br J Pharmacol 2024. [PMID: 39367768 DOI: 10.1111/bph.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND AND PURPOSE FGF, VEGFR-2 and CSF1R signalling pathways play a key role in the pathogenesis of multiple sclerosis (MS). Selective inhibition of FGFR by infigratinib in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) prevented severe first clinical episodes by 40%; inflammation and neurodegeneration were reduced, and remyelination was enhanced. Multi-kinase inhibition of FGFR1-3, CSFR and VEGFR-2 by fexagratinib (formerly known as AZD4547) may be more efficient in reducing inflammation, neurodegeneration and regeneration in the disease model. EXPERIMENTAL APPROACH Female C57BL/6J mice were treated with fexagratinib (6.25 or 12.5 mg·kg-1) orally or placebo over 10 days either from time of EAE induction (prevention experiment) or onset of symptoms (suppression experiment). Effects on inflammation, neurodegeneration and remyelination were assessed at the peak of the disease (Day 18/20 post immunization) and the chronic phase of EAE (Day 41/42). KEY RESULTS In the prevention experiment, treatment with 6.25 or 12.5 mg·kg-1 fexagratinib prevented severe first clinical episodes by 66.7% or 84.6% respectively. Mice treated with 12.5 mg·kg-1 fexagratinib hardly showed any symptoms in the chronic phase of EAE. In the suppression experiment, fexagratinib resulted in a long-lasting reduction of severe symptoms by 91 or 100%. Inflammation and demyelination were reduced, and axonal density, numbers of oligodendrocytes and their precursor cells, and remyelinated axons were increased by both experimental approaches. CONCLUSION AND IMPLICATIONS Multi-kinase inhibition by fexagratinib in a well-tolerated dose of 1 mg·kg-1 in humans may be a promising approach to reduce inflammation and neurodegeneration, to slow down disease progression and support remyelination in patients.
Collapse
Affiliation(s)
- Fynn Gurski
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | | | - Gregor Böttiger
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Shahriar S, Biswas S, Zhao K, Akcan U, Tuohy MC, Glendinning MD, Kurt A, Wayne CR, Prochilo G, Price MZ, Stuhlmann H, Brekken RA, Menon V, Agalliu D. VEGF-A-mediated venous endothelial cell proliferation results in neoangiogenesis during neuroinflammation. Nat Neurosci 2024; 27:1904-1917. [PMID: 39256571 DOI: 10.1038/s41593-024-01746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Newly formed leaky vessels and blood-brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice. These changes correlate with the upregulation of vascular endothelial growth factor A (VEGF-A) signaling. We also confirmed increased expression of neoangiogenic markers in acute and chronic human MS lesions. Treatment with a VEGF-A blocking antibody diminishes the neoangiogenic transcriptomic signatures and vascular proliferation in female adult mice with EAE, but it does not restore BBB function or ameliorate EAE pathology. Our data demonstrate that venous endothelial cells contribute to neoangiogenesis in demyelinating neuroinflammatory conditions.
Collapse
Affiliation(s)
- Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaitao Zhao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Uğur Akcan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary Claire Tuohy
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Glendinning
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ali Kurt
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Prochilo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Maxwell Z Price
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Campagnoli LIM, Ahmad L, Marchesi N, Greco G, Boschi F, Masi F, Mallucci G, Bergamaschi R, Colombo E, Pascale A. Disclosing the Novel Protective Mechanisms of Ocrelizumab in Multiple Sclerosis: The Role of PKC Beta and Its Down-Stream Targets. Int J Mol Sci 2024; 25:8923. [PMID: 39201609 PMCID: PMC11354964 DOI: 10.3390/ijms25168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Ocrelizumab (OCR) is a humanized anti-CD20 monoclonal antibody approved for both Relapsing and Primary Progressive forms of Multiple Sclerosis (MS) treatment. OCR is postulated to act via rapid B cell depletion; however, by analogy with other anti-CD20 agents, additional effects can be envisaged, such as on Protein Kinase C (PKC). Hence, this work aims to explore novel potential mechanisms of action of OCR in peripheral blood mononuclear cells from MS patients before and after 12 months of OCR treatment. We first assessed, up-stream, PKCβII and subsequently explored two down-stream pathways: hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF), and human antigen R (HuR)/manganese-dependent superoxide dismutase (MnSOD) and heat shock proteins 70 (HSP70). At baseline, higher levels of PKCβII, HIF-1α, and VEGF were found in MS patients compared to healthy controls (HC); interestingly, the overexpression of this inflammatory cascade was counteracted by OCR treatment. Conversely, at baseline, the content of HuR, MnSOD, and HSP70 was significantly lower in MS patients compared to HC, while OCR administration induced the up-regulation of these neuroprotective pathways. These results enable us to disclose the dual positive action of OCR: anti-inflammatory and neuroprotective. Therefore, in addition to B cell depletion, the effect of OCR on these molecular cascades can contribute to counteracting disease progression.
Collapse
Affiliation(s)
| | - Lara Ahmad
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Giacomo Greco
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Francesco Masi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
| | - Roberto Bergamaschi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Elena Colombo
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| |
Collapse
|
5
|
Lee YE, Lee SH, Kim WU. Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis. Immune Netw 2024; 24:e10. [PMID: 38455464 PMCID: PMC10917575 DOI: 10.4110/in.2024.24.e10] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Young eun Lee
- Graduate School of Medical Science and Engineering (GSMSE), Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering (GSMSE), Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
6
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Kuzekova AA, Novoselova TV, Sharapov MG, Mubarakshina EK, Goncharov RG, Khrenov MO. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch Biochem Biophys 2023; 746:109729. [PMID: 37633587 DOI: 10.1016/j.abb.2023.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia.
| | - E G Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - O V Glushkova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - A A Kuzekova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - E K Mubarakshina
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - R G Goncharov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| |
Collapse
|
7
|
Lindsay SL, McCanney GA, Zhan J, Scheld M, Smith RS, Goodyear CS, Yates EA, Kipp M, Turnbull JE, Barnett SC. Low sulfated heparan sulfate mimetic differentially affects repair in immune-mediated and toxin-induced experimental models of demyelination. Glia 2023; 71:1683-1698. [PMID: 36945189 PMCID: PMC10952530 DOI: 10.1002/glia.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.
Collapse
Affiliation(s)
- Susan L. Lindsay
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - George A. McCanney
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Jiangshan Zhan
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Miriam Scheld
- Institute of Neuroanatomy, Faculty of MedicineRWTH Aachen University52074AachenGermany
| | - Rebecca Sherrard Smith
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Carl S. Goodyear
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Edwin A. Yates
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - Markus Kipp
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Jeremy E. Turnbull
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
- Centre for GlycosciencesKeele UniversityKeeleST5 5BGUK
| | - Susan C. Barnett
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| |
Collapse
|
8
|
Rosiewicz KS, Muinjonov B, Kunz S, Radbruch H, Chen J, Jüttner R, Kerkering J, Ucar J, Crowley T, Wielockx B, Paul F, Alisch M, Siffrin V. HIF prolyl hydroxylase 2/3 deletion disrupts astrocytic integrity and exacerbates neuroinflammation. Glia 2023. [PMID: 37140003 DOI: 10.1002/glia.24380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.
Collapse
Affiliation(s)
- Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bakhrom Muinjonov
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin., Berlin, Germany
| | - Jessy Chen
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin., Berlin, Germany
| | - René Jüttner
- Neuromuscular and Cardiovascular Cell Biology Group, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Julia Ucar
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tadhg Crowley
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden., Dresden, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin., Berlin, Germany
| |
Collapse
|
9
|
Takano C, Takano T, Masumura M, Nakamura R, Koda S, Bochimoto H, Yoshida S, Bando Y. Involvement of Degenerating 21.5 kDa Isoform of Myelin Basic Protein in the Pathogenesis of the Relapse in Murine Relapsing-Remitting Experimental Autoimmune Encephalomyelitis and MS Autopsied Brain. Int J Mol Sci 2023; 24:ijms24098160. [PMID: 37175866 PMCID: PMC10179612 DOI: 10.3390/ijms24098160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.
Collapse
Affiliation(s)
- Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Makoto Masumura
- Institute for Social Innovation and Cooperation, Niigata University, Niigata 951-8510, Japan
| | | | | | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan
| |
Collapse
|
10
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
11
|
Gentile MT, Muto G, Lus G, Lövblad KO, Svenningsen ÅF, Colucci-D’Amato L. Angiogenesis and Multiple Sclerosis Pathogenesis: A Glance at New Pharmaceutical Approaches. J Clin Med 2022; 11:jcm11164643. [PMID: 36012883 PMCID: PMC9410525 DOI: 10.3390/jcm11164643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by demyelination and destruction of axons. The most common form of the disease is the relapsing-remitting multiple sclerosis in which episodic attacks with typical neurological symptoms are followed by episodes of partial or complete recovery. One of the underestimated factors that contribute to the pathogenesis of multiple sclerosis is excessive angiogenesis. Here, we review the role of angiogenesis in the onset and in the development of the disease, the molecular mechanisms underlying angiogenesis, the current therapeutic approaches, and the potential therapeutic strategies with a look at natural compounds as multi-target drugs with both neuroprotective and anti-angiogenic properties.
Collapse
Affiliation(s)
- Maria Teresa Gentile
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Gianluca Muto
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Giacomo Lus
- Multiple Sclerosis Center, II Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Åsa Fex Svenningsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Luca Colucci-D’Amato
- Laboratory of Cellular and Molecular Neuropathology, Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-366-9763554
| |
Collapse
|
12
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
13
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
14
|
Ramos-Vega M, Kjellman P, Todorov MI, Kylkilahti TM, Bäckström BT, Ertürk A, Madsen CD, Lundgaard I. Mapping of neuroinflammation-induced hypoxia in the spinal cord using optoacoustic imaging. Acta Neuropathol Commun 2022; 10:51. [PMID: 35410629 PMCID: PMC8996517 DOI: 10.1186/s40478-022-01337-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.
Collapse
|
15
|
Lindsay SL, Molęda AM, MacLellan LM, Keh SM, McElroy DE, Linington C, Goodyear CS, Barnett SC. Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathol Commun 2022; 10:12. [PMID: 35093166 PMCID: PMC8800340 DOI: 10.1186/s40478-022-01316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood–brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.
Collapse
|
16
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Buch S, Subramanian K, Jella PK, Chen Y, Wu Z, Shah K, Bernitsas E, Ge Y, Haacke EM. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. Neuroimage Clin 2020; 29:102525. [PMID: 33338965 PMCID: PMC7750444 DOI: 10.1016/j.nicl.2020.102525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple Sclerosis (MS) is a progressive, inflammatory, neuro-degenerative disease of the central nervous system (CNS) characterized by a wide range of histopathological features including vascular abnormalities. In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI). METHODS Six subjects with relapsing remitting MS (RRMS, age = 47.3 ± 11.8 years with 3 females and 3 males) and fourteen age-matched healthy controls were scanned at 3 T with SWI acquired before and after the infusion of Ferumoxytol. Composite data was generated by registering the FLAIR data to the high resolution SWI data in order to highlight the vascular information in MS lesions. Both the central vein sign (CVS) and, a new measure, the multiple vessel sign (MVS) were identified, along with any vascular abnormalities, in the lesions on pre- and post-contrast SWI-FLAIR fusion data. The small vessel density within the periventricular normal-appearing white matter (NAWM) and the periventricular lesions were compared for all subjects. RESULTS Averaged across two independent raters, a total of 530 lesions were identified across all patients. The total number of lesions with vascularity on pre- and post-contrast data were 287 and 488, respectively. The lesions with abnormal vascular behavior were broken up into following categories: small lesions appearing only at the vessel boundary; dilated vessels within the lesions; and developmental venous angiomas. These vessel abnormalities observed within lesions increased from 55 on pre-contrast data to 153 on post-contrast data. Finally, across all the patients, the periventricular lesional vessel density was significantly higher (p < 0.05) than that of the periventricular NAWM. CONCLUSIONS By inducing a super-paramagnetic susceptibility in the blood using Ferumoxytol, the vascular abnormalities in the RRMS patients were revealed and small vessel densities were obtained. This approach has the potential to monitor the venous vasculature present in MS lesions, catalogue their characteristics and compare the vascular structures spatially to the presence of lesions. These enhanced vascular features may provide new insight into the pathophysiology of MS.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhen Wu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
19
|
Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remyelination: A Review. Int J Mol Sci 2020; 21:ijms21218116. [PMID: 33143194 PMCID: PMC7662268 DOI: 10.3390/ijms21218116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Central nervous system (CNS) injury, including stroke, spinal cord injury, and traumatic brain injury, causes severe neurological symptoms such as sensory and motor deficits. Currently, there is no effective therapeutic method to restore neurological function because the adult CNS has limited capacity to regenerate after injury. Many efforts have been made to understand the molecular and cellular mechanisms underlying CNS regeneration and to establish novel therapeutic methods based on these mechanisms, with a variety of strategies including cell transplantation, modulation of cell intrinsic molecular mechanisms, and therapeutic targeting of the pathological nature of the extracellular environment in CNS injury. In this review, we will focus on the mechanisms that regulate CNS regeneration, highlighting the history, recent efforts, and questions left unanswered in this field.
Collapse
|
20
|
Jin YH, Kang B, Kang HS, Koh CS, Kim BS. Endothelin-1 contributes to the development of virus-induced demyelinating disease. J Neuroinflammation 2020; 17:307. [PMID: 33069239 PMCID: PMC7568825 DOI: 10.1186/s12974-020-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Experimental autoimmune encephalitis (EAE) and virally induced demyelinating disease are two major experimental model systems used to study human multiple sclerosis. Although endothelin-1 level elevation was previously observed in the CNS of mice with EAE and viral demyelinating disease, the potential role of endothelin-1 in the development of these demyelinating diseases is unknown. Methods and results In this study, the involvement of endothelin-1 in the development and progression of demyelinating diseases was investigated using these two experimental models. Administration of endothelin-1 significantly promoted the progression of both experimental diseases accompanied with elevated inflammatory T cell responses. In contrast, administration of specific endothelin-1 inhibitors (BQ610 and BQ788) significantly inhibited progression of these diseases accompanied with reduced T cell responses to the respective antigens. Conclusions These results strongly suggest that the level of endothelin-1 plays an important role in the pathogenesis of immune-mediated CNS demyelinating diseases by promoting immune responses.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA. .,KM Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - Bongsu Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hyun S Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Chang-Sung Koh
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Neddylation activity modulates the neurodegeneration associated with fragile X associated tremor/ataxia syndrome (FXTAS) through regulating Sima. Neurobiol Dis 2020; 143:105013. [PMID: 32653676 DOI: 10.1016/j.nbd.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansion of CGG repeats in the 5' UTR of the fragile X mental retardation 1 (FMR1) gene. Using the well-established FXTAS Drosophila model, we performed a high-throughput chemical screen using 3200 small molecules. NSC363998 was identified to suppress the neurodegeneration caused by riboCGG (rCGG) repeats. Three predicted targets of a NSC363998 derivative are isopeptidases in the neddylation pathway and could modulate the neurotoxicity caused by the rCGG repeats. Decreasing levels of neddylation resulted in enhancing neurodegeneration phenotypes, while up-regulation could rescue the phenotypes. Furthermore, known neddylation substrates, Cul3 and Vhl, and their downstream target, Sima, were found to modulate rCGG90-dependent neurotoxicity. Our results suggest that altered neddylation activity can modulate the rCGG repeat-mediated toxicity by regulating Sima protein levels, which could serve as a potential therapeutic target for FXTAS.
Collapse
|
22
|
Kant R, Halder SK, Fernández JA, Griffin JH, Milner R. Activated Protein C Attenuates Experimental Autoimmune Encephalomyelitis Progression by Enhancing Vascular Integrity and Suppressing Microglial Activation. Front Neurosci 2020; 14:333. [PMID: 32351356 PMCID: PMC7174764 DOI: 10.3389/fnins.2020.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Activated protein C (APC), a serine protease with antithrombotic effects, protects in animal models of ischemic stroke by suppressing inflammation and enhancing vascular integrity, angiogenesis, neurogenesis and neuroprotection. A small number of animal studies suggest it might also have therapeutic potential in multiple sclerosis (MS), though results have been mixed. Based on these conflicting data, the goals of this study were to clarify the therapeutic potential of APC in the experimental autoimmune encephalomyelitis (EAE) model of MS and to determine mechanistically how APC mediates this protective effect. Methods The protective potential of APC was examined in a chronic progressive model of EAE. Vascular breakdown, tight junction protein expression and vascular expression of fibronectin and α5β1 integrin as well as vascularity and glial activation were analyzed using immunofluorescence (IF) of spinal cord sections taken from mice with established EAE. The direct influence of APC on microglial activation was evaluated in vitro by a combination of morphology and MMP-9 expression. Results APC attenuated the progression of EAE, and this was strongly associated at the histopathological level with reduced levels of leukocyte infiltration and concomitant demyelination. Further analysis revealed that APC reduced vascular breakdown which was associated with maintained endothelial expression of the tight junction protein zonula occludens-1 (ZO-1). In addition, APC suppressed microglial activation in this EAE model and in vitro studies revealed that APC strongly inhibited microglial activation at both the morphological level and by the expression of the pro-inflammatory protease MMP-9. Conclusion These findings build on the work of others in demonstrating strong therapeutic potential for APC in the treatment of inflammatory demyelinating disease and suggest that enhancement of vascular integrity and suppression of microglial activation may be important mediators of this protection.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sebok K Halder
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Jose A Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard Milner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
23
|
Garcia-Diaz B, Baron-Van Evercooren A. Schwann cells: Rescuers of central demyelination. Glia 2020; 68:1945-1956. [PMID: 32027054 DOI: 10.1002/glia.23788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
The presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship.
Collapse
Affiliation(s)
- Beatriz Garcia-Diaz
- Unidad de Gestión Clínica de Neurociencias, IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| |
Collapse
|
24
|
Azimi G, Ranjbaran F, Arsang-Jang S, Ghafouri-Fard S, Mazdeh M, Sayad A, Taheri M. Upregulation of VEGF-A and correlation between VEGF-A and FLT-1 expressions in Iranian multiple sclerosis patients. Neurol Sci 2020; 41:1459-1465. [PMID: 31925615 DOI: 10.1007/s10072-019-04234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is among the most common diseases affecting brain and spinal cord. MS progression is characterized by breakdown of blood brain barrier which leads to increased vascular permeability and angiogenesis. Consequently, vascular endothelial growth factor A (VEGF) and its receptors are considered to be important components of MS progression. VEGFA and fms-related tyrosine kinase 1 (FLT1) play important roles in various aspects of MS. In this study, we investigated the relationship between these genes and MS. For this purpose, the expression levels of VEGFA and FLT1 were measured in the blood of 50 relapsing-remitting MS (RR-MS) patients and 50 healthy individuals using TaqMan quantitative real-time PCR. A significant upregulation of VEGFA expression was observed among MS patients compared with controls (p = 0.04). However, the difference in FLT1 gene expression between study groups was insignificant (p = 0.947). In addition, there was a significant positive correlation between VEGFA and FLT1 genes expressions (r = 0.769, p < 0.0001). In spite of the highly complex molecular mechanisms behind this, the findings imply participation of VEGFA in the pathogenesis of MS.
Collapse
Affiliation(s)
- Ghazaleh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | | | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
25
|
Vaillancourt M, Chia P, Medzikovic L, Cao N, Ruffenach G, Younessi D, Umar S. Experimental Pulmonary Hypertension Is Associated With Neuroinflammation in the Spinal Cord. Front Physiol 2019; 10:1186. [PMID: 31616310 PMCID: PMC6764190 DOI: 10.3389/fphys.2019.01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Rationale Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. Methods/Results PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). Conclusion We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nancy Cao
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Younessi
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Omura S, Sato F, Martinez NE, Park AM, Fujita M, Kennett NJ, Cvek U, Minagar A, Alexander JS, Tsunoda I. Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis. Front Immunol 2019; 10:516. [PMID: 30941144 PMCID: PMC6434997 DOI: 10.3389/fimmu.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Nikki J Kennett
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Urška Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
27
|
Kant R, Halder SK, Bix GJ, Milner R. Absence of endothelial α5β1 integrin triggers early onset of experimental autoimmune encephalomyelitis due to reduced vascular remodeling and compromised vascular integrity. Acta Neuropathol Commun 2019; 7:11. [PMID: 30678721 PMCID: PMC6346510 DOI: 10.1186/s40478-019-0659-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/21/2023] Open
Abstract
Early in the development of multiple sclerosis (MS) and its mouse model experimental autoimmune encephalomyelitis (EAE), vascular integrity is compromised. This is accompanied by a marked vascular remodeling response, though it is currently unclear whether this is an adaptive vascular repair mechanism or is part of the pathogenic process. In light of the well-described angiogenic role for the α5β1 integrin, the goal of this study was to evaluate how genetic deletion of endothelial α5 integrin (α5-EC-KO mice) impacts vascular remodeling and repair following vascular disruption during EAE pathogenesis, and how this subsequently influences clinical progression and inflammatory demyelination. Immunofluorescence staining revealed that fibronectin and α5 integrin expression were strongly upregulated on spinal cord blood vessels during the pre-symptomatic phase of EAE. Interestingly, α5-EC-KO mice showed much earlier onset and faster progression of EAE, though peak disease severity and chronic disease activity were no different from wild-type mice. At the histological level, earlier disease onset in α5-EC-KO mice correlated with accelerated vascular disruption and increased leukocyte infiltration into the spinal cord. Significantly, spinal cord blood vessels in α5-EC-KO mice showed attenuated endothelial proliferation during the pre-symptomatic phase of EAE which resulted in reduced vascular density at later time-points. Under pro-inflammatory conditions, primary cultures of α5KO brain endothelial cells showed reduced proliferation potential. These findings suggest that α5β1 integrin-mediated angiogenic remodeling represents an important repair mechanism that counteracts vascular disruption during the early stages of EAE development.
Collapse
|
28
|
Endothelial Microsomal Prostaglandin E Synthetase-1 Upregulates Vascularity and Endothelial Interleukin-1β in Deteriorative Progression of Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19113647. [PMID: 30463256 PMCID: PMC6274996 DOI: 10.3390/ijms19113647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for the production of prostaglandin E₂ (PGE₂). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs) around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore, we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1-/-) mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions in the spinal cord, and this was significantly higher in wt mice than in mPGES-1-/- mice. In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice than in mPGES-1-/- mice. Moreover, endothelial PGE₂ receptors (E-prostanoid (EP) receptors EP1⁻4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs. Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore, mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production, modulating mPGES-1 induction in EAE.
Collapse
|
29
|
Halder SK, Kant R, Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels. Acta Neuropathol Commun 2018; 6:86. [PMID: 30176931 PMCID: PMC6122733 DOI: 10.1186/s40478-018-0590-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
While hypoxic pre-conditioning protects against neurological disease the underlying mechanisms have yet to be fully defined. As chronic mild hypoxia (CMH, 10% O2) triggers profound vascular remodeling in the central nervous system (CNS), the goal of this study was to examine the protective potential of hypoxic pre-conditioning in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and then determine how CMH influences vascular integrity and the underlying cellular and molecular mechanisms during EAE. We found that mice exposed to CMH at the same time as EAE induction were strongly protected against the development of EAE progression, as assessed both at the clinical level and at the histopathological level by reduced levels of inflammatory leukocyte infiltration, vascular breakdown and demyelination. Mechanistically, our studies indicate that CMH protects, at least in part, by enhancing several properties of blood vessels that contribute to vascular integrity, including reduced expression of the endothelial activation molecules VCAM-1 and ICAM-1, maintained expression of endothelial tight junction proteins ZO-1 and occludin, and upregulated expression of the leukocyte inhibitory protein laminin-111 in the vascular basement membrane. Taken together, these data suggest that optimization of BBB integrity is an important mechanism underlying the protective effect of hypoxic pre-conditioning.
Collapse
|
30
|
Welser JV, Halder SK, Kant R, Boroujerdi A, Milner R. Endothelial α6β4 integrin protects during experimental autoimmune encephalomyelitis-induced neuroinflammation by maintaining vascular integrity and tight junction protein expression. J Neuroinflammation 2017; 14:217. [PMID: 29121970 PMCID: PMC5679365 DOI: 10.1186/s12974-017-0987-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Background Extracellular matrix (ECM) proteins play critical functions regulating vascular formation and function. Laminin is a major component of the vascular basal lamina, and transgenic mice deficient in astrocyte or pericyte laminin show defective blood-brain barrier (BBB) integrity, indicating an important instructive role for laminin in cerebral blood vessels. As previous work shows that in the normal brain, vascular expression of the laminin receptor α6β4 integrin is predominantly restricted to arterioles, but induced on all vessels during neuroinflammation, it is important to define the role of this integrin in the maintenance of BBB integrity. Methods α6β4 integrin expression was analyzed using dual immunofluorescence (dual-IF) of brain sections taken from the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). To investigate the role of endothelial α6β4 integrin, transgenic mice lacking β4 integrin in endothelial cells (β4-EC-KO) and wild-type (WT) littermates were subject to EAE, and clinical score and various neuropathological parameters were examined by immunofluorescence. In addition, β4 integrin null brain endothelial cells (BECs) were examined in culture for expression of tight junction proteins using immunocytochemistry and flow cytometry. Results Cerebrovascular expression of β4 integrin was markedly upregulated during EAE progression, such that by the acute stage of EAE (day 21), the vast majority of blood vessels expressed β4 integrin. In the EAE model, while the β4-EC-KO mice showed the same time of disease onset as the WT littermates, they developed significantly worse clinical disease over time, resulting in increased clinical score at the peak of disease and maintained elevated thereafter. Consistent with this, the β4-EC-KO mice showed enhanced levels of leukocyte infiltration and BBB breakdown and also displayed increased loss of the endothelial tight junction proteins claudin-5 and ZO-1. Under pro-inflammatory conditions, primary cultures of β4KO BECs also showed increased loss of claudin-5 and ZO-1 expression. Conclusions Taken together, our data suggest that α6β4 integrin upregulation is an inducible protective mechanism that stabilizes the BBB during neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jennifer V Welser
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Sebok K Halder
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Ravi Kant
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Amin Boroujerdi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Richard Milner
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA.
| |
Collapse
|
31
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
32
|
X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Sci Rep 2017; 7:5890. [PMID: 28724999 PMCID: PMC5517657 DOI: 10.1038/s41598-017-06251-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 01/08/2023] Open
Abstract
The degenerative effects of multiple sclerosis at the level of the vascular and neuronal networks in the central nervous system are currently the object of intensive investigation. Preclinical studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapy in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis, but the neuropathology of specific lesions in EAE and the effects of MSC treatment are under debate. Because conventional imaging techniques entail protocols that alter the tissues, limiting the reliability of the results, we have used non-invasive X-ray phase-contrast tomography to obtain an unprecedented direct 3D characterization of EAE lesions at micro-to-nano scales, with simultaneous imaging of the vascular and neuronal networks. We reveal EAE-mediated alterations down to the capillary network. Our findings shed light on how the disease and MSC treatment affect the tissues, and promote X-ray phase-contrast tomography as a powerful tool for studying neurovascular diseases and monitoring advanced therapies.
Collapse
|
33
|
Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci (Lond) 2017; 131:369-379. [PMID: 28202749 PMCID: PMC5310718 DOI: 10.1042/cs20160618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Abstract
Cerebral small vessel disease (SVD) is a prevalent, neurological disease that significantly increases the risk of stroke and dementia. The main pathological changes are vascular, in the form of lipohyalinosis and arteriosclerosis, and in the white matter (WM), in the form of WM lesions. Despite this, it is unclear to what extent the key cell types involved–the endothelial cells (ECs) of the vasculature and the oligodendrocytes of the WM–interact. Here, we describe the work that has so far been carried out suggesting an interaction between ECs and oligodendrocytes in SVD. As these interactions have been studied in more detail in other disease states and in development, we explore these systems and discuss the role these mechanisms may play in SVD.
Collapse
|
34
|
The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 2017; 171:13-29. [DOI: 10.1016/j.pharmthera.2016.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
|
35
|
Lin W. Neuroprotective effects of vascular endothelial growth factor A in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen Res 2017; 12:70-71. [PMID: 28250748 PMCID: PMC5319243 DOI: 10.4103/1673-5374.198982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Djelloul M, Popa N, Pelletier F, Raguénez G, Boucraut J. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation. Brain Behav Immun 2016; 58:209-217. [PMID: 27444966 DOI: 10.1016/j.bbi.2016.07.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023] Open
Abstract
Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.
Collapse
Affiliation(s)
- Mehdi Djelloul
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Natalia Popa
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Florence Pelletier
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Gilda Raguénez
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - José Boucraut
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France.
| |
Collapse
|
37
|
Gągało I, Rusiecka I, Kocić I. Tyrosine Kinase Inhibitor as a new Therapy for Ischemic Stroke and other Neurologic Diseases: is there any Hope for a Better Outcome? Curr Neuropharmacol 2016; 13:836-44. [PMID: 26630962 PMCID: PMC4759323 DOI: 10.2174/1570159x13666150518235504] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023] Open
Abstract
The relevance of tyrosine kinase inhibitors (TKIs) in the treatment of malignancies has
been already defined. Aberrant activation of tyrosine kinase signaling pathways has been causally
linked not only to cancers but also to other non-oncological diseases. This review concentrates on the
novel plausible usage of this group of drugs in neurological disorders, such as ischemic brain stroke,
subarachnoid hemorrhage, Alzheimer’s disease, multiple sclerosis. The drugs considered here are
representatives of both receptor and non-receptor TKIs. Among them imatinib and masitinib have the
broadest spectrum of therapeutic usage. Both drugs are effective in ischemic brain stroke and multiple
sclerosis, but only imatinib produces a therapeutic effect in subarachnoid hemorrhage. Masitinib and
dasatinib reduce the symptoms of Alzheimer’s disease. In the case of multiple sclerosis several TKIs are useful, including
apart from imatinib and masitinib, also sunitinib, sorafenib, lestaurtinib. Furthermore, the possible molecular targets for
the drugs are described in connection with the underlying pathophysiological mechanisms in the diseases in question. The
most frequent target for the TKIs is PDGFR which plays a pivotal role particularly in ischemic brain stroke and
subarachnoid hemorrhage. The collected data indicates that TKIs are very promising candidates for new therapeutic
interventions in neurological diseases.
Collapse
Affiliation(s)
| | | | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| |
Collapse
|
38
|
Stanojlovic M, Pang X, Lin Y, Stone S, Cvetanovic M, Lin W. Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis. PLoS One 2016; 11:e0160158. [PMID: 27466819 PMCID: PMC4965096 DOI: 10.1371/journal.pone.0160158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaosha Pang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yifeng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bissel SJ, Kofler J, Nyaundi J, Murphey-Corb M, Wisniewski SR, Wiley CA. Cerebrospinal Fluid Biomarkers of Simian Immunodeficiency Virus Encephalitis : CSF Biomarkers of SIV Encephalitis. J Neuroimmune Pharmacol 2016; 11:332-47. [PMID: 27059917 PMCID: PMC4871628 DOI: 10.1007/s11481-016-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/15/2016] [Indexed: 01/12/2023]
Abstract
Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Julia Nyaundi
- Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Michael Murphey-Corb
- Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Stephen R Wisniewski
- Department of Epidemiology, Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Clayton A Wiley
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
40
|
Casamassa A, La Rocca C, Sokolow S, Herchuelz A, Matarese G, Annunziato L, Boscia F. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis. Glia 2016; 64:1124-37. [DOI: 10.1002/glia.22985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR); Napoli Italy
| | | | - Andre Herchuelz
- Laboratory of Pharmacology and Therapeutics, Université Libre de Bruxelles; Brussels Gosselies 6041 Belgium
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università di Napoli “Federico II”; Napoli Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
- Fondazione IRCSS SDN; Naples Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine; Federico II University of Naples; Napoli 80131 Italy
| |
Collapse
|
41
|
Glial-endothelial crosstalk regulates blood–brain barrier function. Curr Opin Pharmacol 2016; 26:39-46. [DOI: 10.1016/j.coph.2015.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022]
|
42
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
43
|
Zhou X, Li X, Feng M, Zhang Q, Yang Z. Analysis of the direct injury effector of oligodendroglia cells or myelin sheath in an experimental allergic encephalomyelitis model induced by the MOG35-55 peptide. Mol Med Rep 2015; 12:7425-32. [PMID: 26459920 DOI: 10.3892/mmr.2015.4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the possible role of cytotoxic T lymphocytes (CTL) and mononuclear macrophages in the pathogenic processes of experimental animals. To construct a chronic experimental allergic encephalomyelitis (EAE) model, an artificially synthesized myelin oligodendrocyte glycoprotein (MOG)35‑55 peptide was used to induce C57BL/6 mice. Subsequently, the experimental animals were investigated at the level of their nervous function, and histopathological, immunohistochemical and fluorescence immunohistochemical experiments were performed at different time points following immunization. The expression of immune molecules and cytokines associated with the activation of the mononuclear macrophages and CTL during the different stages was assessed by western blotting and reverse transcription‑quantitative polymerase chain reaction. As a result, the MOG35‑55 peptide was identified as being successful at inducing C57BL/6 mice for the development of the EAE model. A modest level of mononuclear macrophage and lymphocyte infiltration was observed in the central nervous system (CNS), although no infiltration of neutrophils was observed. A sporadic flaky deletion of the myelin sheath was also identified. The activation and proliferation of mononuclear macrophages, including microglia cells, was clearly demonstrated. Furthermore, the expression levels of major histocompatibility complex class I and II molecules and interleukin‑12 in the brain, which is associated with the activation and proliferation of mononuclear macrophages, increased over the duration of the experiment compared with less pronounced changes in the expression levels of interferon (IFN)‑γ, Fas and perforin in the CNS, which are associated with the function of CTL. The secretion of IFN‑γ in the spleen increased during the morbidity peak, however, any noticeable activation and proliferation of CD8+ T cells was absent. These results demonstrated that the induced immune response mediated by mononuclear macrophages made a more important contribution compared with CTL towards the pathological process of myelin sheath injury. Mononuclear macrophages are therefore, identified as being one of the most significant effector cell types to directly injure the myelin sheath in the CNS.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Neurology, The Affiliated First Hospital of Shizuishan, The Ningxia Medical University, Shizuishan, Ningxia 753200, P.R. China
| | - Xiaoyong Li
- Department of Pathology, Medical College, Hubei Polytechnic University, Huangshi, Hubei 435003, P.R. China
| | - Meina Feng
- Department of Neurology, Wuhan Brain Hospital, Wuhan, Hubei 430010, P.R. China
| | - Qi Zhang
- Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhendong Yang
- Department of Neurology, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
44
|
Rasol HAA, Helmy H, El-Mously S, Aziz MA, El bahaie H. Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis. Ann Clin Biochem 2015; 53:252-8. [DOI: 10.1177/0004563215584957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 12/12/2022]
Abstract
Background Vascular endothelial growth factor A stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease. This study aimed to investigate whether vascular endothelial growth factor A mRNA expression could be used as a marker for the prediction of susceptibility to multiple sclerosis and relate vascular endothelial growth factor to the clinical phases of multiple sclerosis. Methods This was a cross-sectional study, consisting of a total of 60 subjects with multiple sclerosis and 20 healthy controls. Subjects were subjected to history taking, neurological examination and peripheral blood sampling for vascular endothelial growth factor A mRNA gene expression. Vascular endothelial growth factor A gene expression was measured by real-time polymerase chain reaction using the SYBR Green technique. Results Vascular endothelial growth factor A mRNA gene expression level was significantly lower in the multiple sclerosis group than in the healthy control group ( P < 0.001). Vascular endothelial growth factor A mRNA gene expression level was higher in relapsing remitting multiple sclerosis (RRMS) patients than in those in remission ( P < 0.001) and in relapsing remitting multiple sclerosis compared with secondary progressive multiple sclerosis ( P < 0.001). There was no correlation between vascular endothelial growth factor A gene expression levels and duration of disease, multiple sclerosis progression index or expanded disability status scale. Conclusions A lower vascular endothelial growth factor A mRNA gene expression level was independently associated with a higher risk of multiple sclerosis.
Collapse
Affiliation(s)
- Hoiyda A Abdel Rasol
- Faculty of Applied Medical Sciences, Taibah University, Al Madinah Al Monawara, Kingdom of Saudi Arabia
- Clinical and Chemical Pathology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanan Helmy
- Neurology Department, Faculty of Medicine, Cairo University, Egypt
| | | | - Margeret A Aziz
- Department of Biochemistry, Research Institute of Ophthalmology, Egypt
| | - Hossam El bahaie
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
45
|
Increased perfusion in normal appearing white matter in high inflammatory multiple sclerosis patients. PLoS One 2015; 10:e0119356. [PMID: 25774497 PMCID: PMC4361628 DOI: 10.1371/journal.pone.0119356] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Although cerebral perfusion alterations have long been acknowledged in multiple sclerosis (MS), the relationship between measurable perfusion changes and the status of highly active MS has not been examined. We hypothesized that alteration of perfusion can be detected in normal appearing white matter and is increased in high inflammatory patients. MATERIALS AND METHODS Thirty-three patients with relapsing-remitting MS underwent four monthly 3T MRI scans including dynamic susceptibility contrast perfusion-weighted MRI. Cerebral blood flow (CBF) and cerebral blood volume (CBV) were measured in normal appearing white matter. Patients were stratified in a high- and low-inflammatory group according to the number of new contrast enhancing lesions. RESULTS Thirteen patients were classified as high-inflammatory. Compared to low-inflammatory patients, the high-inflammatory group demonstrated significantly higher CBV (p = 0.001) and CBF (p = 0.014) values. A mixed model analysis to assess independent variables associated with CBV and CBF revealed that white matter lesion load and atrophy measurements had no significant influence on CBF and CBV. CONCLUSION This work provides evidence that high inflammatory lesion load is associated with increased CBV and CBF, underlining the role of global modified microcirculation prior to leakage of the blood-brain barrier in the pathophysiology of MS. Perfusion changes might therefore be sensitive to active inflammation apart from lesion development without local blood-brain barrier breakdown, and could be utilized to further assess the metabolic aspect of current inflammation.
Collapse
|
46
|
Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014; 6:23. [PMID: 25473485 PMCID: PMC4253611 DOI: 10.1186/s13221-014-0023-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function. However, the role of angiogenesis in CNS pathologies associated with impaired barrier function remains unclear. Although vessel abnormalities characterized by abnormal barrier function are well documented in multiple sclerosis (MS), a demyelinating disease of the CNS resulting from an immune cell attack on oligodendrocytes, histological analysis of human MS samples has shown that angiogenesis is prevalent in and around the demyelinating plaques. Experiments using an animal model that mimics several features of human MS, Experimental Autoimmune Encephalomyelitis (EAE), have confirmed these human pathological findings and shed new light on the contribution of pre-symptomatic angiogenesis to disease progression. The CNS-infiltrating inflammatory cells that are a hallmark of both MS and EAE secrete several factors that not only contribute to exacerbating the inflammatory process but also promote and stimulate angiogenesis. Moreover, chemical or biological inhibitors that directly or indirectly block angiogenesis provide clinical benefits for disease progression. While the precise mechanism of action for these inhibitors is unknown, preventing pathological angiogenesis during EAE progression holds great promise for developing effective treatment strategies for human MS.
Collapse
Affiliation(s)
- Justin Lengfeld
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Tyler Cutforth
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Dritan Agalliu
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| |
Collapse
|
47
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
48
|
Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, Bramanti P, Mazzon E. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2014; 95:160-74. [PMID: 24685508 DOI: 10.1016/j.fitote.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.
Collapse
Affiliation(s)
- Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Michele Navarra
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
49
|
MacMillan CJ, Doucette CD, Warford J, Furlong SJ, Hoskin DW, Easton AS. Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20-4.1.1 and angiostatin (K1-3). PLoS One 2014; 9:e89770. [PMID: 24587024 PMCID: PMC3935931 DOI: 10.1371/journal.pone.0089770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels form pre-existing vasculature whose contribution to inflammatory conditions of the Central Nervous System is being studied in order to generate novel therapeutic targets. This study is the first to investigate the impact of two particular angiogenesis inhibitors on murine Experimental Autoimmune Encephalomyelitis (EAE), an inflammatory disease that mimics aspects of the human disease Multiple Sclerosis. The inhibitors were chosen to reduce angiogenesis by complimentary means. Extrinsic factors were targeted with B20-4.1.1 through its ability to bind to murine Vascular Endothelial Growth Factor (VEGF). Vascular processes connected to angiogenesis were targeted directly with K(1-3), the first three kringle domains of angiostatin. Mice treated with B20-4.1.1 and K(1-3) from onset of signs had reduced clinical scores 18–21 days after EAE induction. Both agents suppressed spinal cord angiogenesis without effect on local VEGF expression. B20-4.1.1 reduced spinal cord vascular permeability while K(1-3) had no effect. T cell infiltration into the spinal cord at day 21 was unaffected by either treatment. B20-4.1.1 reduced peripheral T cell proliferation while K(1-3) had no effect. Lymphoid cells from treated mice produced reduced levels of the T helper-17 (Th-17) cell cytokine interleukin (IL)-17 with no effect on the Th-1 cytokine interferon (IFN)-γ or Th-2 cytokine IL-4. However, when both drugs were added in vitro to naive T cells or to antigen stimulated T cells from mice with untreated EAE they had no effect on proliferation or levels of IL-17 or IFN-γ. We conclude that these angiogenesis inhibitors mitigate EAE by both suppressing spinal cord angiogenesis and reducing peripheral T cell activation.
Collapse
Affiliation(s)
| | - Carolyn D. Doucette
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanne J. Furlong
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W. Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexander S. Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
50
|
Abstract
Estimates of the apparent transverse relaxation rate (R2*) can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of R2* dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of R2* in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying R2' (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. R2' is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed R2* orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the R2* and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, R2* and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ.
Collapse
|