1
|
Grygorczuk S, Czupryna P, Martonik D, Adamczuk J, Parfieniuk-Kowerda A, Grzeszczuk A, Pawlak-Zalewska W, Dunaj-Małyszko J, Mielczak K, Parczewski M, Moniuszko-Malinowska A. The Factors Associated with the Blood-Brain Barrier Dysfunction in Tick-Borne Encephalitis. Int J Mol Sci 2025; 26:1503. [PMID: 40003967 PMCID: PMC11855613 DOI: 10.3390/ijms26041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
The pathogenesis of the central nervous system (CNS) pathology in tick-borne encephalitis (TBE) remains unclear. We attempted to identify mediators of the blood-brain barrier (BBB) disruption in human TBE in paired serum and cerebrospinal fluid (CSF) samples from 100 TBE patients. CSF albumin quotient (Qalb) was calculated as a measure of BBB impairment. Concentrations of cytokines, cytokine antagonists, adhesion molecules, selectins and matrix metalloproteinases (MMP) were measured with a multiplex bead assay. Single nucleotide polymorphisms (SNP) in genes MIF, TNF, TNFRSF1A, TNFRSF1B, IL-10, TLR3 and TLR4 were studied in patient blood DNA extracts and analyzed for associations with Qalb and/or cytokine concentrations. The multivariate regression models of Qalb were built with the soluble mediators as independent variables. The best models obtained included L-selectin, P-selectin, sVCAM, MMP7, MMP8 (or MMP9) and IL-28A as positive and IL-12p70, IL-15, IL-6Rα/IL-6 ratio and TNF-RII/TNFα ratio as negative correlates of Qalb. The genotype did not associate with Qalb, but polymorphism rs4149570 (in TNFRSF1A) associated with TNFα and rs1800629 (TNF) with MIF concentration. We confirm the association of the TNFα-dependent response, L-selectin and MMP8/MMP9 with BBB disruption and identify its novel correlates (IL-12, IL-15, IL-28A, MMP7). We detect no genotype associations with BBB function in TBE.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Wioletta Pawlak-Zalewska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Kaja Mielczak
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| |
Collapse
|
2
|
Zarobkiewicz MK, Kowalska W, Morawska I, Halczuk P, Rejdak K, Bojarska-Junak A. IL-15 Is Overexpressed in γδ T Cells and Correlates with Disease Severity in Relapsing-Remitting Multiple Sclerosis. J Clin Med 2021; 10:jcm10184174. [PMID: 34575283 PMCID: PMC8467081 DOI: 10.3390/jcm10184174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin 15 (IL-15) is known to be involved in the pathogenesis of multiple sclerosis (MS). An animal study revealed a distinct subset of IL-15-producing γδ T cells that correlate with disease severity. The aim of the current study was to test whether such a subset is also present in humans and its importance for the pathogenesis of MS. The peripheral blood from 29 patients with relapsing-remitting MS (including 6 relapses) and 22 controls was stained with monoclonal antibodies and analyzed with flow cytometry. The existence of IL-15+ γδ T cells was confirmed. Moreover, the percentage of IL-15+ γδ T is significantly increased in MS patients and correlates with disease severity. Nevertheless, additional functional studies are needed to fully understand the importance of those cells in multiple sclerosis pathogenesis
Collapse
Affiliation(s)
- Michał K. Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Paweł Halczuk
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| |
Collapse
|
3
|
Laurent C, Deblois G, Clénet ML, Carmena Moratalla A, Farzam-Kia N, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e931. [PMID: 33323466 PMCID: PMC7745728 DOI: 10.1212/nxi.0000000000000931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Objective We posit that interleukin-15 (IL-15) is a relevant contributor to MS pathobiology as this cytokine is elevated in the CNS and periphery of patients with MS. We aim to investigate (1) the impact of IL-15 on T lymphocytes from patients with MS and (2) the in vivo role of IL-15 using the experimental autoimmune encephalomyelitis (EAE) mouse model. Methods We compared the impact of IL-15 on T lymphocytes obtained from untreated patients with MS (relapsing-remitting, secondary progressive, and primary progressive) to cells from age/sex-matched healthy controls (HCs) using multiparametric flow cytometry and in vitro assays. We tested the effects of peripheral IL-15 administration after EAE disease onset in C57BL/6 mice. Results IL-15 triggered STAT5 signaling in an elevated proportion of T cells from patients with MS compared with HCs. This cytokine also enhanced the production of key proinflammatory cytokines (interferon γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17, and tumor necrosis factor) by T cells from both MS and controls, but these effects were more robust for the production of IL-17 and GM-CSF in T-cell subsets from patients with MS. At the peak of EAE disease, the proportion of CD4+ and CD8+ T cells expressing CD122+, the key signaling IL-15 receptor chain, was enriched in the CNS compared with the spleen. Finally, peripheral administration of IL-15 into EAE mice after disease onset significantly aggravated clinical scores and increased the number of inflammatory CNS-infiltrating T cells long term after stopping IL-15 administration. Conclusions Our results underscore that IL-15 contributes to the amplification of T-cell inflammatory properties after disease onset in both MS and EAE.
Collapse
Affiliation(s)
- Cyril Laurent
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Gabrielle Deblois
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marie-Laure Clénet
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Ana Carmena Moratalla
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marc Girard
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada.
| |
Collapse
|
4
|
Pan Y, Wang Z, Zhang G, Guo J, Zhu X, Zhou J, Zhang Z, Sun Z, Yang J, Kastin AJ, Pan W, Wu X, Zhang J, Wang X, Wang C, He Y. Schizophrenia Patient Shows a Rare Interleukin 15 Receptor alpha Variant Disrupting Signal Transduction. Curr Mol Med 2019; 19:560-569. [PMID: 31244423 DOI: 10.2174/1566524019666190617172054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia is a complex and debilitating mental disorder with strong heritability. Its pathogenesis involves immune dysregulation. Interleukin 15 and interleukin 15 receptor alpha(IL-15Rα) are classical immune molecules. They also help maintain normal brain function, leading to our hypothesis that IL-15Rα gene(IL- 15RA) variants contribute to the pathogenesis of schizophrenia. OBJECTIVE We determine whether the genetic variants of IL-15RA are associated with the development and progression of schizophrenia and whether IL-15RA single nucleotide polymorphism(SNP) plays a key role in downstream signaling transduction. METHODS AND RESULTS We sequenced IL-15RA exon from 132 Chinese schizophrenic patients and identified a rare variant(rs528238821) in a patient diagnosed with catatonic schizophrenia and ankylosing spondylitis(AS). We overexpressed this missense variant in cells driven by pBI-CMV vector. The cells showed attenuated STAT3 phosphorylation in response to interleukin15. CONCLUSION IL-15RA mutation is rare in schizophrenic patients but interfered with IL- 15Rα intracellular signal transduction. Given the similarity of symptoms of catatonic schizophrenia and the known phenotype of IL-15Rα knockout mice, gene variation might offer diagnostic value for sub-types of schizophrenia.
Collapse
Affiliation(s)
- Yanli Pan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhimin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guangping Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Junhua Guo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jia Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhenrong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA70808, United States
| | - Weihong Pan
- BioPotentials Consulting, Sedona, AZ 86351, United States
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Material Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianliang Zhang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China.,Beijing Institute for Brain Disorders, Beijing 100069, China.,Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Xiaomin Wang
- Beijing Institute for Brain Disorders, Beijing 100069, China.,Department of Physiology and Pathologic Physiology, Capital Medical University, Beijing 100069, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
5
|
Li Z, Han J, Ren H, Ma CG, Shi FD, Liu Q, Li M. Astrocytic Interleukin-15 Reduces Pathology of Neuromyelitis Optica in Mice. Front Immunol 2018; 9:523. [PMID: 29616032 PMCID: PMC5867910 DOI: 10.3389/fimmu.2018.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Astrocyte loss induced by neuromyelitis optica (NMO)-IgG and complement-dependent cytotoxicity (CDC) is the hallmark of NMO pathology. The survival of astrocytes is thought to reflect astrocyte exposure to environmental factors in the CNS and the response of astrocytes to these factors. However, still unclear are how astrocytes respond to NMO-IgG and CDC, and what CNS environmental factors may impact the survival of astrocytes. In a murine model of NMO induced by intracerebral injection of NMO-IgG and human complement, we found dramatic upregulation of IL-15 in astrocytes. To study the role of astrocytic IL-15 in NMO, we generated a transgenic mouse line with targeted expression of IL-15 in astrocytes (IL-15tg), in which the expression of IL-15 is controlled by a glial fibrillary acidic protein promoter. We showed that astrocyte-targeted expression of IL-15 attenuates astrocyte injury and the loss of aquaporin-4 in the brain. Reduced blood–brain barrier leakage and immune cell infiltration are also found in the lesion of IL-15tg mice subjected to NMO induction. IL-15tg astrocytes are less susceptible to NMO-IgG-mediated CDC than their wild-type counterparts. The enhanced resistance of IL-15tg astrocytes to cytotoxicity and cell death involves NF-κB signaling pathway. Our findings suggest that IL-15 reduces astrocyte loss and NMO pathology.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinrui Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cun-Gen Ma
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Escudero-Hernández C, Plaza-Izurieta L, Garrote JA, Bilbao JR, Arranz E. Association of the IL-15 and IL-15Rα genes with celiac disease. Cytokine 2017; 99:73-79. [DOI: 10.1016/j.cyto.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
|
7
|
Holtman IR, Bsibsi M, Gerritsen WH, Boddeke HWGM, Eggen BJL, van der Valk P, Kipp M, van Noort JM, Amor S. Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin. Glia 2017; 65:460-473. [DOI: 10.1002/glia.23104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Inge R. Holtman
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | | | - Wouter H. Gerritsen
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Hendrikus W. G. M. Boddeke
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Bart J. L. Eggen
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Paul van der Valk
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Markus Kipp
- Department of Neuroanatomy; University of Munich; Munich Germany
| | - Johannes M. van Noort
- Delta Crystallon BV; Beverwijk ED the Netherlands
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Sandra Amor
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry; Queen Mary University of London; London United Kingdom
| |
Collapse
|
8
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016; 31:49-59. [PMID: 27325459 DOI: 10.1016/j.cytogfr.2016.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-15, a member of the immunoregulatory cytokines family, is a pluripotent molecule with therapeutic potential. It is predominantly expressed by the myeloid cells, as well as other cell types. IL-15 serves multiple functions including dictating T cell response, regulating tissue repair and B cell homing, modulating inflammation, and activating NK cells. Among cytokines, IL-15 is unique because of its wide expression, tightly regulated secretion, trans-presentation, and therapeutic potential. IL-15 has been investigated for its therapeutic potential for the induction and maintenance of T cell responses. In addition, IL-15 can be targeted by antibody- or mutant IL-15 therapy to reduce inflammation. Its multifaceted biological applications are crucial in immunotherapy. In this article, we review the functions, expression, and regulation of IL-15 for designing an improved IL-15-based therapy targeting the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
10
|
An activation-induced IL-15 isoform is a natural antagonist for IL-15 function. Sci Rep 2016; 6:25822. [PMID: 27166125 PMCID: PMC4863161 DOI: 10.1038/srep25822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Interleukin 15 (IL-15) expression induces the secretion of inflammatory cytokines, inhibits the apoptosis of activated T cells and prolongs the survival of CD8+ memory T cells. Here we identified an IL-15 isoform lacking exon-6, IL-15ΔE6, generated by alternative splicing events of activated immune cells, including macrophages and B cells. In vitro study showed that IL-15ΔE6 could antagonize IL-15-mediated T cell proliferation. The receptor binding assay revealed that IL-15ΔE6 could bind to IL-15Rα and interfere with the binding between IL-15 and IL-15Rα. Over-expression of IL-15ΔE6 in the murine EAE model ameliorated the EAE symptoms of the mice. The clinical scores were significantly lower in the mice expressing IL-15ΔE6 than the control mice and the mice expressing IL-15. The inflammation and demyelination of the EAE mice expressing IL-15ΔE6 were less severe than the control group. Furthermore, flow cytometry analysis demonstrated that IL-15ΔE6 expression reduced the percentages of inflammatory T cells in the spleen and spinal cord, and inhibited the infiltration of macrophages to the CNS. Our results demonstrated that IL-15ΔE6 could be induced during immune activation and function as a negative feedback mechanism to dampen IL-15-mediated inflammatory events.
Collapse
|
11
|
Panek M, Jonakowski M, Zioło J, Pietras T, Wieteska Ł, Małachowska B, Mokros Ł, Szemraj J, Kuna P. Identification of Relationships Between Interleukin 15 mRNA and Brain-Derived Neurotrophic Factor II mRNA Levels With Formal Components of Temperament in Asthmatic Patients. Mol Neurobiol 2016; 54:1733-1744. [PMID: 26874516 DOI: 10.1007/s12035-016-9768-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
Abstract
Asthma is a chronic inflammatory and heterogeneous disease developing mostly through allergic inflammation, which modifies the expression of various cytokines and neurotrophins. Previous studies suggest the involvement of interleukin (IL)-15 in the regulation of immune response in asthma. Brain-derived neurotrophic factor (BDNF) II plays an important role as a regulator of development and survival of neurons as well as maintenance of their physiological activity. Chronic stress associated with asthma and elevated IL-15 mRNA and BDNFII mRNA levels may affect the mood and a subjective sensation of dyspnoea-inducing anxiety. Psychopathological variables and numerous cytokine/neurotrophin interactions influence the formation of temperament and strategies of coping with stress. The aim of the study was to identify the role of IL-15 mRNA and BDNFII mRNA expressions and their effect on components of temperament and strategies of coping with stress in asthmatics. A total of 352 subjects (176 healthy volunteers and 176 asthmatic patients) participated in the study. The Formal Characteristic of Behaviour-Temperament Inventory (FCB-TI), Coping Inventory for Stressful Situations (CISS), Beck Depression Inventory, State-Trait Anxiety Inventory, and Borg Rating of Perceived Exertion (RPE) Scale were applied in all the subjects. The expression of IL-15 and BDNFII gene was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Different levels of IL-15 and BDNFII expressions between healthy volunteers and patients were revealed in the study. IL-15 enhanced the BDNFII mRNA expression among patients with bronchial asthma. The depression level negatively correlated with the BDNFII mRNA expression. This neurotrophin modified the temperament variable. BDNFII significantly affected (proportional relationship) the level of briskness in asthmatic patients. BDNFII might influence the level and style of coping with stress (emotion-oriented style). This hypothesis requires further studies on protein functional models. The obtained data confirms the role of IL-15 and BDNFII in the pathomechanisms of depression and formation of selected traits defining the temperament in asthmatics.
Collapse
Affiliation(s)
- Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland.
| | - Mateusz Jonakowski
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Jan Zioło
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Tadeusz Pietras
- Department of Pneumology and Allergology, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| | - Beata Małachowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738, Lodz, Poland
| | - Łukasz Mokros
- Students Research Group at the Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland.,Department of Pneumology and Allergology, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka St., 92-215, Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 22 Kopcinskiego St., 90-153, Lodz, Poland
| |
Collapse
|
12
|
Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep 2016; 6:19137. [PMID: 26750705 PMCID: PMC4707476 DOI: 10.1038/srep19137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/07/2015] [Indexed: 01/15/2023] Open
Abstract
Inhibition of microglia activation may provide therapeutic treatment for many neurodegenerative diseases. Astragaloside IV (ASI) with anti-inflammatory properties has been tested as a therapeutic drug in clinical trials of China. However, the mechanism of ASI inhibiting neuroinflammation is unknown. In this study, we showed that ASI inhibited microglia activation both in vivo and in vitro. It could enhance glucocorticoid receptor (GR)-luciferase activity and facilitate GR nuclear translocation in microglial cells. Molecular docking and TR-FRET GR competitive binding experiments demonstrated that ASI could bind to GR in spite of relative low affinity. Meanwhile, ASI modulated GR-mediated signaling pathway, including dephosphorylation of PI3K, Akt, I κB and NF κB, therefore, decreased downstream production of proinflammatory mediators. Suppression of microglial BV-2 activation by ASI was abrogated by GR inhibitor, RU486 or GR siRNA. Similarly, RU486 counteracted the alleviative effect of ASI on microgliosis and neuronal injury in vivo. Our findings demonstrated that ASI inhibited microglia activation at least partially by activating the glucocorticoid pathway, suggesting its possible therapeutic potential for neuroinflammation in neurological diseases.
Collapse
|
13
|
Shang SQ, Li J, Li SQ, Cao YL. Inhibition of phosphoinositide 3-kinase delta attenuates experimental autoimmune encephalomyelitis in mice. Int J Clin Exp Med 2015; 8:20645-20651. [PMID: 26884985 PMCID: PMC4723830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
The phosphoinositide 3-kinase delta (PI3Kδ) has been implicated in multiple signaling pathways involved in autoimmune diseases. We here aimed to test the hypothesis that selective inhibition of PI3Kδ may promote anti-inflammatory effects by inhibiting Th1 and Th17 cells. We investigated the therapeutic efficacy of a selective PI3Kδ inhibitor IC87114 in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The efficacy was evaluated based on clinical scores, histopathology, serum cytokines and inflammatory infiltrations in the central nervous system (CNS). Treatment of EAE mice with IC87114 reduced the clinical symptoms, histopathology and cellular infiltration into the CNS. And treatment of EAE with IC87114 suppressed the Th1 and Th17 cell ratios. Consistently, the serum levels of IL-1β, IL-6, IL-17 and INF-γ were markedly reduced by IC87114. Taken together, our studies demonstrate that inhibition of PI3Kδ may serve as novel therapy to suppress neuroinflammation seen during EAE.
Collapse
Affiliation(s)
- Shi-Qiang Shang
- Department of Rehabilitation Medicine, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| | - Jian Li
- Department of Neurosurgery, Taian Central HospitalTaian 271000, Shandong, China
| | - Shu-Qing Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong UniversityJinan 250014, Shandong, China
| | - Yu-Ling Cao
- Department of Neurology, Jining First People’s HospitalJining 272011, Shandong, China
| |
Collapse
|
14
|
Bortell N, Morsey B, Basova L, Fox HS, Marcondes MCG. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system. Front Microbiol 2015; 6:900. [PMID: 26441851 PMCID: PMC4568411 DOI: 10.3389/fmicb.2015.00900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the blood–brain barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc) cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, methamphetamine and IL15 may be critical in the development and aggravation of central nervous system immune-mediated inflammatory pathology in HIV-infected drug abusers.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | - Liana Basova
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
15
|
A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Sci Rep 2015; 5:12218. [PMID: 26183281 PMCID: PMC4505308 DOI: 10.1038/srep12218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/17/2015] [Indexed: 01/28/2023] Open
Abstract
In vitro cultured brain tumour cells are indispensable tools for drug screening and therapeutic development. Serum-free culture conditions tentatively preserve the features of the original tumour, but commonly comprise neurosphere propagation, which is a technically challenging procedure. Here, we define a simple, non-expensive and reproducible serum-free cell culture protocol for establishment and propagation of primary paediatric brain tumour cultures as adherent monolayers. The success rates for establishment of primary cultures (including medulloblastomas, atypical rhabdoid tumour, ependymomas and astrocytomas) were 65% (11/17) and 78% (14/18) for sphere cultures and monolayers respectively. Monolayer culturing was particularly feasible for less aggressive tumour subsets, where neurosphere cultures could not be generated. We show by immunofluorescent labelling that monolayers display phenotypic similarities with corresponding sphere cultures and primary tumours, and secrete clinically relevant inflammatory factors, including PGE2, VEGF, IL-6, IL-8 and IL-15. Moreover, secretion of PGE2 was considerably reduced by treatment with the COX-2 inhibitor Valdecoxib, demonstrating the functional utility of our newly established monolayer for preclinical therapeutic assays. Our findings suggest that this culture method could increase the availability and comparability of clinically representative in vitro models of paediatric brain tumours, and encourages further molecular evaluation of serum-free monolayer cultures.
Collapse
|
16
|
Guillot F, Garcia A, Salou M, Brouard S, Laplaud DA, Nicot AB. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation. J Neuroinflammation 2015; 12:130. [PMID: 26141738 PMCID: PMC4501186 DOI: 10.1186/s12974-015-0348-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Background Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Methods Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35–55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. Results The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. Conclusions We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0348-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flora Guillot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Alexandra Garcia
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - Marion Salou
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| | - Sophie Brouard
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,CESTI/ITUN, CHU de Nantes, Nantes, France.
| | - David A Laplaud
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France. .,Service de Neurologie, CHU de Nantes, Nantes, France.
| | - Arnaud B Nicot
- INSERM UMR 1064, CHU Hôtel-Dieu, 30 Bvd Jean Monnet, 44093, Nantes, France. .,Université de Nantes, Faculté de Médecine, Nantes, France.
| |
Collapse
|
17
|
Broux B, Mizee MR, Vanheusden M, van der Pol S, van Horssen J, Van Wijmeersch B, Somers V, de Vries HE, Stinissen P, Hellings N. IL-15 Amplifies the Pathogenic Properties of CD4+CD28−T Cells in Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2099-109. [DOI: 10.4049/jimmunol.1401547] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
He J, Hsuchou H, He Y, Kastin AJ, Mishra PK, Fang J, Pan W. Leukocyte infiltration across the blood-spinal cord barrier is modulated by sleep fragmentation in mice with experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2014; 11:27. [PMID: 25601899 PMCID: PMC4298076 DOI: 10.1186/2045-8118-11-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background We have recently shown that mice with experimental autoimmune encephalomyelitis (EAE) have increased sleep fragmentation (SF) and reduced sleep efficiency, and that the extent of SF correlates with the severity of disease. It is not yet clear whether and how sleep promotes recovery from autoimmune attacks. We hypothesized that SF promotes leukocyte infiltration across the blood-spinal cord barrier, impairs immune regulation, and thus worsens EAE. Methods Three groups of C57 mice were studied: Resting EAE; SF EAE with the mice subjected to the SF maneuver 12 h /day during zeitgeber time (ZT) 0–12 h; and naïve controls with neither EAE nor SF. Besides monitoring of the incidence and severity of EAE, the immune profiles of leukocytes in the spinal cord as well as those in the spleen were determined. Results When analyzed 16 days after EAE induction, at which time the SF was terminated, the SF group had a greater number of CD4+ T cells and a higher percent of CD4+ cells among all leukocytes in the spinal cord than the resting EAE group. When allowed to recover to 28 days after EAE induction, the SF mice had lower EAE scores than the resting EAE group. EAE induced splenomegaly and an increase of Gr1+CD11b+ myeloid-derived suppressor cells in the splenocytes. However, SF treatment had no additional effect on either peripheral splenocytes or granulocytes that reached the spinal cord. Conclusion The SF maneuver facilitated the migration of encephalopathic lymphocytes into the spinal cord. Paradoxically, these mice had a better EAE score after cessation of SF compared with mice without SF.
Collapse
Affiliation(s)
- Junyun He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Yi He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Abba J Kastin
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Pramod K Mishra
- Department of Biology, University of Texas, San Antonio, TX 78249 USA
| | - Jidong Fang
- Department of Psychiatry, Pennsylvania State University, Hershey, PA 17033 USA
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA ; BioPotentials Sleep Center, 8032 Summa Ave, Ste A, Baton Rouge, LA 70809 USA
| |
Collapse
|
19
|
Hou MS, Huang ST, Tsai MH, Yen CC, Lai YG, Liou YH, Lin CK, Liao NS. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus. J Autoimmun 2014; 56:118-29. [PMID: 25500198 DOI: 10.1016/j.jaut.2014.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
The interleukin-15 (IL-15) system is important for regulating both innate and adaptive immune responses, however, its role in autoimmune disease remained unclear. Here we found that Il15(-/-) and Il15ra(-/-) mice spontaneously developed late-onset autoimmune phenotypes. CD4(+) T cells of the knockout mice showed elevated autoreactivity as demonstrated by the induction of lymphocyte infiltration in the lacrimal and salivary glands when transferred into nude mice. The antigen-presenting cells in the thymic medullary regions expressed IL-15 and IL-15Rα, whose deficiency resulted in insufficient negative selection and elevated number of natural IL-17A-producing CD4(+) thymocytes. These findings reveal previously unknown functions of the IL-15 system in thymocyte development, and thus a new layer of regulation in T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Mau-Sheng Hou
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Ting Huang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Han Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Cheng Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Kung Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Nan-Shih Liao
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
20
|
He YX, Du M, Shi HL, Huang F, Liu HS, Wu H, Zhang BB, Dou W, Wu XJ, Wang ZT. Astragalosides from Radix Astragali benefits experimental autoimmune encephalomyelitis in C57BL /6 mice at multiple levels. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:313. [PMID: 25150364 PMCID: PMC4155103 DOI: 10.1186/1472-6882-14-313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/20/2014] [Indexed: 12/03/2022]
Abstract
Background Radix Astragali is famous for its beneficial effect on inflammation associated diseases. This study was to assess the efficacy of astragalosides (AST) extracted from Radix Astragali, on the progression of experimental autoimmune encephalomyelitis (EAE), and explore its possible underlying molecular mechanisms. Methods EAE was induced by subcutaneous immunization of MOG35–55. Infiltration of inflammatory cells was examined by HE staining. ROS level was detected by measuring infiltrated hydroethidine. Leakage of blood brain barrier (BBB) was assessed using Evan’s blue dye extravasation method. Levels of inflammatory cytokines were measured using ELISA kits. Activities of total-SOD, GSH-Px, and iNOS and MDA concentration were measured using biochemical analytic kits. Gene expression was detected using real-time PCR method. Protein expression was assayed using western blotting approach. Results AST administration attenuated the progression of EAE in mice remarkably. Further studies manifested that AST treatment inhibited infiltration of inflammatory cells, lessened ROS production and decreased BBB leakage. In peripheral immune-systems, AST up-regulated mRNA expression of transcriptional factors T-bet and Foxp3 but decreased that of RORγt to modulate T cell differentiation. In CNS, AST stopped BBB leakage, reduced ROS production by up-regulation of T-SOD, and reduced neuroinflammation by inhibition of iNOS and other inflammatory cytokines. Moreover, AST inhibited production of p53 and phosphorylation of tau by modulation of the Bcl-2/Bax ratio. Conclusions AST orchestrated multiple pathways, including immuno-regulation, anti-oxidative stress, anti-neuroinflammation and anti-neuroapoptosis involved in the MS pathogenesis, to prevent the deterioration of EAE, which paves the way for the application of it in clinical prevention/therapy of MS.
Collapse
|
21
|
Li F, Li Y, Tang Y, Lin B, Kong X, Oladele OA, Yin Y. Protective effect of myokine IL-15 against H2O2-mediated oxidative stress in skeletal muscle cells. Mol Biol Rep 2014; 41:7715-22. [PMID: 25103021 DOI: 10.1007/s11033-014-3665-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/27/2014] [Indexed: 11/26/2022]
Abstract
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.
Collapse
Affiliation(s)
- Fengna Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China,
| | | | | | | | | | | | | |
Collapse
|
22
|
Ouyang S, Hsuchou H, Kastin AJ, Mishra PK, Wang Y, Pan W. Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling. Brain Behav Immun 2014; 40:61-73. [PMID: 24576482 PMCID: PMC4131983 DOI: 10.1016/j.bbi.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Leptin, a pleiotropic adipokine, crosses the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) from the periphery and facilitates experimental autoimmune encephalomyelitis (EAE). EAE induces dynamic changes of leptin receptors in enriched brain and spinal cord microvessels, leading to further questions about the potential roles of endothelial leptin signaling in EAE progression. In endothelial leptin receptor specific knockout (ELKO) mice, there were lower EAE behavioral scores in the early phase of the disorder, better preserved BSCB function shown by reduced uptake of sodium fluorescein and leukocyte infiltration into the spinal cord. Flow cytometry showed that the ELKO mutation decreased the number of CD3 and CD45 cells in the spinal cord, although immune cell profiles in peripheral organs were unchanged. Not only were CD4(+) and CD8(+) T lymphocytes reduced, there were also lower numbers of CD11b(+)Gr1(+) granulocytes in the spinal cord of ELKO mice. In enriched microvessels from the spinal cord of the ELKO mice, the decreased expression of mRNAs for a few tight junction proteins was less pronounced in ELKO than WT mice, as was the elevation of mRNA for CCL5, CXCL9, IFN-γ, and TNF-α. Altogether, ELKO mice show reduced inflammation at the level of the BSCB, less leukocyte infiltration, and better preserved tight junction protein expression and BBB function than WT mice after EAE. Although leptin concentrations were high in ELKO mice and microvascular leptin receptors show an initial elevation before inhibition during the course of EAE, removal of leptin signaling helped to reduce disease burden. We conclude that endothelial leptin signaling exacerbates BBB dysfunction to worsen EAE.
Collapse
Affiliation(s)
- Suidong Ouyang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Pramod K Mishra
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Yuping Wang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
23
|
He J, Wang Y, Kastin AJ, Pan W. Increased sleep fragmentation in experimental autoimmune encephalomyelitis. Brain Behav Immun 2014; 38:53-8. [PMID: 24566387 DOI: 10.1016/j.bbi.2014.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/09/2014] [Accepted: 02/09/2014] [Indexed: 01/23/2023] Open
Abstract
Sleep disturbance in patients with multiple sclerosis is prevalent and has multifactorial causes. In mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we determined the dynamic changes of sleep architecture and the interactions between sleep changes and EAE symptoms. The changes of sleep patterns were mainly reflected by altered sleep stage distribution and increased sleep fragmentation. Increased waking and decreased non-rapid eye movement sleep occurred after EAE onset and persisted through the symptomatic phase. There also was increased sleep state transition, indicating a reduction of sleep cohesiveness. Furthermore, the extent of sleep fragmentation correlated with the severity of disease. This is the first study of sleep characteristics in EAE mice demarcating specific changes related to the autoimmune disorder without confounding factors such as psychosocial impact and treatment effects. The reduction of sleep efficiency and cohesiveness supports the notion that enhancing sleep might facilitate the recovery of mice from EAE, pertinent to the multimodality treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Junyun He
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Yuping Wang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
24
|
The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum. Int J Neuropsychopharmacol 2014; 17:235-46. [PMID: 24103647 DOI: 10.1017/s1461145713000850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigates the effect of the selective Jun NH2-terminal kinase 1/2 (JNK1/2) inhibitor, (SP600125) on the striatal dopamine nerve terminal loss and on the increased interleukin-15 (IL-15) expression and glial response induced by methamphetamine (METH). Mice were given repeated low doses of METH (4 mg/kg, i.p., three times separated by 3 h) and killed 24 h or 7 d after the last dose. SP600125 (30 mg/kg, i.p) was administered 30 min before the last METH injection. Results indicate that METH produced dopaminergic axonal neurotoxicity reflected as a marked decrease in the striatal density of tyrosine hydroxylase-immunoreactive (TH-ir) fibres and dopamine transporter-immunoreactivity (DAT-ir) 24 h after dosing. These effects were not modified by SP600125. This compound also failed to prevent the long-term loss of dopamine levels and DAT observed 7 d following METH injection. Nevertheless, SP600125 potentiated METH-induced striatal cell loss reflected by an increase in Fluoro-Jade immunostaining, cleaved capase-3 immunoreactivity and the number of terminal deoxyncleotidyl transferase-mediated dUTP nick end labelling (TUNEL) positive cells. In line with a deleterious effect of JNK1/2 inhibition, SP600125 increased the astroglial and microglial response induced by METH and interfered with drug-induced IL-15 expression. Together these data indicate that, not only does SP600125 fail to protect against the dopaminergic damage induced by METH but also, in fact, it potentiates the glial response and the non-dopaminergic striatal cell loss caused by the drug.
Collapse
|
25
|
Mishra PK, Hsuchou H, Ouyang S, Kastin AJ, Wu X, Pan W. Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav Immun 2013; 34:98-107. [PMID: 23916894 PMCID: PMC3818286 DOI: 10.1016/j.bbi.2013.07.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 11/30/2022] Open
Abstract
Leptin is commonly thought to play a detrimental role in exacerbating experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis. Paradoxically, we show here that astrocytic leptin signaling has beneficial effects in reducing disease severity. In the astrocyte specific leptin receptor knockout (ALKO) mouse in which leptin signaling is absent in astrocytes, there were higher EAE scores (more locomotor deficits) than in the wildtype counterparts. The difference mainly occurred at a late stage of EAE when wildtype mice showed signs of recovery whereas ALKO mice continued to deteriorate. The more severe symptoms in ALKO mice coincided with more infiltrating cells in the spinal cord and perivascular brain parenchyma, more demyelination, more infiltrating CD4 cells, and a lower percent of neutrophils in the spinal cord 28 days after EAE induction. Cultured astrocytes from wildtype mice showed increased adenosine release in response to interleukin-6 and the hippocampus of wildtype mice had increased adenosine production 28 days after EAE induction, but the ALKO mutation abolished the increase in both conditions. This indicates a role of astrocytic leptin in normal gliotransmitter release and astrocyte functions. The worsening of EAE in the ALKO mice in the late stage suggests that astrocytic leptin signaling helps to clear infiltrating leukocytes and reduce autoimmune destruction of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihong Pan
- Corresponding author: Weihong Pan, MD, PhD, Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Tel. 225-763-2715; Fax 225-763-0261,
| |
Collapse
|
26
|
Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels. PLoS One 2013; 8:e76495. [PMID: 24124567 PMCID: PMC3790693 DOI: 10.1371/journal.pone.0076495] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/29/2013] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Collapse
|
27
|
Liba Z, Kayserova J, Komarek V. Th1 and Th17 but no Th2-related cytokine spectrum in the cerebrospinal fluid of children with Borrelia-related facial nerve palsy. Fluids Barriers CNS 2013; 10:30. [PMID: 24093799 PMCID: PMC3851235 DOI: 10.1186/2045-8118-10-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/26/2013] [Indexed: 11/15/2022] Open
Abstract
Background Chemokines and cytokines in cerebrospinal fluid (CSF) and serum have been extensively studied in adults with neuroborreliosis (NB), whereas there are limited data about the pediatric population. In adults, T helper type 1 (Th1) and Th17-related cytokines were observed during acute NB. In children, the Th2 response is thought to moderate the disease course. The aim of this study was to determine the chemokine-cytokine profile in children with acute NB displaying Borrelia-related peripheral facial nerve palsy (PFNP). Methods Luminex multiple bead technology was used for the detection of twelve cytokines and chemokines in the CSF and serum of three groups: 1) children with Borrelia-related PFNP (BPFNP); 2) children with non-borrelial “idiopathic” PFNP (NIPFNP); and 3) age-related controls. Results In BPFNP, cytokines-chemokines related to a non-specific pro-inflammatory activity and specific Th1/Th17 responses were detected in CSF, and elevated IL-7 and IL-10 levels were observed in serum and CSF compared to NIPFNP and to controls. In NIPFNP, CSF findings were similar to controls; however, higher levels of IL-7 and MCP-1 were observed in serum. Higher IL-8, IL-15 and MCP-1 levels were detected in CSF compared to serum in all groups. MCP-1 and IL-8 levels in CSF were strikingly higher in BPFNP compared to the other two groups, while IL-15 levels in CSF showed no difference. In addition, in controls, increased IL-4 level was found in CSF compared to serum. Conclusion The chemokine-cytokine profile in the CSF of children with acute NB was similar to previous studies in adults. Our data suggests that higher levels of IL-4, IL-15 and MCP-1 levels in CSF compared to serum in controls might represent a potentially protective cytokine milieu in the CNS compartment.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, University Hospital Motol, Prague, Czech Republic.
| | | | | |
Collapse
|
28
|
Hsuchou H, Mishra PK, Kastin AJ, Wu X, Wang Y, Ouyang S, Pan W. Saturable leptin transport across the BBB persists in EAE mice. J Mol Neurosci 2013; 51:364-70. [PMID: 23504255 DOI: 10.1007/s12031-013-9993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/03/2013] [Indexed: 02/03/2023]
Abstract
We have shown that mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, have upregulated leptin receptor expression in reactive astrocytes of the hippocampus, a region involved in sickness behavior. Leptin can exacerbate EAE when its serum concentration is high. Although leptin receptors in astrocytes modulate leptin transport across cultured endothelial cell monolayers, it is not known how leptin transport in EAE mice is regulated. Here, we determined brain and cervical spinal cord uptake of leptin in early and recovery stages of EAE, after either intravenous delivery or in situ brain perfusion of (125)I-leptin and the vascular marker (131)I-albumin. While increased vascular space and general blood-brain barrier (BBB) permeability after EAE were expected, the specific saturable transport system for leptin crossing the BBB also persisted. Moreover, there was upregulation of leptin transport in hippocampus and cervical spinal cord in the early stage of EAE, shown by higher leptin uptake in these regions and by competitive inhibition with coadministered excess unlabeled leptin. We conclude that EAE induced a time- and region-specific increase of leptin transport. The results provide a link between circulating leptin and enhanced leptin signaling that may play a crucial role in disease progression.
Collapse
Affiliation(s)
- Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Leavenworth JW, Tang X, Kim HJ, Wang X, Cantor H. Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. J Clin Invest 2013; 123:1382-9. [PMID: 23376792 DOI: 10.1172/jci66938] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022] Open
Abstract
Current therapies to treat autoimmune disease focus mainly on downstream targets of autoimmune responses, including effector cells and cytokines. A potentially more effective approach would entail targeting autoreactive T cells that initiate the disease cascade and break self tolerance. The murine MHC class Ib molecule Qa-1b (HLA-E in humans) exhibits limited polymorphisms and binds to 2 dominant self peptides: Hsp60(p216) and Qdm. We found that peptide-induced expansion of tetramer-binding CD8(+) Tregs that recognize Qa-1-Hsp60(p216) but not Qa-1-Qdm strongly inhibited collagen-induced arthritis, an animal model of human rheumatoid arthritis. Perforin-dependent elimination of autoreactive follicular Th (T(FH)) and Th17 cells by CD8(+) Tregs inhibited disease development. Infusion of in vitro-expanded CD8(+) Tregs increased the efficacy of methotrexate treatment and halted disease progression after clinical onset, suggesting an alternative approach to this first-line treatment. Moreover, infusion of small numbers of Qa-1-Hsp60(p216)-specific CD8(+) Tregs resulted in robust inhibition of autoimmune arthritis, confirming the inhibitory effects of Hsp60(p216) peptide immunization. These results suggest that strategies designed to expand Qa-1-restricted (HLA-E-restricted), peptide-specific CD8(+) Tregs represent a promising therapeutic approach to autoimmune disorders.
Collapse
Affiliation(s)
- Jianmei W Leavenworth
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Interleukin (IL)-15 is a ubiquitously expressed cytokine existing in both intracellular and secretory forms. Here we review the expression, regulation, and functions of IL15 and its receptors in the brain. IL15 receptors show robust upregulation after neuroinflammation, suggesting a major role of IL15 signaling in cerebral function. Involvement of the IL15 system in neuropsychiatric behavior is reflected by the effects of IL15, IL15Rα, and IL2Rγ deletions on neurobehavior and neurotransmitters, the effects of IL15 treatment on neuronal activity, and the potential role of IL15 in neuroplasticity/neurogenesis. The results show that IL15 modulates GABA and serotonin transmission. This may underlie deficits in mood (depressive-like behavior and decreased normal anxiety) and memory, as well as activity level, sleep, and thermoregulation. Although IL15 has only a low level of permeation across the blood-brain barrier, peripheral IL15 is able to activate multiple signaling pathways in neurons widely distributed in CNS regions. The effects of IL15 in "preventing" neuropsychiatric symptoms in normal mice implicate a potential therapeutic role of this polypeptide cytokine.
Collapse
|
31
|
Pandiyan P, Yang XP, Saravanamuthu SS, Zheng L, Ishihara S, O’Shea JJ, Lenardo MJ. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4237-46. [PMID: 22993203 PMCID: PMC3647038 DOI: 10.4049/jimmunol.1201476] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-15 is an important IL-2-related cytokine whose role in Th17 cell biology has not been fully elucidated. In this study, we show that exogenous IL-15 decreased IL-17A production in Th17 cultures. Neutralization of IL-15 using an Ab led to increases in IL-17A production in Th17 cultures. Both Il15(-/-) and Il15r(-/-) T cell cultures displayed higher frequency of IL-17A producers and higher amounts of IL-17A in the supernatants compared with those of wild-type (WT) cells in vitro. IL-15 down-modulated IL-17A production independently of retinoic acid-related orphan receptor-γt, Foxp3, and IFN-γ expression. Both Th17 cells and APCs produced IL-15, which induced binding of STAT5, an apparent repressor to the Il17 locus in CD4 T cells. Also, in a model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), Il15(-/-) mice displayed exacerbated inflammation-correlating with increased IL-17A production by their CD4(+) T cells-compared with WT controls. Exogenous IL-15 administration and IL-17A neutralization reduced the severity of EAE in Il15(-/-) mice. Taken together, these data indicate that IL-15 has a negative regulatory role in fine-tuning of IL-17A production and Th17-mediated inflammation.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Coculture Techniques
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Interleukin-15/deficiency
- Interleukin-15/physiology
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/biosynthesis
- Interleukin-17/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation/genetics
- Phosphorylation/immunology
- Promoter Regions, Genetic/immunology
- STAT5 Transcription Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th17 Cells/cytology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Zheng
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Satoru Ishihara
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
32
|
Huang Z, Meola D, Petitto JM. Dissecting the effects of endogenous brain IL-2 and normal versus autoreactive T lymphocytes on microglial responsiveness and T cell trafficking in response to axonal injury. Neurosci Lett 2012; 526:138-43. [PMID: 22922129 DOI: 10.1016/j.neulet.2012.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
IL-2 is essential for T-helper regulatory (Treg) cell function and self-tolerance, and dysregulation of both endogenous brain and peripheral IL-2 gene expression may have important implications for neuronal injury and repair. We used an experimental approach combining mouse congenic breeding and immune reconstitution to test the hypothesis that the response of motoneurons to injury is modulated by the combined effects of IL2-mediated processes in the brain that modulate its endogenous neuroimmunological milieu, and IL2-mediated processes in the peripheral immune system that regulate T cell function (i.e., normal versus autoreactive Treg-deficient T cells). This experimental strategy enabled us to test our hypothesis by disentangling the effect of normal versus autoreactive T lymphocytes from the effect of endogenous brain IL-2 on microglial responsiveness (microglial phagocytic clusters normally associated with dead motoneurons and MHC2(+) activated microglia) and T cell trafficking, using the facial nerve axotomy model of injury. The results demonstrate that the loss of both brain and peripheral IL-2 had an additive effect on numbers of microglial phagocytic clusters at day 14 following injury, whereas the autoreactive status of peripheral T cells was the primary factor that determined the degree to which T cells entered the injured brain and contributed to increased microglial phagocytic clusters. Changes in activated MHC2(+) microglial in the injured FMN were associated with loss of endogenous brain IL-2 and/or peripheral IL-2. This model may provide greater understanding of the mechanisms involved in determining if T cells entering the injured central nervous system (CNS) have damaging or proregenerative effects.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
33
|
Wu X, Hsuchou H, Kastin AJ, Mishra PK, Pan W. Upregulation of astrocytic leptin receptor in mice with experimental autoimmune encephalomyelitis. J Mol Neurosci 2012; 49:446-56. [PMID: 22684620 DOI: 10.1007/s12031-012-9825-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 01/02/2023]
Abstract
The detrimental role of leptin in experimental autoimmune encephalomyelitis (EAE) is opposite to its neuroprotective role in other neuropathologies. We hypothesize that a shifted cellular distribution of leptin receptors underlies the differential effects of leptin. A robust increase of ObR immunoreactivity was seen along glial fibrillary acidic protein (GFAP)(+) intermediate filaments in reactive astrocytes in the hippocampus and hypothalamus of mice with EAE. Although astrocyte-specific GFAP mRNA and protein were both increased, ObRa mRNA was elevated only after resolution of EAE symptoms, and ObRb mRNA was even decreased at the peak time of symptoms of EAE. A cell type-specific action of leptin may underlie its differential effects.
Collapse
Affiliation(s)
- Xiaojun Wu
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
34
|
Stone KP, Kastin AJ, Pan W. NFĸB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia. Cell Physiol Biochem 2011; 28:115-24. [PMID: 21865854 DOI: 10.1159/000331720] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 12/18/2022] Open
Abstract
Interleukin (IL)-15 and its receptors are induced by tumor necrosis factor α (TNF) in the cerebral endothelial cells composing the blood-brain barrier, but it is not yet clear how IL-15 modulates endothelial function. Contrary to the known induction of JAK/STAT3 signaling, here we found that nuclear factor (NF)- κB is mainly responsible for IL-15 actions on primary brain microvessel endothelial cells and cerebral endothelial cell lines. IL-15-induced transactivation of an NFκB luciferase reporter resulted in phosphorylation and degradation of the inhibitory subunit IκB that was followed by phosphorylation and nuclear translocation of the p65 subunit of NFκB. An IκB kinase inhibitor Bay 11-7082 only partially inhibited IL-15-induced NFκB luciferase activity. The effect of IL-15 was mediated by its specific receptor IL-15Rα, since endothelia from IL-15Rα knockout mice showed delayed nuclear translocation of p65, whereas those from knockout mice lacking a co-receptor IL-2Rγ did not show such changes. At the mRNA level, IL-15 and TNF showed similar effects in decreasing the tight junction protein claudin-2 and increasing the p65 subunit of NFκB but exerted different regulation on caveolin-1 and vimentin. Taken together, NFκB is a major signal transducer by which IL-15 affects cellular permeability, endocytosis, and intracellular trafficking at the level of the blood-brain barrier.
Collapse
Affiliation(s)
- Kirsten P Stone
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, USA.
| | | | | |
Collapse
|
35
|
Huang Z, Meola D, Petitto JM. Loss of CNS IL-2 gene expression modifies brain T lymphocyte trafficking: response of normal versus autoreactive Treg-deficient T cells. Neurosci Lett 2011; 499:213-8. [PMID: 21669253 DOI: 10.1016/j.neulet.2011.05.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Emerging data from our lab and others suggested that dysregulation of the brain's endogenous neuroimmunological milieu may occur with the loss of brain IL-2 gene expression and be involved in initiating processes that lead to CNS autoimmunity. We sought to test our working hypothesis that IL-2 deficiency induces endogenous changes in the CNS that play a key role in eliciting T cell homing into the brain. To accomplish this goal, we used an experimental approach that combined mouse congenic breeding and immune reconstitution. In congenic mice without brain IL-2 (two IL-2 KO alleles) that were reconstituted with a normal wild-type immune system, the loss of brain IL-2 doubled the number of T cells that trafficked into the brain in all regions quantified (hippocampus, septum, and cerebellum) compared to mice with two wild-type brain IL-2 alleles and a wild-type peripheral immune system. Congenic mice with normal brain IL-2 (two wild-type IL-2 alleles) that were immune reconstituted with autoreactive Treg-deficient T cells from IL-2 KO mice developed the expected peripheral autoimmunity (splenomegaly) and had a comparable doubling of T cell trafficking into the hippocampus and septum, whereas they exhibited an additional twofold proclivity for the cerebellum over the septohippocampal regions. Unlike brain trafficking of wild-type T cells, the increased homing of IL-2 KO T cells to the cerebellum was independent of brain IL-2 gene expression. These findings demonstrate that brain IL-2 deficiency induces endogenous CNS changes that may lead to the development of brain autoimmunity, and that autoreactive Treg-deficient IL-2 KO T cells trafficking to the brain could have a proclivity to induce cerebellar neuropathology.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
36
|
Di Sabatino A, Calarota SA, Vidali F, MacDonald TT, Corazza GR. Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 2011; 22:19-33. [DOI: 10.1016/j.cytogfr.2010.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 12/31/2022]
|
37
|
Wu X, Hsuchou H, Kastin AJ, He Y, Khan RS, Stone KP, Cash MS, Pan W. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor. Psychoneuroendocrinology 2011; 36:266-78. [PMID: 20724079 PMCID: PMC3015024 DOI: 10.1016/j.psyneuen.2010.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 01/23/2023]
Abstract
Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT(1A), increased mRNA for 5-HT(2C), and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivity. Fluoxetine (the classic antidepressant Prozac, which inhibits 5-HT(2C) and SERT) reduced the immobility of the IL15Rα knockout mice in comparison with their pretreatment baseline. Together with the unchanged performance of the IL15Rα knockout mice on the rotarod, this response to fluoxetine indicates that the immobility reflects depression. Wildtype mice responded to IL15 treatment with improvement of immobility induced by forced swimming, whereas the knockout mice failed to respond. Thus, the cognate IL15 receptor is necessary for the antidepressive activity of IL15. In ex vivo studies, IL15 decreased synaptosomal uptake of 5-HT, and modulated the expression of 5-HT(2C) and SERT in cultured neurons in a dose- and time-dependent manner. Thus, the effect of IL15 on serotonin transmission may underlie the depressive-like behavior of IL15Rα knockout mice. We speculate that IL15 is essential to maintain neurochemical homeostasis and thereby plays a role in preventing neuropsychiatric symptoms.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Cells, Cultured
- Depression/genetics
- Depression/metabolism
- Depression/pathology
- Depression/prevention & control
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Fluoxetine/pharmacology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Interleukin-15/pharmacology
- Interleukin-15/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nervous System/drug effects
- Nervous System/metabolism
- Receptors, Interleukin-15/agonists
- Receptors, Interleukin-15/genetics
- Receptors, Interleukin-15/metabolism
- Receptors, Interleukin-15/physiology
- Serotonin/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weihong Pan
- Corresponding author: Weihong Pan, MD, PhD, Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, Tel. 1-225-763-2707, Fax 1-225-763-0261, , Web: http://labs.pbrc.edu/bloodbrainbarrier
| |
Collapse
|
38
|
Stone KP, Kastin AJ, Hsuchou H, Yu C, Pan W. Rapid endocytosis of interleukin-15 by cerebral endothelia. J Neurochem 2011; 116:544-53. [PMID: 21155807 DOI: 10.1111/j.1471-4159.2010.07142.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-15 receptors are present in the cerebral endothelia composing the blood-brain barrier where they show robust up-regulation by neuroinflammation. To determine how IL15 receptor subunits participate in the endocytosis and intracellular trafficking of IL15, we performed confocal microscopic imaging and radioactive tracer uptake assays in primary brain microvessel endothelial cells and related cell lines transfected with modulatory molecules. By immunostaining and co-localization studies with organelle markers, we showed that IL15 was rapidly endocytosed via lipid rafts and was directed to diverse intracellular pathways. During the course of intracellular trafficking, Alexa dye-conjugated IL15 was partially co-localized with both the specific receptor IL15Rα and the co-receptor IL2Rγ. However, deletion of one of the receptor subunits had only a minor effect in slowing IL15 uptake when primary brain microvessel endothelial cells from the receptor knockout mice were compared with those from wildtype mice. IL15 was trafficked to early, recycling, and late endosomes, to the Golgi, and to lysosomes. The diffuse distribution suggests that IL15 activates multiple endothelial signaling events.
Collapse
Affiliation(s)
- Kirsten P Stone
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
39
|
Quinn LS, Anderson BG. Interleukin-15, IL-15 Receptor-Alpha, and Obesity: Concordance of Laboratory Animal and Human Genetic Studies. J Obes 2011; 2011:456347. [PMID: 21603270 PMCID: PMC3092601 DOI: 10.1155/2011/456347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 01/10/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine which inhibits lipid deposition in cultured adipocytes and decreases adipose tissue deposition in laboratory rodents. In human subjects, negative correlations between circulating IL-15 levels and both total and abdominal fat have been demonstrated. Deletions of IL15 in humans and mice are associated with obesity, while gain-of-function IL-15 overexpressing mice are resistant to diet-induced obesity. IL-15 is highly (but not exclusively) expressed at the mRNA level in skeletal muscle tissue, and the regulation of IL-15 translation and secretion is complex. Conflicting evidence exists concerning whether circulating IL-15 is released from skeletal muscle tissue in response to exercise or other physiological stimuli. The IL-15 receptor-alpha (IL-15Rα) subunit has a complex biochemistry, encoding both membrane-bound and soluble forms which can modulate IL-15 secretion and bioactivity. The gene encoding this receptor, IL15RA, resides on human chromosome 10p, a location linked to obesity and type-2 diabetes. Several single-nucleotide polymorphisms (SNPs) in human IL15RA and IL15 correlate with adiposity and markers of the metabolic syndrome. Genetic variation in IL15RA may modulate IL-15 bioavailability, which in turn regulates adiposity. Thus, IL-15 and the IL-15Rα may be novel targets for pharmacologic control of obesity in the human population.
Collapse
Affiliation(s)
- LeBris S. Quinn
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle Institute for Biomedical and Clinical Research, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 1660 S. Columbian Way, Seattle, WA 98108, USA
- *LeBris S. Quinn:
| | - Barbara G. Anderson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle Institute for Biomedical and Clinical Research, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 1660 S. Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
40
|
Wu X, He Y, Hsuchou H, Kastin AJ, Rood JC, Pan W. Essential role of interleukin-15 receptor in normal anxiety behavior. Brain Behav Immun 2010; 24:1340-6. [PMID: 20600810 PMCID: PMC2949491 DOI: 10.1016/j.bbi.2010.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022] Open
Abstract
The interactions between the cytokine interleukin (IL)-15 and the classical neurotransmitter GABA have been shown in IL15Rα receptor knockout mice by observations of memory deficits and reduction of GABA. To test the hypothesis that IL15 affects anxiety-like behavior, knockout mice without IL15, IL15Rα, or the co-receptor IL2Rγ were subjected to open-field and elevated plus maze tests. All three strains showed reduction of anxiety, with greater changes in the IL15Rα knockout mice than in the IL15 or IL2Rγ knockout mice. This unexpected observation is opposite to the reported increase of anxiety in mice lacking other proinflammatory cytokines or their receptors. The reduced anxiety was not associated with changes in associated serum cytokines. However, Western blotting, qPCR, and immunohistochemistry all showed that IL15Rα knockout mice had mild microgliosis and astrogliosis in the hippocampus. To determine whether this gliosis plays a role in decreasing anxiety, IL15Rα knockout mice were treated with minocycline, but this did not cause a change in open field performance. To determine whether IL15 plays a direct role in anxiety, wildtype mice were treated with IL15 by intraperitoneal injection. This also failed to cause a change in open field behavior under the experimental conditions tested. Thus, IL15Rα is essential for normal anxiety-like behavior, but inhibition of gliosis in the fearless IL15Rα knockout mice or IL15 treatment of normal mice did not acutely modulate behavioral performance as tested.
Collapse
|
41
|
Pan W, Wu X, Kastin AJ, Zhang Y, Hsuchou H, Halberg F, Chatu F, Khan RS, Robert B, Cornelissen-Guillaume GG. Potential protective role of IL15Rα during inflammation. J Mol Neurosci 2010; 43:412-23. [PMID: 20981579 DOI: 10.1007/s12031-010-9459-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
We have shown that TNFα specifically activates the interleukin-15 (IL15) system in cerebral endothelial cells composing the blood-brain barrier. To determine the functions of cerebral IL15 signaling in inflammation, we first treated mice with lipopolysaccharide (LPS) and determined the expression of the three receptor subtypes of IL15. Robust time-dependent upregulation occurred in all subunits. We then tested whether IL15Rα knockout (KO) affected the maintenance of body temperature and activity level after a single dose of LPS. Circadian telemetry data were analyzed by the cosinor method. Both wild-type and KO mice had clear 24-h rhythms of basal temperature and activity. KO mice had a significantly higher midline estimating statistic of rhythm (MESOR; approximating 24 h mean) of temperature and delayed 24-h acrophase (peak) of activity than the wild-type mice. LPS disrupted the circadian rhythm of activity more severely in the KO group. Besides a decrease in MESOR and 24-h amplitude of activity after LPS, the KO mice showed a significant reduction of MESOR, amplitude, and changed acrophase for temperature on the second of 2 days. The disrupted circadian rhythm of temperature and activity in the KO mice after LPS suggests that upregulated IL15 receptors may serve a beneficial role to counteract the consequences of neuroinflammation.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu X, Kastin AJ, Hsuchou H, Pan W. The effects of IL2Rgamma knockout on depression and contextual memory. Behav Brain Res 2010; 213:319-22. [PMID: 20438766 DOI: 10.1016/j.bbr.2010.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 12/29/2022]
Abstract
Interleukin (IL)-2Rgamma shows robust upregulation in neuroinflammatory states associated with clinical depression. We tested the hypothesis that mice lacking IL2Rgamma would have decreased depressive-like behavior. Contrary to this expectation, these knockout mice showed increased immobility in both the Porsolt forced swimming and Nomura water wheel tests. By comparison, the auditory fear conditioning test showed increased retention of contextual freezing. Thus, intact IL2Rgamma combats depressive-like behavior.
Collapse
Affiliation(s)
- Xiaojun Wu
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|