1
|
Lebonville CL, Paniccia JE, Parekh SV, Wangler LM, Jones ME, Fuchs RA, Lysle DT. Expression of a heroin contextually conditioned immune effect in male rats requires CaMKIIα-expressing neurons in dorsal, but not ventral, subiculum and hippocampal CA1. Brain Behav Immun 2020; 89:414-422. [PMID: 32717403 PMCID: PMC7572614 DOI: 10.1016/j.bbi.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself. Conditioned immune effects can significantly exacerbate the adverse health consequences of heroin use. Our laboratory has shown that exposure to a heroin-paired context suppresses lipopolysaccharide (LPS)-induced splenic nitric oxide (NO) production in male rats, and this effect is mediated in part by the dorsal hippocampus (dHpc). However, specific dHpc output regions, whose efferents might mediate conditioned immune effects, have not been identified, nor has the contribution of ventral hippocampus (vHpc) been investigated. Here, we evaluated the role of CaMKIIα-expressing neurons in the dHpc and vHpc main output regions by expressing Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) under a CaMKIIα promoter in the dorsal subiculum and CA1 (dSub, dCA1) or ventral subiculum and CA1 (vSub, vCA1). After context-heroin conditioning, clozapine-N-oxide (CNO, DREADD agonist) or vehicle was administered systemically prior to heroin-paired context (or home-cage control) exposure and LPS immune challenge. Chemogenetic inhibition of CaMKIIα-expressing neurons in dHpc, but not vHpc, output regions attenuated the expression of conditioned splenic NO suppression. These results establish that the main dHpc output regions, the dSub and dCA1, are critical for this context-heroin conditioned immune effect.
Collapse
Affiliation(s)
- Christina L. Lebonville
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Jacqueline E. Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Shveta V. Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Lynde M. Wangler
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Meghan E. Jones
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Rita A. Fuchs
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, P.O. Box 647620, Pullman, WA, 99164-7620, USA
| | - Donald T. Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA,Corresponding Author: , Telephone: +1-919-962-3088, Fax: +1-919-962-2537
| |
Collapse
|
2
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 2017; 62:277-290. [PMID: 28232171 DOI: 10.1016/j.bbi.2017.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine is an immunomodulatory molecule that acts on immune effector cells both in the CNS and peripheral tissues. However, the role of changes in dopamine levels in the neuroinflammatory response is controversial. The local/paracrine renin-angiotensin system (RAS) plays a major role in inflammatory processes in peripheral tissues and brain. In the present study, we investigated the possible role of the brain RAS in the effects of dopamine on the glial inflammatory responses. Astrocytes are the major source of the precursor protein angiotensinogen and angiotensin II (AII) in the brain. Neurotoxins such as MPP+ (1-methyl-4-phenylpyridinium) can act directly on astrocytes to increase levels of angiotensinogen and AII. Conversely, dopamine, via type-2 (D2) receptors, inhibited production of angiotensinogen, decreased expression of angiotensin type-1 (AT1) receptors and increased expression of AT2 receptors. In microglia, dopamine and dopamine agonists also regulated RAS activity. First, indirectly, via downregulation of the astrocyte-derived AII. Second, via dopamine-induced regulation of microglial angiotensin receptors. Dopamine decreased the microglial AT1/AT2 ratio leading to inhibition of the pro-inflammatory AT1/NADPH-oxidase/superoxide axis. D2 receptors were particularly responsible for microglial RAS inhibition in basal culture conditions. However, both D1 and D2 agonists inhibited the AT1/NADPH-oxidase axis in lipopolysaccharide-treated (LPS; i.e. activated) microglia. The results indicate that the decrease in dopamine levels observed in early stages of Parkinson's disease and aging may promote neuroinflammation and disease progression via glial RAS exacerbation.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
4
|
Hutson LW, Lebonville CL, Jones ME, Fuchs RA, Lysle DT. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression. Brain Behav Immun 2017; 62:171-179. [PMID: 28131792 PMCID: PMC5828772 DOI: 10.1016/j.bbi.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Heroin administration suppresses the production of inducible nitric oxide (NO), as indicated by changes in splenic inducible nitric oxide synthase (iNOS) and plasma nitrate/nitrite. Since NO is a measure of host defense against infection and disease, this provides evidence that heroin can increase susceptibility to pathogens by directly interacting with the immune system. Previous research in our laboratory has demonstrated that these immunosuppressive effects of heroin can also be conditioned to environmental stimuli by repeatedly pairing heroin administration with a unique environmental context. Re-exposure to a previously drug-paired context elicits immunosuppressive effects similar to heroin administration alone. In addition, our laboratory has reported that the basolateral amygdala (BLA) and medial nucleus accumbens shell (mNAcS) are critical neural substrates that mediate this conditioned effect. However, our understanding of the contributing mechanisms within these brain regions is limited. It is known that the cytokine interleukin-1 (IL-1) plays an important role in learning and memory. In fact, our laboratory has demonstrated that inhibition of IL-1β expression in the dorsal hippocampus (DH) prior to re-exposure to a heroin-paired context prevents the suppression of measures of NO production. Therefore, the present studies sought to further investigate the role of IL-1 in heroin-conditioned immunosuppression. Blockade of IL-1 signaling in the BLA, but not in the caudate putamen or mNAcS, using IL-1 receptor antagonist (IL-1Ra) attenuated heroin-conditioned immunosuppression of NO production as measured by plasma nitrate/nitrite and iNOS mRNA expression in spleen tissue. Taken together, these findings suggest that IL-1 signaling in the BLA is necessary for the expression of heroin-conditioned immunosuppression of NO production and may be a target for interventions that normalize immune function in heroin users and patient populations exposed to opiate regimens.
Collapse
Affiliation(s)
- Lee W Hutson
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Christina L Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Meghan E Jones
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Rita A Fuchs
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Donald T Lysle
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Lebonville CL, Jones ME, Hutson LW, Cooper LB, Fuchs RA, Lysle DT. Acquisition of heroin conditioned immunosuppression requires IL-1 signaling in the dorsal hippocampus. Brain Behav Immun 2016; 56:325-34. [PMID: 27072068 PMCID: PMC4917416 DOI: 10.1016/j.bbi.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022] Open
Abstract
Opioid users experience increased incidence of infection, which may be partially attributable to both direct opiate-immune interactions and conditioned immune responses. Previous studies have investigated the neural circuitry governing opioid conditioned immune responses, but work remains to elucidate the mechanisms mediating this effect. Our laboratory has previously shown that hippocampal IL-1 signaling, specifically, is required for the expression of heroin conditioned immunosuppression following learning. The current studies were designed to further characterize the role of hippocampal IL-1 in this phenomenon by manipulating IL-1 during learning. Experiment 1 tested whether hippocampal IL-1 is also required for the acquisition of heroin conditioned immunosuppression, while Experiment 2 tested whether hippocampal IL-1 is required for the expression of unconditioned heroin immunosuppression. We found that blocking IL-1 signaling in the dorsal hippocampus with IL-1RA during each conditioning session, but not on interspersed non-conditioning days, significantly attenuated the acquisition of heroin conditioned immunosuppression. Strikingly, we found that the same IL-1RA treatment did not alter unconditioned immunosuppression to a single dose of heroin. Thus, IL-1 signaling is not a critical component of the response to heroin but rather may play a role in the formation of the association between heroin and the context. Collectively, these studies suggest that IL-1 signaling, in addition to being involved in the expression of a heroin conditioned immune response, is also involved in the acquisition of this effect. Importantly, this effect is likely not due to blocking the response to the unconditioned stimulus since IL-1RA did not affect heroin's immunosuppressive effects.
Collapse
Affiliation(s)
- Christina L Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Meghan E Jones
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Lee W Hutson
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Letty B Cooper
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA
| | - Rita A Fuchs
- Washington State University College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, PO Box 647620, Pullman, WA 99164-7620, USA
| | - Donald T Lysle
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, CB#3270, Chapel Hill, NC 27599-3270, USA.
| |
Collapse
|
6
|
Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016; 52:9-23. [PMID: 27139233 PMCID: PMC4855305 DOI: 10.1016/j.alcohol.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
This review updates the conceptual basis for the association of alcohol abuse with an insidious adaptation that facilitates negative affect during withdrawal from chronic intermittent alcohol (CIA) exposure - a change that later supports sensitization of stress-induced anxiety following alcohol abstinence. The finding that a CRF1-receptor antagonist (CRF1RA) minimized CIA withdrawal-induced negative affect supported an association of alcohol withdrawal with a stress mechanism. The finding that repeated stresses or multiple CRF injections into selected brain sites prior to a single 5-day chronic alcohol (CA) exposure induced anxiety during withdrawal provided critical support for a linkage of CIA withdrawal with stress. The determination that CRF1RA injection into positive CRF-sensitive brain sites prevented CIA withdrawal-induced anxiety provided support that neural path integration maintains the persistent CIA adaptation. Based upon reports that stress increases neuroimmune function, an effort was undertaken to test whether cytokines would support the adaptation induced by stress/CA exposure. Twenty-four hours after withdrawal from CIA, cytokine mRNAs were found to be increased in cortex as well as other sites in brain. Further, repeated cytokine injections into previously identified brain sites substituted for stress and CRF induction of anxiety during CA withdrawal. Discovery that a CRF1RA prevented the brain cytokine mRNA increase induced by CA withdrawal provided critical evidence for CRF involvement in this neuroimmune induction after CA withdrawal. However, the CRF1RA did not block the stress increase in cytokine mRNA increases in controls. The latter data supported the hypothesis that distinct mechanisms linked to stress and CA withdrawal can support common neuroimmune functions within a brain site. As evidence evolves concerning neural involvement in brain neuroimmune function, a better understanding of the progressive adaptation associated with CIA exposure will advance new knowledge that could possibly lead to strategies to combat alcohol abuse.
Collapse
Affiliation(s)
- George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; The UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
7
|
Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun 2016; 51:258-267. [PMID: 26365025 PMCID: PMC4679505 DOI: 10.1016/j.bbi.2015.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse.
Collapse
Affiliation(s)
- S Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John D Casachahua
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer A Rinker
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allyson K Blose
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Donald T Lysle
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Hutson LW, Szczytkowski JL, Saurer TB, Lebonville C, Fuchs RA, Lysle DT. Region-specific contribution of the ventral tegmental area to heroin-induced conditioned immunomodulation. Brain Behav Immun 2014; 38:118-24. [PMID: 24462948 PMCID: PMC3989416 DOI: 10.1016/j.bbi.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/29/2023] Open
Abstract
Dopamine receptor stimulation is critical for heroin-conditioned immunomodulation; however, it is unclear whether the ventral tegmental area (VTA) contributes to this phenomenon. Hence, rats received repeated pairings of heroin with placement into a distinct environmental context. At test, they were re-exposed to the previously heroin-paired environment followed by systemic lipopolysaccharide treatment to induce an immune response. Bilateral GABA agonist-induced neural inactivation of the anterior, but not the posterior VTA, prior to context re-exposure inhibited the ability of the heroin-paired environment to suppress peripheral nitric oxide and tumor necrosis factor-α expression, suggesting a role for the anterior VTA in heroin-conditioned immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald T. Lysle
- Corresponding Author: , Telephone: +1-919-537-3748, Fax: +1-919-962-2537
| |
Collapse
|
9
|
Bernstein HG, Trübner K, Krebs P, Dobrowolny H, Bielau H, Steiner J, Bogerts B. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity. Acta Histochem 2014; 116:182-90. [PMID: 23953641 DOI: 10.1016/j.acthis.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).
Collapse
|
10
|
Cytokines, chaperones and neuroinflammatory responses in heroin-related death: what can we learn from different patterns of cellular expression? Int J Mol Sci 2013; 14:19831-45. [PMID: 24084728 PMCID: PMC3821589 DOI: 10.3390/ijms141019831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/22/2013] [Accepted: 09/26/2013] [Indexed: 01/11/2023] Open
Abstract
Heroin (3,6-diacetylmorphine) has various effects on the central nervous system with several neuropathological alterations including hypoxic-ischemic brain damage from respiratory depressing effects and neuroinflammatory response. Both of these mechanisms induce the release of cytokines, chemokines and other inflammatory mediators by the activation of many cell types such as leucocytes and endothelial and glial cells, especially microglia, the predominant immunocompetent cell type within the central nervous system. The aim of this study is to clarify the correlation between intravenous heroin administration in heroin related death and the neuroinflammatory response. We selected 45 cases among autopsies executed for heroin-related death (358 total cases); immunohistochemical studies and Western blotting analyses were used to investigate the expression of brain markers such as tumor necrosis factor-α, oxygen-regulated protein 150, (interleukins) IL-1β, IL-6, IL-8, IL-10, IL-15, cyclooxygenase-2, heat shock protein 70, and CD68 (MAC387). Findings demonstrated that morphine induces inflammatory response and cytokine release. In particular, oxygen-regulated protein 150, cyclooxygenase-2, heat shock protein 70, IL-6 and IL-15 cytokines were over-expressed with different patterns of cellular expression.
Collapse
|
11
|
Szczytkowski JL, Lebonville C, Hutson L, Fuchs RA, Lysle DT. Heroin-induced conditioned immunomodulation requires expression of IL-1β in the dorsal hippocampus. Brain Behav Immun 2013; 30:95-102. [PMID: 23357470 PMCID: PMC3641184 DOI: 10.1016/j.bbi.2013.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 12/31/2022] Open
Abstract
Opioid-associated environmental stimuli elicit robust immune-altering effects via stimulation of a neural circuitry that includes the basolateral amygdala and nucleus accumbens. These brain regions are known to have both direct and indirect connections with the hippocampus. Thus, the present study evaluated whether the dorsal hippocampus (DH), and more specifically interleukin-1 beta (IL-1β) within the DH, is necessary for the expression of heroin-induced conditioned immunomodulation. Rats received five Pavlovian pairings of systemic heroin administration (1.0mg/kg, SC) with placement into a distinct environment (conditioned stimulus, CS). Six days after conditioning, a GABAA/B agonist cocktail or IL-1β small interfering RNA (siRNA) was microinfused into the DH to inhibit neuronal activity or IL-1β gene expression prior to CS or home cage exposure. Control animals received saline or negative control siRNA microinfusions. Furthermore, all rats received systemic administration of lipopolysaccharide (LPS) to stimulate proinflammatory nitric oxide production. CS exposure suppressed LPS-induced nitric oxide production relative to home cage exposure. Inactivation of, or IL-1β silencing in, the DH disrupted the CS-induced suppression of nitric oxide production relative to vehicle or negative control siRNA treatment. These results are the first to show a role for DH IL-1β expression in heroin-conditioned suppression of a proinflammatory immune response.
Collapse
Affiliation(s)
- Jennifer L. Szczytkowski
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270 USA
- Messiah College, Department of Psychology, One College Avenue Suite 3052, Mechanicsburg, PA 17055 USA
| | - Christina Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Lee Hutson
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Rita A. Fuchs
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Donald T. Lysle
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270 USA
| |
Collapse
|
12
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Szczytkowski JL, Fuchs RA, Lysle DT. Ventral tegmental area-basolateral amygdala-nucleus accumbens shell neurocircuitry controls the expression of heroin-conditioned immunomodulation. J Neuroimmunol 2011; 237:47-56. [PMID: 21722970 DOI: 10.1016/j.jneuroim.2011.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
The present investigations sought to determine whether the ventral tegmental area (VTA), basolateral amygdala (BLA), and nucleus accumbens shell (NAC) comprise a circuitry that mediates heroin-induced conditioned immunomodulation. Rats were given conditioning trials in which they received an injection of heroin upon placement into a distinctive environment. Prior to testing, rats received unilateral intra-BLA microinfusion of a D(1) antagonist concomitantly with unilateral intra-NAC shell microinfusion of an NMDA antagonist. Disconnection of the VTA-BLA-NAC circuit impaired the ability of the heroin-paired environment to suppress lipopolysaccharide-induced immune responses, defining for the first time a specific neural circuit involved in conditioned neural-immune interactions.
Collapse
Affiliation(s)
- Jennifer L Szczytkowski
- University of North Carolina at Chapel Hill, Department of Psychology, CB#3270, Chapel Hill, NC 27599-3270, USA.
| | | | | |
Collapse
|