1
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Ipavec N, Rogić Vidaković M, Markotić A, Pavelin S, Buljubašić Šoda M, Šoda J, Dolić K, Režić Mužinić N. Treated and Untreated Primary Progressive Multiple Sclerosis: Walkthrough Immunological Changes of Monocytes and T Regulatory Cells. Biomedicines 2024; 12:464. [PMID: 38398067 PMCID: PMC10887021 DOI: 10.3390/biomedicines12020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate regulatory T cells (Tregs) and monocytes; specifically, the expression of CTLA-4 (CD152) and FOXP3+ in CD4+CD25+ Tregs and the expression of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40, and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated (N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs. Further, ocrelizumab treated PPMS subjects, compared to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical monocytes. Increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs in both ocrelizumab treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical CD14+CD16++ monocytes for treated compared to untreated PPMS subjects suggests a possible role for ocrelizumab in dampening CNS inflammation.
Collapse
Affiliation(s)
- Nina Ipavec
- Transfusion Medicine Division, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | | | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
3
|
Chen L, Zhu LF, Zhang LY, Chu YH, Dong MH, Pang XW, Yang S, Zhou LQ, Shang K, Xiao J, Wang W, Qin C, Tian DS. Causal association between the peripheral immunity and the risk and disease severity of multiple sclerosis. Front Immunol 2024; 15:1325938. [PMID: 38390334 PMCID: PMC10881847 DOI: 10.3389/fimmu.2024.1325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
5
|
Li R, Li H, Yang X, Hu H, Liu P, Liu H. Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol 2022; 13:970508. [PMID: 36177043 PMCID: PMC9513370 DOI: 10.3389/fimmu.2022.970508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu,
| |
Collapse
|
6
|
Grzegorski T, Iwanowski P, Kozubski W, Losy J. The alterations of cerebrospinal fluid TNF-alpha and TGF-beta2 levels in early relapsing-remitting multiple sclerosis. Immunol Res 2022; 70:708-713. [PMID: 35729473 DOI: 10.1007/s12026-022-09303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
AIM OF THE STUDY This study aimed to analyze serum and cerebrospinal fluid (CSF) concentrations of proinflammatory and anti-inflammatory cytokines produced by T regulatory (Treg) cells in early RRMS according to the 2017 McDonald criteria. CLINICAL RATIONALE FOR THE STUDY Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) with the cytokine network playing an important role. However, there is a continual lack of data regarding the immunopathogenesis of early RRMS, especially according to the 2017 McDonald criteria. MATERIALS AND METHODS The study groups included early RRMS patients during relapse (n = 18), remission (n = 14), and the control group. The MS diagnosis was established according to the 2017 McDonald criteria. Patients were studied up to 1 year after diagnosis was made. A quantitative test kit based on ELISA was used for cytokine measurement in the serum and CSF. Comparative and correlation analyses between the levels of TNF-α, TGF-β2, IgG index, and relapse duration were performed. RESULTS Significantly higher CSF concentrations of TNF-α in both RRMS-relapse and RRMS-remission groups were found compared to the controls (p < 0.01). The CSF levels of TGF-β2 in the RRMS-relapse group were significantly lower in comparison to the control group (p = 0.01). CONCLUSIONS AND CLINICAL IMPLICATIONS An inappropriate inflammatory response seems to occur in early RRMS and includes the production of TNF-α and a decrease in TGF-β2 release suggesting a significant Treg cells role. Further studies on the topic may contribute to developing new disease-modifying drugs and biochemical markers of the disorder.
Collapse
Affiliation(s)
- Tomasz Grzegorski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - Piotr Iwanowski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland.
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - Jacek Losy
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| |
Collapse
|
7
|
Ghorbani MM, Farazmandfar T, Abediankenari S, Hassannia H, Maleki Z, Shahbazi M. Treatment of EAE mice with Treg, G-MDSC and IL-2: a new insight into cell therapy for multiple sclerosis. Immunotherapy 2022; 14:789-798. [PMID: 35678041 DOI: 10.2217/imt-2021-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study investigates the therapeutic and protective effects of Tregs, myeloid-derived suppressor cells (MDSCs) and IL-2 on multiple sclerosis (MS) disease model. Materials & methods: C57BL/6 mice were immunized to develop an experimental autoimmune encephalomyelitis (EAE) model. We then investigated effects of pre- and post-treatment EAE mice with Tregs, MDSCs and IL-2 on inflammation and demyelination in brain tissue, and on the number of Treg, granulocytic-MDSC and Th-17 cells in spleen. Results: Pre- and post-treatment of EAE mice by Tregs, MDSCs and IL-2 resulted in no weight change, reduced Th-17 cells and suppression of pathological properties. Conclusion: Pre- and post-treatment of immunized mice by Tregs, MDSCs and IL-2 prevent EAE induction.
Collapse
Affiliation(s)
- Mohammad Mehdi Ghorbani
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Touraj Farazmandfar
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Maleki
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
8
|
Canto-Gomes J, Silva CS, Rb-Silva R, Boleixa D, da Silva AM, Cheynier R, Costa P, González-Suárez I, Correia-Neves M, Cerqueira JJ, Nobrega C. Low Memory T Cells Blood Counts and High Naïve Regulatory T Cells Percentage at Relapsing Remitting Multiple Sclerosis Diagnosis. Front Immunol 2022; 13:901165. [PMID: 35711452 PMCID: PMC9196633 DOI: 10.3389/fimmu.2022.901165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study is to assess the peripheral immune system of newly diagnosed patients with relapsing remitting multiple sclerosis (RRMS) and compare it to healthy controls (HC). Methods This cross-sectional study involves 30 treatment-naïve newly diagnosed patients with RRMS and 33 sex- and age-matched HC. Peripheral blood mononuclear cells were analyzed regarding: i) thymic function surrogates [T cell receptor excision circles (TRECs) and recent thymic emigrants (RTEs)]; ii) naïve and memory CD4+ and CD8+ T cells subsets; iii) T helper (Th) phenotype and chemokine receptors expression on CD8+ T cells subsets; iv) regulatory T cell (Tregs) phenotype; and exclude expression of activating/inhibitory receptors by natural killer (NK) and NKT cells. Analyses were controlled for age, sex, and human cytomegalovirus (HCMV) IgG seroprevalence. Results Newly diagnosed patients with RRMS and HC have equivalent thymic function as determined by similar numbers of RTEs and levels of sjTRECs, DJβTRECs, and sj/DJβTREC ratio. In the CD8+ T cells compartment, patients with RRMS have a higher naive to memory ratio and lower memory cell counts in blood, specifically of effector memory and TemRA CD8+ T cells. Interestingly, higher numbers and percentages of central memory CD8+ T cells are associated with increasing time from the relapse. Among CD4+ T cells, lower blood counts of effector memory cells are found in patients upon controlling for sex, age, and anti-HCMV IgG seroprevalence. Higher numbers of CD4+ T cells (both naïve and memory) and of Th2 cells are associated with increasing time from the relapse; lower numbers of Th17 cells are associated with higher MS severity scores (MSSS). Patients with RRMS have a higher percentage of naïve Tregs compared with HC, and lower percentages of these cells are associated with higher MSSS. Percentages of immature CD56bright NK cells expressing the inhibitory receptor KLRG1 and of mature CD56dimCD57+ NK cells expressing NKp30 are higher in patients. No major alterations are observed on NKT cells. Conclusion Characterization of the peripheral immune system of treatment-naïve newly diagnosed patients with RRMS unveiled immune features present at clinical onset including lower memory T cells blood counts, particularly among CD8+ T cells, higher percentage of naïve Tregs and altered percentages of NK cells subsets expressing inhibitory or activating receptors. These findings might set the basis to better understand disease pathogenesis.
Collapse
Affiliation(s)
- João Canto-Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Carolina S. Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rita Rb-Silva
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto, Porto, Portugal
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS, University of Porto, Porto, Portugal
| | | | - Ana Martins da Silva
- Porto University Hospital Center, Porto, Portugal
- Multidisciplinary Unit for Biomedical Research (UMIB) - Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Patrício Costa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
| | - Inés González-Suárez
- University Hospital Complex of Vigo, Vigo, Spain
- Álvaro Cunqueiro Hospital, Vigo, Spain
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - João J. Cerqueira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- Hospital of Braga, Braga, Portugal
- Clinical Academic Centre, Hospital of Braga, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Claudia Nobrega,
| |
Collapse
|
9
|
Harnessing the inherent power of chimeric antigen receptor (CAR)-expressing regulatory T cells (CAR-Tregs) to treat autoimmune-related disorders. Mol Biol Rep 2022; 49:4069-4078. [PMID: 35534581 DOI: 10.1007/s11033-022-07511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Over the past years, adoptive cell therapy with regulatory T lymphocytes (Tregs) has captured the attention of many scientists and clinicians as a novel promising approach for treating a wide range of immune-mediated disorders. In particular, the robust immunosuppressive properties of these cells have been demonstrated to make them uniquely valuable for the treatment of autoimmune diseases. More recently, it has been brought to light that adoptive transfer of chimeric antigen receptor (CAR) Tregs (CAR-Tregs) can also serve a protective role against autoimmune-related disorders. Interestingly, a growing body of evidence indicates that the beneficial and therapeutic effects of antigen-specific CAR-Tregs surpass those of polyclonal Tregs in treating autoimmune conditions. Therefore, harnessing and adapting CAR technology to generate more specific and effective CAR-Tregs, both in terms of tissue localization and antigen recognition, may lay the foundations for the development of far more potent immunotherapeutic strategies for autoimmune-related disorders. Herein, we first highlight the major immunosuppressive abilities of CAR-Tregs and further summarize the current findings on their potential applications in treating autoimmune-related disorders. Then, we will attempt to address the practical challenges in the clinical use of CAR-Treg therapies.
Collapse
|
10
|
Multiple sclerosis patients have reduced resting and increased activated CD4 +CD25 +FOXP3 +T regulatory cells. Sci Rep 2021; 11:10476. [PMID: 34006899 PMCID: PMC8131694 DOI: 10.1038/s41598-021-88448-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Resting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.
Collapse
|
11
|
Tahmasebi S, Qasim MT, Krivenkova MV, Zekiy AO, Thangavelu L, Aravindhan S, Izadi M, Jadidi-Niaragh F, Ghaebi M, Aslani S, Aghebat-Maleki L, Ahmadi M, Roshangar L. The effects of oxygen-ozone therapy on regulatory T-cell responses in multiple sclerosis patients. Cell Biol Int 2021; 45:1498-1509. [PMID: 33724614 DOI: 10.1002/cbin.11589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a common degenerative disorder of the central nervous system. The decreased frequency and dysfunction of Treg cells cause inflammation and disease progression. Ozone autohemotherapy can be used as a potential therapeutic approach to regulate the immune system responses and inflammation in MS. For this purpose, 20 relapsing-remitting multiple sclerosis patients were under treatment with ozone twice weekly for 6 months. The frequency of Treg cell, the expression levels of the Treg cell-related factors (FoxP3, IL-10, TGF-β, miR-17, miR-27, and miR-146A), and the secretion levels of IL-10 and TGF-β were assessed. We found a significant increase in the number of Treg cells, expression levels of FoxP3, miRNAs (miR-17 and miR-27), IL-10, and TGF-β factors in patients after oxygen-ozone (O2 -O3 ) therapy compared to before treatment. In contrast, oxygen-ozone therapy notably decreased the expression level of miR-146a in treated patients. Interestingly, the secretion levels of both IL-10 and TGF-β cytokines were considerably increased in both serum and supernatant of cultured peripheral blood mononuclear cells in posttreatment condition compared to pretreatment condition. According to results, oxygen-ozone therapy raised the frequency of Treg cell and its relevant factors in treated MS patients. Oxygen-ozone therapy would contribute to improving the MS patients by elevating the Treg cell responses.
Collapse
Affiliation(s)
- Safa Tahmasebi
- Department of Immunology, Healthy Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Al-Ayen, Iraq
| | - Maria V Krivenkova
- Department of Juridical Sciences, Faculty of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Lakshmi Thangavelu
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Ghaebi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol 2021; 12:639369. [PMID: 33679799 PMCID: PMC7933037 DOI: 10.3389/fimmu.2021.639369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Bruno Santos-Lima
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
13
|
Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance. Mediators Inflamm 2021; 2020:8827527. [PMID: 33380901 PMCID: PMC7762661 DOI: 10.1155/2020/8827527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease. Inflammatory infiltrates and demyelination of the CNS are the major characteristics of MS and its related animal model-experimental autoimmune encephalomyelitis (EAE). Immoderate autoimmune responses of Th17 cells and dysfunction of Treg cells critically contribute to the pathogenesis of MS and EAE. Our previous study showed that Ginsenoside Rd effectively ameliorated the clinical severity in EAE mice, but the mechanism remains unclear. In this study, we investigated the therapeutic effect of Ginsenoside Rd on EAE in vivo and in vitro and also explored the potential mechanisms for alleviating the injury of EAE. The results indicated that Ginsenoside Rd was effective for the treatment of EAE in mice and splenocytes. Ginsenoside Rd treatment on EAE mice ameliorated the severity of EAE and attenuated the characteristic signs of disease. Ginsenoside Rd displayed the therapeutic function to EAE by modulating inflammation and autoimmunity, via the downregulation of related proinflammatory cytokines IL-6 and IL-17, upregulation of inhibitory cytokines TGF-β and IL-10, and modulation of Treg/Th17 imbalance. And the Foxp3/RORγt/JAK2/STAT3 signaling was found to be associated with this protective function. In addition, analysis of gut microbiota showed that Ginsenoside Rd also had modulation potential on gut microbiota in EAE mice. Based on this study, we hypothesize that Ginsenoside Rd could be a potential and promising agent for the treatment of MS.
Collapse
|
14
|
Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175957. [PMID: 32825027 PMCID: PMC7503488 DOI: 10.3390/ijms21175957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, a synthetic derivative of guanidine, is commonly used as an oral antidiabetic agent and is considered a multi-vector application agent in the treatment of other inflammatory diseases. Recent studies have confirmed the beneficial effect of metformin on immune cells, with special emphasis on immunological mechanisms. Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by various clinical courses. Although the pathophysiology of MS remains unknown, it is most likely a combination of disturbances of the immune system and biochemical pathways with a disruption of blood-brain barrier (BBB), and it is strictly related to injury of intracerebral blood vessels. Metformin has properties which are greatly desirable for MS therapy, including antioxidant, anti-inflammatory or antiplatelet functions. The latest reports relating to the cardiovascular disease confirm an increased risk of ischemic events in MS patients, which are directly associated with a coagulation cascade and an elevated pro-thrombotic platelet function. Hence, this review examines the potential favourable effects of metformin in the course of MS, its role in preventing inflammation and endothelial dysfunction, as well as its potential antiplatelet role.
Collapse
|
15
|
Kim S, Maeng JY, Hyun SJ, Sohn HJ, Kim SY, Hong CH, Kim TG. Extracellular vesicles from human umbilical cord blood plasma modulate interleukin-2 signaling of T cells to ameliorate experimental autoimmune encephalomyelitis. Theranostics 2020; 10:5011-5028. [PMID: 32308765 PMCID: PMC7163430 DOI: 10.7150/thno.42742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human umbilical cord blood (UCB) cell-derived extracellular vesicles (EV) reportedly play immunosuppressive roles; however, UCB plasma-derived extracellular vesicles (CBP EVs) remain poorly studied. We examined the immunosuppressive potential of CBP EVs compared to that of adult blood plasma-derived extracellular vesicles (ABP EVs) in vitro and constructed an experimental autoimmune encephalomyelitis (EAE) model. Methods: CBP EVs were isolated by ultracentrifugation and their proteomic profiling was performed using the high-resolution liquid chromatography with tandem mass spectrometry. Human T lymphocytes or mouse splenocytes labeled with carboxyfluorescein succinimidyl ester were incubated with CBP EV to measure the immunosuppressive function of CBP EV. The effect on T-cell polarization was analyzed by flow cytometry and enzyme-linked immunospot assay. The matrix metalloproteinase (MMP) function in CBP EV was specifically inhibited using a chemical inhibitor. The efficacy of CBP EVs in the EAE mouse model was determined by scoring the symptoms and analyzing cell phenotype and cytokines using mouse splenocytes. We generated genetically engineered artificial EVs using HLA/MIC-null HEK293T (H1ME-5) cell line to characterize the immunosuppressive effect of CBP EV. Results: CBP EVs primarily inhibited the proliferation of T cells by reducing the production of IL-2. Specifically, CBP EV-derived matrix metallopeptidase cleaved the IL-2 receptor α (CD25) on the surface of activated T cells, consequently downregulating IL-2 signaling in response to IL-2R engagement. Although the inhibition of MMP activity in CBP EVs abrogated CD25 cleavage and restored IL-2 production in activated T cells, the immunosuppressive response was not fully recovered. Thus, we further analyzed changes in immunosuppressive cells such as regulatory T cells and bone marrow-derived suppressor cells by CBP EV. Further, GAL-3, GAL-7, S100-A7, MMP-9, MMP-8, HSP-72, and PIP were highly enriched in CBP EV-mimics in which they served as pivotal mediators of CBP EV-induced immunosuppressive effects. Therefore, we generated genetically engineered GAL-3, GAL-7, S100-A7, MMP-9, MMP-8, HSP-72, and PIP-EVs using HLA/MIC-null HEK293T cells to characterize the immunosuppressive effect of these molecules. Among these, MMP-9 and HSP-72-enriched EVs showed the most significant T cell immunosuppression. Conclusion: CBP EVs inhibited T cell proliferation and EAE development by modulating IL-2 signaling and immunosuppressive cell fate. CBP EVs contain critical components for immunosuppression and that CBP EV mimics, specifically those expressing MMP-9 and HSP-72, may offer a novel promising strategy for the treatment of various autoimmune diseases.
Collapse
|
16
|
Sambucci M, Gargano F, Guerrera G, Battistini L, Borsellino G. One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Front Immunol 2019; 10:2947. [PMID: 31956323 PMCID: PMC6955595 DOI: 10.3389/fimmu.2019.02947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
As the Nobel laureate Luigi Pirandello wrote in his novels, identities can be evanescent. Although a quarter of a century has passed since regulatory T cells (Treg) were first described, new studies continue to reveal surprising and contradictory features of this lymphocyte subset. Treg cells are the core of the immunological workforce engaged in the restraint of autoimmune or inflammatory reactions, and their characterization has revealed substantial heterogeneity and complexity in the phenotype and gene expression profiles, proving them to be a most versatile and adaptive cell type, as exemplified by their plasticity in fine-tuning immune responses. Defects in Treg function are associated with several autoimmune diseases, including multiple sclerosis, which is caused by an inappropriate immune reaction toward brain components; conversely, the beneficial effects of immunomodulating therapies on disease progression have been shown to partly act upon the biology of these cells. Both in animals and in humans the pool of circulating Treg cells is a mixture of natural (nTregs) and peripherally-induced Treg (pTregs). Particularly in humans, circulating Treg cells can be phenotypically subdivided into different subpopulations, which so far are not well-characterized, particularly in the context of autoimmunity. Recently, Treg cells have been rediscovered as mediators of tissue healing, and have also shown to be involved in organ homeostasis. Moreover, stability of the Treg lineage has recently been addressed by several conflicting reports, and immune-suppressive abilities of these cells have been shown to be dynamically regulated, particularly in inflammatory conditions, adding further levels of complexity to the study of this cell subset. Finally, Treg cells exert their suppressive function through different mechanisms, some of which—such as their ectoenzymatic activity—are particularly relevant in CNS autoimmunity. Here, we will review the phenotypically and functionally discernible Treg cell subpopulations in health and in multiple sclerosis, touching also upon the effects on this cell type of immunomodulatory drugs used for the treatment of this disease.
Collapse
Affiliation(s)
- Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | |
Collapse
|
17
|
Khosravi M, Majdinasab N, Amari A, Ghadiri AA. Increased frequency of CD4 +CD25 high CD127 low/ - regulatory T cells in patients with multiple sclerosis. GENE REPORTS 2019; 17:100456. [PMID: 32337385 PMCID: PMC7172308 DOI: 10.1016/j.genrep.2019.100456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/02/2023]
Abstract
Background Multiple sclerosis (MS), one of the most common diseases of the central nervous system (CNS), is characterized by demyelination and chronic inflammation of the CNS. Failure of immune tolerance and induced autoimmune processes are involved in MS immunopathogenesis. Regulatory T (Treg) cells play an important role in maintaining peripheral tolerance and immune homeostasis. Objective The aim of this study was to evaluate the frequency of CD4+CD25highCD127low/−Treg cells in MS patients. Methods The study population was composed of 25 healthy controls (HCs), 35 patients with relapsing remitting multiple sclerosis (RRMS) and 25 patients with progressive multiple sclerosis (PMS). Frequency of CD4+CD25highCD127low/− Treg cells in RRMS and PMS patients was compared with HC by flow cytometry. Results Treg cells frequency in PMS patients was significantly higher compared to RRMS patients (P < 0.001) and HCs (P < 0.001). It was lower in RRMS patients than HCs (P = 0.005). A Significant direct correlation between Treg cells frequency and expanded disability status scale (EDSS) in PMS patients (P = 0.001, r = 0.6) was observed. Reverse correlation between Treg cells frequency and EDSS in RRMS patients was found (P = 0.01, r = −0.4). Conclusion More detailed clarification of the role of Treg cells in MS patients could provide a basis for development of Treg cells-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Khosravi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology of Ahvaz Jundishapur University of Medical Sciences, Musculoskeletal Rehabilitation Research Center, Ahvaz, Iran
| | - Afshin Amari
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A. Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding author: Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran and Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Dolati S, Babaloo Z, Ayromlou H, Ahmadi M, Rikhtegar R, Rostamzadeh D, Roshangar L, Nouri M, Mehdizadeh A, Younesi V, Yousefi M. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J Neuroimmunol 2019; 327:15-21. [PMID: 30683426 DOI: 10.1016/j.jneuroim.2019.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Multiple sclerosis is a chronic incapacitating disease of the central nervous system, it has been reported that the disturbance in the development and function of Treg subpopulations is associated with the disability status in the RRMS. Accordingly, in the current study, the objective was to specify nanocurcumin effects on Treg cells frequency, and function in patients with RRMS. METHODS AND MATERIALS 50 patients with RRMS were enrolled in this study in which 25 were treated for at least six months with nanocurcumin capsules while the other half received placebo capsules as the control group. The blood sample was collected prior to the administration of nanocurcumin and placebo capsules and following six months. At baseline and after a six-month treatment, the frequency of Treg lymphocytes, the expression of transcription factor related to these cells and the secretion levels of cytokines were assessed by flowcytometry, real-time PCR and ELISA, respectively. RESULTS A significant reduction was observed in the proportion of peripheral Treg cell frequency, and the levels of TGF-β, IL-10 and FoxP3 expression in patients with RRMS. Our data revealed that the frequency of Treg cells (p = .0027), the expression of FoxP3 (p = .0005), TGF-β (p = .0005), and IL-10 (p = .0002) and the secretion levels of the TGF-β (p = .033), and IL-10 (p = .029) in cultured PBMCs are increased in nanocurcumin-treated group compared to placebo group. CONCLUSION The results of the current work indicated that nanocurcumin is capable of restoring the frequency and function of Treg cells in MS patients.
Collapse
Affiliation(s)
- Sanam Dolati
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Departments of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Roshangar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis. Small GTPases 2018; 11:312-319. [PMID: 30043672 DOI: 10.1080/21541248.2018.1502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
RAS signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, via foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in R-RAS -/- mice results in attenuated disease. In humans, only KRAS GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of KRAS (but not NRAS). RAS genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding KRAS in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting KRAS activation using cancer-derived small molecules may be clinically relevant. ABBREVIATIONS FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.
Collapse
|
20
|
Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res 2017; 96:951-968. [DOI: 10.1002/jnr.24073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel S. Duffy
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Brooke A. Keating
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Chamini J. Perera
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| |
Collapse
|
21
|
Rodi M, Dimisianos N, de Lastic AL, Sakellaraki P, Deraos G, Matsoukas J, Papathanasopoulos P, Mouzaki A. Regulatory Cell Populations in Relapsing-Remitting Multiple Sclerosis (RRMS) Patients: Effect of Disease Activity and Treatment Regimens. Int J Mol Sci 2016; 17:ijms17091398. [PMID: 27571060 PMCID: PMC5037678 DOI: 10.3390/ijms17091398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) of autoimmune etiology that results from an imbalance between CNS-specific T effector cells and peripheral suppressive mechanisms mediated by regulatory cells (RC). In this research, we collected blood samples from 83 relapsing remitting MS (RRMS) patients and 45 healthy persons (HC), to assess the sizes of their RC populations, including CD4⁺CD25(high)Foxp3⁺ (nTregs), CD3⁺CD4⁺HLA(-)G⁺, CD3⁺CD8⁺CD28(-), CD3⁺CD56⁺, and CD56(bright) cells, and how RC are affected by disease activity (acute phase or remission) and types of treatment (methylprednisolone, interferon, or natalizumab). In addition, we isolated peripheral blood mononuclear cells (PBMC) and cultured them with peptides mapping to myelin antigens, to determine RC responsiveness to autoantigens. The results showed decreased levels of nTregs in patients in the acute phase ± methylprednisolone and in remission + natalizumab, but HC levels in patients in remission or receiving interferon. Patients + interferon had the highest levels of CD3⁺CD4⁺HLA(-)G⁺ and CD3⁺CD8⁺CD28(-) RC, and patients in the acute phase + methylprednisolone the lowest. Patients in remission had the highest levels of CD3⁺CD56⁺, and patients in remission + natalizumab the highest levels of CD56(bright) cells. Only nTregs responded to autoantigens in culture, regardless of disease activity or treatment. The highest suppressive activity was exhibited by nTregs from patients in remission. In conclusion, in RRMS disease activity and type of treatment affect different RC populations. nTregs respond to myelin antigens, indicating that it is possible to restore immunological tolerance through nTreg induction.
Collapse
Affiliation(s)
- Maria Rodi
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Nikolaos Dimisianos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - Panagiota Sakellaraki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| | - George Deraos
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - John Matsoukas
- Eldrug S.A., Pharmaceutical Company, Platani, Patras GR-26504, Greece.
| | - Panagiotis Papathanasopoulos
- Department of Neurology, Faculty of Medicine & University Hospital, University of Patras, Patras GR-26500, Greece.
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras GR-26500, Greece.
| |
Collapse
|
22
|
Mohiuddin IH, Pillai V, Baughman EJ, Greenberg BM, Frohman EM, Crawford MP, Sinha S, Karandikar NJ. Induction of regulatory T-cells from memory T-cells is perturbed during acute exacerbation of multiple sclerosis. Clin Immunol 2016; 166-167:12-8. [PMID: 27154631 DOI: 10.1016/j.clim.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
Abstract
Regulatory T-cells (Tregs) are vital for maintaining immunological self-tolerance, and the transcription factor FOXP3 is considered critical for their development and function. Peripheral Treg induction may significantly contribute to the total Treg pool in healthy adults, and this pathway may be enhanced in thymic-deficient conditions like multiple sclerosis (MS). Here, we evaluated iTreg formation from memory versus naïve CD4(+)CD25(-) T-cell precursors. We report the novel finding that memory T-cells readily expressed CD25 and FOXP3, and demonstrated significantly greater suppressive function. Additionally, the CD25(-)FOXP3(-) fraction of stimulated memory T-cells also displayed robust suppression not observed in naïve counterparts or ex vivo resting (CD25(-)) T-cells. This regulatory population was present in both healthy subjects and clinically-quiescent MS patients, but was specifically deficient during disease exacerbation. These studies indicate that iTreg development and function are precursor dependent. Furthermore, MS quiescence appears to correlate with restoration of suppressive function in memory-derived CD4(+)CD25(-)FOXP3(-) iTregs.
Collapse
Affiliation(s)
- Imran H Mohiuddin
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Vinodh Pillai
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ethan J Baughman
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Benjamin M Greenberg
- Department of Neurology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michael P Crawford
- Department of Pathology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - Sushmita Sinha
- Department of Pathology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - Nitin J Karandikar
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Neurology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Pathology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 2016; 292:58-67. [PMID: 26943960 DOI: 10.1016/j.jneuroim.2016.01.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.
Collapse
Affiliation(s)
- Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Tian Tian
- Department of neurosurgery, Affiliated Hospital of Chengde Medical College, Chengde, 06700, Hebei, China
| | - Juan Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Xiaoqian Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huiqing Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Runjing Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
24
|
Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014; 74:659-74. [PMID: 24740824 PMCID: PMC4003395 DOI: 10.1007/s40265-014-0212-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatment of multiple sclerosis (MS) is challenging: disease-modifying treatments (DMTs) must both limit unwanted immune responses associated with disease initiation and propagation (as T and B lymphocytes are critical cellular mediators in the pathophysiology of relapsing MS), and also have minimal adverse impact on normal protective immune responses. In this review, we summarize key preclinical and clinical data relating to the proposed mechanism of action of the recently approved DMT teriflunomide in MS. Teriflunomide selectively and reversibly inhibits dihydro-orotate dehydrogenase, a key mitochondrial enzyme in the de novo pyrimidine synthesis pathway, leading to a reduction in proliferation of activated T and B lymphocytes without causing cell death. Results from animal experiments modelling the immune activation implicated in MS demonstrate reductions in disease symptoms with teriflunomide treatment, accompanied by reduced central nervous system lymphocyte infiltration, reduced axonal loss, and preserved neurological functioning. In agreement with the results obtained in these model systems, phase 3 clinical trials of teriflunomide in patients with MS have consistently shown that teriflunomide provides a therapeutic benefit, and importantly, does not cause clinical immune suppression. Taken together, these data demonstrate how teriflunomide acts as a selective immune therapy for patients with MS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrew Pachner
- Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A10 (previously Domagkstr. 13), 48149 Münster, Germany
| |
Collapse
|
25
|
Havari E, Turner MJ, Campos-Rivera J, Shankara S, Nguyen TH, Roberts B, Siders W, Kaplan JM. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro. Immunology 2014; 141:123-31. [PMID: 24116901 DOI: 10.1111/imm.12178] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon-β in relapsing-remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement-dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab-exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25(hi) T-cell population was necessary for the suppressive activity of alemtuzumab-exposed T cells. The mechanism of this suppression was found to be dependent on both cell-cell contact and interleukin-2 consumption. These findings suggest that an alemtuzumab-mediated increase in the proportion of Treg cells may play a role in promoting the long-term efficacy of alemtuzumab in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Evis Havari
- Neuroimmunology Research, Genzyme, a Sanofi Company, Framingham, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13:668-77. [PMID: 24418308 DOI: 10.1016/j.autrev.2013.12.004] [Citation(s) in RCA: 664] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/31/2013] [Indexed: 01/01/2023]
Abstract
This review focuses on the biology of T helper 17 (Th17) and regulatory T (Treg) cells and their role in inflammatory diseases, such as rheumatoid arthritis. Th17 cells represent a pro-inflammatory subset whereas Treg cells have an antagonist effect. Their developmental pathways are reciprocally interconnected and there is an important plasticity between Th17 and Treg cells. These features implicate that the Th17/Treg balance plays a major role in the development and the disease outcomes of animal model and human autoimmune/inflammatory diseases. During these diseases, this balance is disturbed and this promotes the maintenance of inflammation. Targeting the Th17/Treg imbalance can be performed at different levels such as inhibition of pro-inflammatory cytokines and their receptors, of pathogenic cells or their specific signaling pathways. Conversely, direct effects include administration or induction of protective cells, or stimulation of their specific pathways. Several clinical trials are underway and some positive results have been obtained.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Department of Immunology and Rheumatology, Hospital Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Department of Immunology and Rheumatology, Hospital Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| |
Collapse
|
27
|
Adipocytokine profile, cytokine levels and foxp3 expression in multiple sclerosis: a possible link to susceptibility and clinical course of disease. PLoS One 2013; 8:e76555. [PMID: 24098530 PMCID: PMC3789814 DOI: 10.1371/journal.pone.0076555] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022] Open
Abstract
Background Adipocytokines may be involved in multiple sclerosis (MS) as well as other autoimmune and inflammatory-related diseases. This study aims to compare levels of resistin, visfatin and leptin in three subgroups of MS patients with healthy subjects and also to study their relationship with Foxp3 expression and levels of several pro-inflammatory mediators such as interleukine-1 β(IL-1 β),tumor necrosis factor-α (TNF-α) and human sensitive C-reactive protein (hs-CRP). Methods A total of 391 subjects including 200 healthy controls and 191 MS patients were recruited for this case-control study. Circulating adipocytokines and inflammatory mediators were measured using immunoassay methods. Foxp3 gene expression in peripheral blood mononuclear cells (PBMC) was determined by quantitative real-time PCR. Fat tissue mass was evaluated by using dual energy X-ray absorptiometery (DEXA). Results A significant difference was observed in levels of inflammatory mediators, adipocytokines, Foxp3 gene expression and adipose tissue mass between MS patients and healthy controls. All adipocytokines were positively correlated with levels of inflammatory mediators and negatively correlated with Foxp3 expression in MS patients. In controls, there were positive correlations between circulating leptin and resistin with TNF-α and IL-1β in subgroup analysis, the highest levels of TNF-α, IL-1β, hs-CRP, resistin and leptin were observed in primary progressive-MS (PP-MS) patients. Also, expression of Foxp3 and levels of visfatin in relapsing remitting-MS(RR-MS) patients were higher compared with the other subgroups. Conclusions Our findings suggest the potential role of adipocytokines in pathogenesis and severity of MS. Notably, the relationship of adipocytokines levels with inflammatory cytokines as well as clinical features of MS could be considerable in translational medicine and biomarker studies.
Collapse
|
28
|
Tørring C, Petersen CC, Bjerg L, Kofod-Olsen E, Petersen T, Höllsberg P. The B1-cell subpopulation is diminished in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2013; 262:92-9. [PMID: 23856341 DOI: 10.1016/j.jneuroim.2013.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
B cell subsets in newly diagnosed untreated, relapsing-remitting multiple sclerosis (MS) patients were examined. The fraction of CD20(+) B cells was significantly increased in MS. Among subsets of B cells, MS patients had increased frequency of naïve cells, but reduced frequency of memory and B1 cells. The frequencies of B1 cells were inversely correlated with the time since last attack. B1 cells resembled the phenotype of either lymphocytes (CD11b(-) B1 cells) or monocytes (CD11b(+) B1 cells) and a small fraction of cells was CD3(+)CD20(+) by confocal microscopy.
Collapse
Affiliation(s)
- Caroline Tørring
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Biased Treg/Th17 balance away from regulatory toward inflammatory phenotype in relapsed multiple sclerosis and its correlation with severity of symptoms. J Neuroimmunol 2013; 262:106-12. [PMID: 23845464 DOI: 10.1016/j.jneuroim.2013.06.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/03/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022]
Abstract
The opposing immune functions of Treg and Th17 lymphocytes and the plasticity of Treg/Th17 differentiation, has led us to investigate the effects of their fluctuations and counterbalance in autoimmune condition of multiple sclerosis (MS). Evaluation of Treg and Th17 frequency in peripheral blood of a group of relapsed MS patients, showed a decrease in Treg/Th17 ratio compared to that of healthy controls. A reverse correlation between these subsets was observed in controls but not in patient groups. Both Treg frequency and Treg/Th17 ratio were negatively correlated with severity of symptoms. There was shown to be an enduring increase in Treg frequency associated with MS disease.
Collapse
|
30
|
Rouse M, Nagarkatti M, Nagarkatti PS. The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology 2013; 218:674-82. [PMID: 22954711 PMCID: PMC3582788 DOI: 10.1016/j.imbio.2012.08.269] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects ≈ 400,000 people in the US. It is a chronic, disabling disease with no cure, and the current treatment includes use of immunosuppressive drugs that often exhibit toxic side effects. Thus, there is a pressing need for alternate and more effective treatment strategies that target the components of inflammatory cells. In recent years, regulatory T-cells (Tregs) have been found to play an important role in preventing the development of autoimmunity. Thus, expansion of Tregs in vivo has the therapeutic potential against autoimmune diseases. Because Tregs constitutively express IL-2 receptors (IL-2Rs), we tested the effect of administration of IL-2 on the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). We used IL-2 both before (pre-treatment) or after (post-treatment) immunization with myelin oligodendrocyte glycoprotein (MOG35-55) peptide to induce EAE. The data demonstrated that pre-treatment with a moderate dose of IL-2 caused significant amelioration of EAE. Tissue histopathology of the central nervous system also confirmed the effectiveness of IL-2 pre-treatment by decreasing cellular infiltration in the spinal cord and preserving tissue integrity. IL-2 pretreatment expanded Treg cells while preventing the induction of Th17 during EAE development. In contrast, post-treatment with IL-2 failed to suppress EAE despite induction of Tregs. Together, these studies demonstrate that while expansion of Tregs using IL-2, prior to immunization or the onset of disease, can suppress the immune response, their role is limited after the antigen-specific response is triggered. Because IL-2 is used to treat certain types of cancers, and Tregs have applications in preventing the rejection of transplants, our studies also provide useful information on the use and limitations of Tregs in such clinical manifestations.
Collapse
Affiliation(s)
- Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|