1
|
Wang T, Su X, Peng J, Tan X, Yang G, Zhang T, Chen F, Wang C, Ma K. Deciphering the pharmacological mechanisms of Fraxini Cortex for ulcerative colitis treatment based on network pharmacology and in vivo studies. BMC Complement Med Ther 2023; 23:152. [PMID: 37161415 PMCID: PMC10170718 DOI: 10.1186/s12906-023-03983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a common type of inflammatory bowel disease. Due to the elusive pathogenesis, safe and effective treatment strategies are still lacking. Fraxini Cortex (FC) has been widely used as a medicinal herb to treat some diseases. However, the pharmacological mechanisms of FC for UC treatment are still unclear. METHODS An integrated platform combining network pharmacology and experimental studies was introduced to decipher the mechanism of FC against UC. The active compounds, therapeutic targets, and the molecular mechanism of action were acquired by network pharmacology, and the interaction between the compounds and target proteins were verified by molecular docking. Dextran sulfate sodium (DSS)-induced colitis model was employed to assess the therapeutic effect of FC on UC, and validate the molecular mechanisms of action predicted by network pharmacology. RESULTS A total of 20 bioactive compounds were retrieved, and 115 targets were predicted by using the online databases. Ursolic acid, fraxetin, beta-sitosterol, and esculetin were identified as the main active compounds of FC against UC. PPI network analysis identified 28 FC-UC hub genes that were mainly enriched in the IL-17 signaling pathway, the TNF signaling pathway, and pathways in cancer. Molecular docking confirmed that the active compounds had high binding affinities to the predicted target proteins. GEO dataset analysis showed that these target genes were highly expressed in the UC clinical samples compared with that in the healthy controls. Experimental studies showed that FC alleviated DSS-induced colitis symptoms, reduced inflammatory cytokines release, and suppressed the expression levels of IL1β, COX2, MMP3, IL-17 and RORγt in colon tissues. CONCLUSION FC exhibits anti-UC properties through regulating multi-targets and multi-pathways with multi-components. In vivo results demonstrated that FC alleviated DSS-induced colitis.
Collapse
Affiliation(s)
- Tianming Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xuyang Su
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Peng
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Guangshan Yang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Tengyue Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
2
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Chen W, Yu Y, Liu Y, Song C, Chen H, Tang C, Song Y, Zhang X. Ursolic acid regulates gut microbiota and corrects the imbalance of Th17/Treg cells in T1DM rats. PLoS One 2022; 17:e0277061. [PMID: 36327331 PMCID: PMC9632920 DOI: 10.1371/journal.pone.0277061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Ursolic acid (UA), a natural pentacyclic triterpenoid obtained from fruit and several traditional Chinese medicinal plants, exhibits anti-inflammatory and hypoglycemic properties. However, its protective effects against type 1 diabetes mellitus (T1DM) have not been explored. In this study, streptozotocin-induced T1DM rat models were established and treated with UA for six weeks. T1DM rats treated with UA were used to observe the effects of UA on body weight and fasting blood glucose (FBG) levels. Pathological changes in the pancreas were observed using immunohistochemical staining. The gut microbiota distribution was measured using 16S rDNA high-throughput sequencing. The proportions of Th17 and Treg cells were examined using flow cytometry. Protein and mRNA expression of molecules involved in Th17/Treg cell differentiation were assessed by quantitative real-time PCR and western blotting. The correlation between gut microbiota and Th17/Treg cell differentiation in T1DM was analyzed using redundancy analysis (RDA) analysis. Compared with the model group, FBG levels declined, and the progressive destruction of pancreatic β cells was alleviated. The diversity and uniformity of gut microbiota in T1DM rats treated with UA increased significantly. Interestingly, the Th17/Treg cell differentiation imbalance was corrected and positively correlated with the expression of Foxp3 and IL-10, and negatively correlated with the expression of RORγt, IL-17A, and TNF-α. These findings suggest that UA can lower FBG levels in T1DM rats, delay the progressive destruction of pancreatic β-cells, and modulate gut microbiota homeostasis and immune function in streptozotocin-induced T1DM rats.
Collapse
Affiliation(s)
- Weiwei Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yingying Yu
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan Province, China
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Yang Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - ChaoJie Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - HuanHuan Chen
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Cong Tang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Yu Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Xiaoli Zhang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
- * E-mail:
| |
Collapse
|
4
|
Renda G, Gökkaya İ, Şöhretoğlu D. Immunomodulatory properties of triterpenes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:537-563. [PMID: 34812259 PMCID: PMC8600492 DOI: 10.1007/s11101-021-09785-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
The immune system is one of the main defence mechanisms of the human body. Inadequacy of this system or immunodeficiency results in increased risk of infections and tumours, whereas over-activation of the immune system causes allergic or autoimmune disorders. A well-balanced immune system is important for protection and for alleviation of these diseases. There is a growing interest to maintain a well-balanced immune system, especially after the Covid-19 pandemic. Many biological extracts, as well as natural products, have become popular due to their wide array of immunomodulatory effects and influence on the immune system. Triterpenes, one of the secondary metabolite groups of medicinal plants, exhibit immunomodulatory properties by various mechanisms. Different triterpenes, including components of commonly consumed plants, can promote some protection and alleviation of disease symptoms linked with immune responses and thus enhance overall well-being. This review aims to highlight the efficacy of triterpenes in light of the available literature evidence regarding the immunomodulatory properties of triterpenes. We have reviewed widely investigated immunomodulatory triterpenes; oleanolic acid, glycyrrhizin, glycyrrhetinic acid, pristimerin, ursolic acid, boswellic acid, celastrol, lupeol, betulin, betulinic acid, ganoderic acid, cucumarioside, and astragalosides which have important immunoregulatory properties. In spite of many preclinical and clinical trials were conducted on triterpenes related to their immunoregulatory actions, current studies have several limitations. Therefore, especially more clinical studies with optimal design is essential.
Collapse
Affiliation(s)
- Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - İçim Gökkaya
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - Didem Şöhretoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara Turkey
| |
Collapse
|
5
|
Rathor R, Agrawal A, Kumar R, Suryakumar G, Singh SN. Ursolic acid ameliorates hypobaric hypoxia-induced skeletal muscle protein loss via upregulating Akt pathway: An experimental study using rat model. IUBMB Life 2021; 73:375-389. [PMID: 33368975 DOI: 10.1002/iub.2435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Hypobaric hypoxic stress leads to oxidative stress, inflammation, and disturbance in protein turnover rate. Aggregately, this imbalance in redox homeostasis is responsible for skeletal muscle protein loss and a decline in physical performance. Hence, an urgent medical need is required to ameliorate skeletal muscle protein loss. The present study investigated the efficacy of ursolic acid (UA), a pentacyclic triterpene acid to ameliorate hypobaric hypoxia (HH)-induced muscle protein loss. UA is a naturally occurring pentacyclic triterpene acid present in several edible herbs and fruits such as apples. It contains skeletal muscle hypertrophy activity; still its potential against HH-induced muscle protein loss is unexplored. To address this issue, an in vivo study was planned to examine the beneficial effect of UA supplementation on HH-induced skeletal muscle loss. Male Sprague Dawley rats were exposed to HH with and without UA supplementation (20 mg/kg; oral) for 3 continuous days. The results described the beneficial role of UA as supplementation of UA with HH exposure attenuated reactive oxygen species production and oxidative protein damage, which indicate the potent antioxidant activity. Furthermore, UA supplementation enhanced Akt, pAkt, and p70S6kinase activity (Akt pathway) and lowered the pro-inflammatory cytokines in HH exposed rats. UA has potent antioxidant and anti-inflammatory activity, and it enhanced the protein content via upregulation of Akt pathway-related proteins against HH exposure. These three biological activities of UA make it a novel candidate for amelioration of HH-induced skeletal muscle damage and protein loss.
Collapse
Affiliation(s)
- Richa Rathor
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Akanksha Agrawal
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Ravi Kumar
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Geetha Suryakumar
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Som Nath Singh
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
6
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Zhang Y, Li X, Ciric B, Curtis MT, Chen WJ, Rostami A, Zhang GX. A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci U S A 2020; 117:9082-9093. [PMID: 32253301 PMCID: PMC7183235 DOI: 10.1073/pnas.2000208117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Current multiple sclerosis (MS) medications are mainly immunomodulatory, having little or no effect on neuroregeneration of damaged central nervous system (CNS) tissue; they are thus primarily effective at the acute stage of disease, but much less so at the chronic stage. An MS therapy that has both immunomodulatory and neuroregenerative effects would be highly beneficial. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that ursolic acid (UA), an antiinflammatory natural triterpenoid, also directly promotes oligodendrocyte maturation and CNS myelin repair. Oral treatment with UA significantly decreased disease severity and CNS inflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Importantly, remyelination and neural repair in the CNS were observed even after UA treatment was started on day 60 post immunization when EAE mice had full-blown demyelination and axonal damage. UA treatment also enhanced remyelination in a cuprizone-induced demyelination model in vivo and brain organotypic slice cultures ex vivo and promoted oligodendrocyte maturation in vitro, indicating a direct myelinating capacity. Mechanistically, UA induced promyelinating neurotrophic factor CNTF in astrocytes by peroxisome proliferator-activated receptor γ(PPARγ)/CREB signaling, as well as by up-regulation of myelin-related gene expression during oligodendrocyte maturation via PPARγ activation. Together, our findings demonstrate that UA has significant potential as an oral antiinflammatory and neural repair agent for MS, especially at the chronic-progressive stage.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mark T Curtis
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wan-Jun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
8
|
Zhang N, Liu S, Shi S, Chen Y, Xu F, Wei X, Xu Y. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J Control Release 2020; 320:168-178. [PMID: 31926193 DOI: 10.1016/j.jconrel.2020.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a potent triterpenoid compound found in plants and fruits with activities modulating key cell signaling pathways involving STATs, NF-κB, and TRAIL. But it's highly hydrophobic and very poorly soluble in nature. It had been prepared as nanocrystals, solid dispersion and loaded in nanoparticles but the achieved systemic exposure and circulation half-life were not ideal. We reported the development of UA-liposomes made by HPβCD assisted active loading. Compared to lipid suspensions of UA (Lipid-UA) with similar lipid composition, the novel process enabled the formation of UA-Ca crystalline structures inside the liposomes and therefore sustained release of UA in vivo. While the UA-liposomes were not generally toxic towards 4T1 triple negative breast cancer cells, they could effectively modulate CD4+CD25+Foxp3+ T cells from 4T1 tumor bearing mouse by inhibiting STAT5 phosphorylation and IL-10 secretion. In vivo administration of UA-liposomes at 10 mg/kg dose led to reduced numbers of myeloid derived suppressor cells (MDSCs) and regulatory T cells (Tregs) residing in tumor tissues. These changes signified the correction of the tumor mediated immune-suppressive microenvironment. The UA-liposomes treatment alone was already effective in deterring tumor growth. Such a formulation may be highly promising as an immunotherapy agent and be combined with chemotherapeutics or targeted drugs.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shounan Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengwei Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; School of Pharmacy and Chemistry, Dali University, China.
| |
Collapse
|
9
|
Choi WH, Lee IA. Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals (Basel) 2018; 11:E43. [PMID: 29747388 PMCID: PMC6026977 DOI: 10.3390/ph11020043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
10
|
Chen J, Wong HS, Leong PK, Leung HY, Chan WM, Ko KM. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance. Food Funct 2017; 8:2425-2436. [PMID: 28675237 DOI: 10.1039/c7fo00127d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial biogenesis, which involves an increase in mitochondrial number and the overall capacity of oxidative phosphorylation, is a critical determinant of skeletal muscle function. Recent findings have shown that some natural products can enhance mitochondrial adaptation to aerobic exercise, which in turn improves exercise performance, presumably by delaying muscle fatigue. Ursolic acid (UA), a natural triterpene, is commonly found in various vegetables and fruits. In the current study, UA was shown to increase mitochondrial mass and ATP generation capacity, with a concomitant production of a low level of mitochondrial reactive oxygen species (ROS) in C2C12 myotubes. Mitochondrial ROS, in turn, activated the redox sensitive adenosine monophosphate-dependent protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1(PGC-1) pathway. The activation of AMPK/PGC-1 further increased the expression of cytochrome c oxidase (COX) and uncoupling protein 3. Animal studies showed that UA can also dose-dependently increase the endurance exercise capacity in mice, as assessed by a weight-loaded swimming test and a hanging wire test. Our findings suggest that UA may induce mitochondrial biogenesis through the activation of AMPK and PGC-1 pathways in skeletal muscle, thereby offering a promising prospect for its use to enhance exercise endurance and alleviating fatigue in humans.
Collapse
Affiliation(s)
- Jihang Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
11
|
Katashima CK, Silva VR, Gomes TL, Pichard C, Pimentel GD. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes Rev 2017; 18:700-711. [PMID: 28335087 DOI: 10.1111/obr.12523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/21/2017] [Accepted: 01/22/2017] [Indexed: 12/28/2022]
Abstract
This systematic review aimed at addressing the ursolic acid actions as an adjunctive treatment of the obesity-mediated metabolic abnormalities. To explore our aims, we used the literature search including clinical and animal studies using the Medline and Google Scholar (up to December 2015). Out of 63 screened studies, 17 presented eligibility criteria, such as the use of ursolic acid on adiposity, energy expenditure and skeletal muscle mass in mice and humans. In the literature, we found that several physiological and molecular mechanisms are implicated in the effects of ursolic acid on obesity, energy expenditure, hepatic steatosis, skeletal muscle mass loss and physical fitness, such as (1) increase of thermogenesis by modulation adipocyte transcription factors, activation of 5' adenosine monophosphate-activated protein kinase and overexpression of the uncoupling protein 1 thermogenic marker; (2) enhancement of skeletal muscle mass by activation in bloodstream growth hormone and insulin-like growth factor-1 concentrations secretion, as well as in the activation of mammalian target of rapamycin and inhibition of ring-finger protein-1; and (3) improvement of physical fitness by skeletal muscle proliferator-activated receptor gamma co-activator alpha and sirtuin 1 expression. Therefore, supplementation with ursolic acid may be an adjunctive therapy for prevention and treatment of obesity-mediated and muscle mass-mediated metabolic consequences.
Collapse
Affiliation(s)
| | | | - Tatyanne L Gomes
- Clinical and Sports Nutrition Research Laboratory (Labince), School of Nutrition (FANUT), Federal University of Goias (UFG), Goiânia, GO, Brazil
| | - Claude Pichard
- Nutrition Unit, Geneva University Hospital, Geneva, Switzerland
| | - Gustavo D Pimentel
- Clinical and Sports Nutrition Research Laboratory (Labince), School of Nutrition (FANUT), Federal University of Goias (UFG), Goiânia, GO, Brazil
| |
Collapse
|
12
|
Gajęcka M, Przybylska-Gornowicz B, Zakłos-Szyda M, Dąbrowski M, Michalczuk L, Koziołkiewicz M, Babuchowski A, Zielonka Ł, Lewczuk B, Gajęcki MT. The influence of a natural triterpene preparation on the gastrointestinal tract of gilts with streptozocin-induced diabetes and on cell metabolic activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Jiménez-Suárez V, Nieto-Camacho A, Jiménez-Estrada M, Alvarado Sánchez B. Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of Hamelia patens and its chemical constituents. PHARMACEUTICAL BIOLOGY 2016; 54:1822-1830. [PMID: 26731099 DOI: 10.3109/13880209.2015.1129544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Context Hamelia patens Jacq. (Rubiaceae) is traditionally used to treat wounds, inflammation and diabetes. However, there is still a lack of scientific evidence to support these applications. Objective The objective of this study is to evaluate the anti-inflammatory, antioxidant and antidiabetic activities of Hamelia patens, and identify its bioactive compounds. Materials and methods Four extracts were obtained by maceration and liquid-liquid extraction: HEX, DCM-EtOAc, MeOH-EtOAc and MeOH-Aq. The anti-inflammatory effect was evaluated orally on rat paw carrageenan-induced oedema over 6 h (50, 200 and 500 mg/kg), and topically in mouse ear oedema induced by 12-tetradecanoylphorbol-13-acetate (TPA) after 4 h (0.5 and 1 mg/ear). We also evaluated myeloperoxidase levels in ear tissue, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability, and in vitro α-glucosidase inhibition. The chemical compounds were separated by column chromatography and identified by spectroscopic analysis. Results We found that the oral administration of the HEX extract at 500 and 200 mg/kg significantly decreased the carrageenan-induced inflammation after 1 and 3 h, respectively. The MeOH-EtOAc extract significantly inhibited myeloperoxidase activity (83.5%), followed by the DCM-EtOAc extract (76%), β-sitosterol/stigmasterol (72.7%) and the HEX extract (55%), which significantly decreased oedema induced by TPA at both doses, giving a similar effect to indomethacin. We also found that the MeOH-EtOAc, MeOH-Aq and DCM-EtOAc extracts showed good DPPH scavenging activity (IC50 values of 18.6, 93.9 and 158.2 μg/mL, respectively). The HEX extract showed the lowest α-glucosidase inhibition (an IC50 value of 26.07 μg/mL), followed by the MeOH-EtOAc extract (an IC50 value of 30.18 μg/mL), β-sitosterol/stigmasterol (IC50 34.6 μg/mL) and compound A ((6E,10E,14E,18E)-2,6,10,14,18,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, an IC50 value of 114.6 μg/mL), which were isolated for the first time from Hamelia patens. Discussion and conclusion Hamelia patens possesses anti-inflammatory, antioxidant and α-glucosidase inhibitory activities, which support its traditional use. These effects can be attributed to the identified compounds.
Collapse
Affiliation(s)
- Verónica Jiménez-Suárez
- a Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí , S.L.P , México
| | - Antonio Nieto-Camacho
- b Instituto de Química, Universidad Nacional Autónoma de México , México D.F. , México
| | | | - Brenda Alvarado Sánchez
- a Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí , S.L.P , México
| |
Collapse
|
14
|
Lee SY, Kim YJ, Chung SO, Park SU. Recent studies on ursolic acid and its biological and pharmacological activity. EXCLI JOURNAL 2016; 15:221-8. [PMID: 27231476 PMCID: PMC4874314 DOI: 10.17179/excli2016-159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sook Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Korea
| | - Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| |
Collapse
|
15
|
Liu Q, Tian FJ, Xie QZ, Zhang J, Liu L, Yang J. Fyn Plays a Pivotal Role in Fetomaternal Tolerance Through Regulation of Th17 Cells. Am J Reprod Immunol 2016; 75:569-79. [PMID: 26892111 DOI: 10.1111/aji.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Fu-ju Tian
- Institute of Embryo-Fetal Original Adult Disease; the International Peace Maternity & Child Health Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qing-zhen Xie
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Jun Zhang
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Liu Liu
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| | - Jing Yang
- Center for Reproductive Medicine; Renmin Hospital of Wuhan University; Wuhan China
| |
Collapse
|
16
|
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146:201-13. [PMID: 26775565 DOI: 10.1016/j.lfs.2016.01.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|