1
|
Hajivalili M, Nikkhoo N, Salahi S, Hosseini M. Traumatic brain Injury: Comprehensive overview from pathophysiology to Mesenchymal stem Cell-Based therapies. Int Immunopharmacol 2024; 146:113816. [PMID: 39708488 DOI: 10.1016/j.intimp.2024.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Traumatic brain injury (TBI) is a disastrous phenomenon which is considered to cause high mortality and morbidity rate. Regarding the importance of TBI due to its prevalence and its effects on the brain and other organs, finding new therapeutic methods and improvement of conventional therapies seems to be vital. TBI involves a complex physiological mechanism, with inflammation being a key component among various contributing factors. After incidence of TBI, inflammation can act as a double-edged sword in the process. Inflammation actually plays its role both as initiator and progressive index during TBI which can accumulate myeloid and lymphoid immune cells and trigger cell death pathways. Through this study we made this concept bold that that besides conventional therapies that could be used for traumatic brain injury, treatments based on mesenchyme stem cells (MSCs) and their derivatives including secretomes and exosomes demonstrate more efficacies particularly in preventing secondary injuries caused by TBI. Of note, we highlighted the valuable features of MSC-based therapies such as self-direction toward inflamed tissues and amplifying neuro-regenerative aspects. We listed possible challenges in the way of reaching this therapy to clinic to provide a clear and updated of the field.
Collapse
Affiliation(s)
- Mahsa Hajivalili
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Nikkhoo
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sarvenaz Salahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
4
|
Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, Williamson JC, Braga A, van den Bosch A, Leonardi T, Krzak G, Kittel Á, Benincá C, Vicario N, Tan S, Bastos C, Bicci I, Iraci N, Smith JA, Peacock B, Muller KH, Lehner PJ, Buzas EI, Faria N, Zeviani M, Frezza C, Brisson A, Matheson NJ, Viscomi C, Pluchino S. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol 2021; 19:e3001166. [PMID: 33826607 PMCID: PMC8055036 DOI: 10.1371/journal.pbio.3001166] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Joshua D. Bernstock
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America
| | - Cory M. Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Giulia Manferrari
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Rebecca Rogall
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | | | - James C. Williamson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Alice Braga
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Aletta van den Bosch
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Tommaso Leonardi
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Nunzio Vicario
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy
| | | | - Carlos Bastos
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Iacopo Bicci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Nunzio Iraci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy
| | - Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
| | - Ben Peacock
- NanoFCM Co., Ltd, Nottingham, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Edit Iren Buzas
- Semmelweis University, Budapest, Hungary
- HCEMM Kft HU, Budapest, Hungary
- ELKH-SE, Budapest, Hungary
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge United Kingdom
| | | | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
| |
Collapse
|
5
|
Huang D, Siaw-Debrah F, Wang H, Ye S, Wang K, Wu K, Zhang Y, Wang H, Yao C, Chen J, Yan L, Zhang CL, Zhuge Q, Yang J. Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice. Aging (Albany NY) 2020; 13:2822-2850. [PMID: 33411679 PMCID: PMC7880331 DOI: 10.18632/aging.202334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs)-based therapy has emerged as a promising novel therapy for Traumatic Brain Injury (TBI). However, the therapeutic quantity of viable implanted BMMSCs necessary to initiate efficacy is still undetermined. Increased oxidative stress following TBI, which leads to the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase signaling pathway, has been implicated in accounting for the diminished graft survival and therapeutic effect. To prove this assertion, we silenced the expression of NADPH subunits (p22-phox, p47-phox, and p67-phox) and small GTPase Rac1 in BMMSCs using shRNA. Our results showed that silencing these proteins significantly reduced oxidative stress and cell death/apoptosis, and promoted implanted BMMSCs proliferation after TBI. The most significant result was however seen with Rac1 silencing, which demonstrated decreased expression of apoptotic proteins, enhanced in vitro survival ratio, reduction in TBI lesional volume and significant improvement in neurological function post shRac1-BMMSCs transplantation. Additionally, two RNA-seq hub genes (VEGFA and MMP-2) were identified to play critical roles in shRac1-mediated cell survival. In summary, we propose that knockdown of Rac1 gene could significantly boost cell survival and promote the recovery of neurological functions after BMMSCs transplantation in TBI mice.
Collapse
Affiliation(s)
- Dongdong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Yan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
6
|
Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S. Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology. Front Cell Neurosci 2020; 14:590960. [PMID: 33250716 PMCID: PMC7674923 DOI: 10.3389/fncel.2020.590960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence foresees the secretome of neural stem cells (NSCs) to confer superimposable beneficial properties as exogenous NSC transplants in experimental treatments of traumas and diseases of the central nervous system (CNS). Naturally produced secretome biologics include membrane-free signaling molecules and extracellular membrane vesicles (EVs) capable of regulating broad functional responses. The development of high-throughput screening pipelines for the identification and validation of NSC secretome targets is still in early development. Encouraging results from pre-clinical animal models of disease have highlighted secretome-based (acellular) therapeutics as providing significant improvements in biochemical and behavioral measurements. Most of these responses are being hypothesized to be the result of modulating and promoting the restoration of key inflammatory and regenerative programs in the CNS. Here, we will review the most recent findings regarding the identification of NSC-secreted factors capable of modulating the immune response to promote the regeneration of the CNS in animal models of CNS trauma and inflammatory disease and discuss the increased interest to refine the pro-regenerative features of the NSC secretome into a clinically available therapy in the emerging field of Regenerative Neuroimmunology.
Collapse
Affiliation(s)
- Cory M. Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Yuan FY, Zhang MX, Shi YH, Li MH, Ou JY, Bai WF, Zhang MS. Bone marrow stromal cells-derived exosomes target DAB2IP to induce microglial cell autophagy, a new strategy for neural stem cell transplantation in brain injury. Exp Ther Med 2020; 20:2752-2764. [PMID: 32765770 PMCID: PMC7401953 DOI: 10.3892/etm.2020.9008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow stromal cells (MSCs) are a useful source of stem cells for the treatment of various brain injury diseases due to their abundant supply and fewer ethical problems compared with transplant treatment. However, the clinical application of MSCs is limited due to allograft rejection and immunosuppression in the process of MSCs transplantation. According to previous studies, microglial cell autophagy occurs following co-culture with MSCs. In the present study, exosomes were obtained from MSCs and subsequently characterized using transmission electron microscopy, atomic force microscopy and dynamic light scattering particle size analysis. The type of microRNAs (miRs) found in the exosomes was then analyzed via gene chip. The results demonstrated that microglial cell autophagy could be induced by exosomes. This mechanism was therefore investigated further via reverse transcription-quantitative PCR, western blotting and luciferase assays. These results demonstrated that exosomes from MSCs could induce microglial cell autophagy through the miR-32-mediated regulation of disabled homolog 2-interacting protein, thus providing a theoretical basis for the clinical application of miRs in MSCs.
Collapse
Affiliation(s)
- Feng-Ying Yuan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Ming-Xing Zhang
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Yi-Hua Shi
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Mei-Hui Li
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Yuan Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Fang Bai
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China.,Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong 510080, P.R. China
| | - Ming-Sheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
8
|
Wagner MJ, Khan M, Mohsin S. Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Front Immunol 2020; 11:639. [PMID: 32328072 PMCID: PMC7160320 DOI: 10.3389/fimmu.2020.00639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular Disease (CVD) is a leading cause of mortality within the United States. Current treatments being administered to patients who suffered a myocardial infarction (MI) have increased patient survival, but do not facilitate the replacement of damaged myocardium. Recent studies demonstrate that stem cell-based therapies promote myocardial repair; however, the poor engraftment of the transferred stem cell populations within the infarcted myocardium is a major limitation, regardless of the cell type. One explanation for poor cell retention is attributed to the harsh inflammatory response mounted following MI. The inflammatory response coupled to cardiac repair processes is divided into two distinct phases. The first phase is initiated during ischemic injury when necrosed myocardium releases Danger Associated Molecular Patterns (DAMPs) and chemokines/cytokines to induce the activation and recruitment of neutrophils and pro-inflammatory M1 macrophages (MΦs); in turn, facilitating necrotic tissue clearance. During the second phase, a shift from the M1 inflammatory functional phenotype to the M2 anti-inflammatory and pro-reparative functional phenotype, permits the resolution of inflammation and the establishment of tissue repair. T-regulatory cells (Tregs) are also influential in mediating the establishment of the pro-reparative phase by directly regulating M1 to M2 MΦ differentiation. Current studies suggest CD4+ T-lymphocyte populations become activated when presented with autoantigens released from the injured myocardium. The identity of the cardiac autoantigens or paracrine signaling molecules released from the ischemic tissue that directly mediate the phenotypic plasticity of T-lymphocyte populations in the post-MI heart are just beginning to be elucidated. Stem cells are enriched centers that contain a diverse paracrine secretome that can directly regulate responses within neighboring cell populations. Previous studies identify that stem cell mediated paracrine signaling can influence the phenotype and function of immune cell populations in vitro, but how stem cells directly mediate the inflammatory microenvironment of the ischemic heart is poorly characterized and is a topic of extensive investigation. In this review, we summarize the complex literature that details the inflammatory microenvironment of the ischemic heart and provide novel insights regarding how paracrine mediated signaling produced by stem cell-based therapies can regulate immune cell subsets to facilitate pro-reparative myocardial wound healing.
Collapse
Affiliation(s)
- Marcus J Wagner
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
10
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Rosati J, Ferrari D, Altieri F, Tardivo S, Ricciolini C, Fusilli C, Zalfa C, Profico DC, Pinos F, Bernardini L, Torres B, Manni I, Piaggio G, Binda E, Copetti M, Lamorte G, Mazza T, Carella M, Gelati M, Valente EM, Simeone A, Vescovi AL. Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death Dis 2018; 9:937. [PMID: 30224709 PMCID: PMC6141489 DOI: 10.1038/s41419-018-0990-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Establishing specific cell lineages from human induced pluripotent stem cells (hiPSCs) is vital for cell therapy approaches in regenerative medicine, particularly for neurodegenerative disorders. While neural precursors have been induced from hiPSCs, the establishment of hiPSC-derived human neural stem cells (hiNSCs), with characteristics that match foetal hNSCs and abide by cGMP standards, thus allowing clinical applications, has not been described. We generated hiNSCs by a virus-free technique, whose properties recapitulate those of the clinical-grade hNSCs successfully used in an Amyotrophic Lateral Sclerosis (ALS) phase I clinical trial. Ex vivo, hiNSCs critically depend on exogenous mitogens for stable self-renewal and amplification and spontaneously differentiate into astrocytes, oligodendrocytes and neurons upon their removal. In the brain of immunodeficient mice, hiNSCs engraft and differentiate into neurons and glia, without tumour formation. These findings now warrant the establishment of clinical-grade, autologous and continuous hiNSC lines for clinical trials in neurological diseases such as Huntington’s, Parkinson’s and Alzheimer’s, among others.
Collapse
Affiliation(s)
- Jessica Rosati
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Filomena Altieri
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Silvia Tardivo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Ricciolini
- Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Daniela C Profico
- Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy
| | - Laura Bernardini
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Barbara Torres
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, Regina Elena National Cancer Institute, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit (ICS), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Massimiliano Copetti
- Biostatistic Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Giuseppe Lamorte
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Gelati
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy.,Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy.,Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy
| | - Antonio Simeone
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P. Castellino 111, 80131, Naples, Italy.,IRCSS Neuromed, 86077, Pozzilli, Isernia, Italy
| | - Angelo L Vescovi
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza, 220126, Milan, Italy. .,Stem Cell Laboratory, Cell Factory e Biobank, Terni Hospital, Via Tristano di Joannuccio 1, 05100, Terni, Italy.
| |
Collapse
|
12
|
|
13
|
Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, Booty LM, Bicci I, Balzarotti B, Volpe G, Mallucci G, Manferrari G, Donegà M, Iraci N, Braga A, Hallenbeck JM, Murphy MP, Edenhofer F, Frezza C, Pluchino S. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell 2018; 22:355-368.e13. [PMID: 29478844 PMCID: PMC5842147 DOI: 10.1016/j.stem.2018.01.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/18/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Nunzio Vicario
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Chee Keong Kwok
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Tommaso Leonardi
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Lee M Booty
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Iacopo Bicci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Beatrice Balzarotti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulio Volpe
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Mallucci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Manferrari
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Matteo Donegà
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Via S. Sofia 97, Catania 95125, Italy
| | - Alice Braga
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; Institute of Molecular Biology and CMBI, Genomics, Stem Cell Biology and Regenerative Medicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Genc B, Bozan HR, Genc S, Genc K. Stem Cell Therapy for Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:145-174. [PMID: 30039439 DOI: 10.1007/5584_2018_247] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS). It is characterized by demyelination and neuronal loss that is induced by attack of autoreactive T cells to the myelin sheath and endogenous remyelination failure, eventually leading to functional neurological disability. Although recent evidence suggests that MS relapses are induced by environmental and exogenous triggers such as viral infections in a genetic background, its very complex pathogenesis is not completely understood. Therefore, the efficiency of current immunosuppression-based therapies of MS is too low, and emerging disease-modifying immunomodulatory agents such as fingolimod and dimethyl fumarate cannot stop progressive neurodegenerative process. Thus, the cell replacement therapy approach that aims to overcome neuronal cell loss and remyelination failure and to increase endogenous myelin repair capacity is considered as an alternative treatment option. A wide variety of preclinical studies, using experimental autoimmune encephalomyelitis model of MS, have recently shown that grafted cells with different origins including mesenchymal stem cells (MSCs), neural precursor and stem cells, and induced-pluripotent stem cells have the ability to repair CNS lesions and to recover functional neurological deficits. The results of ongoing autologous hematopoietic stem cell therapy studies, with the advantage of peripheral administration to the patients, have suggested that cell replacement therapy is also a feasible option for immunomodulatory treatment of MS. In this chapter, we overview cell sources and applications of the stem cell therapy for treatment of MS. We also discuss challenges including those associated with administration route, immune responses to grafted cells, integration of these cells to existing neural circuits, and risk of tumor growth. Finally, future prospects of stem cell therapy for MS are addressed.
Collapse
Affiliation(s)
- Bilgesu Genc
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Hemdem Rodi Bozan
- School of Medicine, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey.
| |
Collapse
|
15
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol 2017; 326:24-32. [PMID: 28778535 DOI: 10.1016/j.cellimm.2017.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Stem cells are characterized by self-renew and multipotent differentiation abilities. Besides their roles in cell compensation, stem cells are also rich sources of growth factors, cytokines, chemokines, micro-RNAs and exosomes and serve as drug stores to maintain tissue homeostasis. Recent studies have revealed that the secretome of stem cells is regulated by the local inflammatory cues and highlighted the roles of these secretory factors in stem cell based therapies. Importantly, stem cell conditioned medium, in the absence of stem cell engraftment, have shown efficiency in treating diseases involves immune disorders. In this review, we summarize the recent advances in understanding the regulatory effects of stem cells secreted factors on different immune cells including macrophages, dendritic cells, neutrophils, NK cells, T cells, and B cells. We also discuss how stem cells released factors participate in the initiation, maintenance and resolution of inflammation. The in depth understanding of interaction between stem cells secreted factors and immune system would lead to new strategies to restore tissue homeostasis and improve the efficiency of stem cell therapies.
Collapse
Affiliation(s)
- Liangyu Lin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences of Shanghai Jiao Tong University School of Medicine and Chinese Academy of Sciences, Shanghai 200025, China.
| | - Liming Du
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences of Shanghai Jiao Tong University School of Medicine and Chinese Academy of Sciences, Shanghai 200025, China.
| |
Collapse
|