1
|
Sulaimon FA, Ibiyeye RY, Imam A, Oyewole AL, Imam AL, Shehu M, Biliaminu SA, Kadir RE, Omotoso GO, Ajao MS. Honey and levodopa comparably preserved substantia nigra pars compacta neurons through the modulation of nuclear factor erythroid 2-related factor 2 signaling pathway in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model. Anat Cell Biol 2024; 57:431-445. [PMID: 38992924 PMCID: PMC11424567 DOI: 10.5115/acb.24.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Parkinson's disease (PD) affects about 8.5 million individuals worldwide. Oxidative and inflammatory cascades are implicated in the neurological sequels, that are mostly unresolved in PD treatments. However, proper nutrition offers one of the most effective and least costly ways to decrease the burden of many diseases and their associated risk factors. Moreover, prevention may be the best response to the progressive nature of PD, thus, the therapeutic novelty of honey and levodopa may be prospective. This study aimed to investigate the neuroprotective role of honey and levodopa against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress. Fifty-four adult male Swiss mice were divided into control and PD model groups of 27 mice. Each third of the control mice either received phosphate buffered saline, honey, or levodopa for 21 days. However, each third of the PD models was either pretreated with honey and levodopa or not pretreated. Behavioral studies and euthanasia were conducted 2 and 8 days after MPTP administration respectively. The result showed that there were significantly (P<0.05) higher motor activities in the PD models pretreated with the honey as well as levodopa. furthermore, the pretreatments protected the midbrain against the chromatolysis and astrogliosis induced by MPTP. The expression of antioxidant markers (glutathione [GSH] and nuclear factor erythroid 2-related factor 2 [Nrf2]) was also significantly upregulated in the pretreated PD models. It is thus concluded that honey and levodopa comparably protected the substantia nigra pars compacta neurons against oxidative stress by modulating the Nrf2 signaling molecule thereby increasing GSH level to prevent MPTP-induced oxidative stress.
Collapse
Affiliation(s)
- Fatimo Ajoke Sulaimon
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ruqayyah Yetunde Ibiyeye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kwara State University, Malete, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aboyeji Lukuman Oyewole
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abubakar Lekan Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Monsur Shehu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sikiru Abayomi Biliaminu
- Department of Chemical Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Risikat Eniola Kadir
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Moyosore Salihu Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Chen H, Wang X, Chang Z, Zhang J, Xie D. Evidence for genetic causality between iron homeostasis and Parkinson's disease: A two-sample Mendelian randomization study. J Trace Elem Med Biol 2024; 84:127430. [PMID: 38484633 DOI: 10.1016/j.jtemb.2024.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative disease of the central nervous system, and its specific etiology is still unclear. At present, it is believed that the main pathological basis is the reduction of dopamine concentration in the brain striatum. Although many previous studies have believed that iron as an important nutrient element participates in the occurrence and development of PD, whether there is a causal correlation between total iron binding capacity(TIBC), transferring saturation(TSAT), ferritin and serum iron in iron homeostasis indicators and PD, there has been a lack of effective genetic evidence. METHODS We used Mendelian randomization (MR) as an analytical method to effectively evaluate the genetic association between exposure and outcome, based on the largest genome-wide association study (GWAS) data to date. By using randomly assigned genetic instrumental variables (SNPs, Single Nucleotide Polymorphisms) that are not affected by any causal relationship, we effectively evaluated the causal relationship between iron homeostasis indicators and PD while controlling for confounding factors. RESULTS By coordinated analysis of 86 SNPs associated with iron homeostasis markers and 12,858,066 SNPs associated with PD, a total of 56 SNPs were finally screened for genome-wide significance of iron homeostasis associated with PD. The results of inverse variance weighting(IVW) analysis suggested that iron( β = - 0.524; 95%cl=-0.046 to -0.002; P=0.032) was considered to have a genetic causal relationship with PD. Cochran's Q, Egger intercept and MR-PRESSO global tests did not detect the existence of heterogeneity and pleiotropy (P>0.05). Mr Steiger directionality test further confirmed our estimation of the potential causal direction of iron and PD (P=0.001). In addition, TIBC (β=-0.142; 95%Cl=-0.197-0.481; P=0.414), TSAT (β=-0.316; 95%Cl=-0.861-0.229; P=0.255), and ferritin (β=-0.387; 95%Cl=-1.179-0.405; P=0.338) did not have genetic causal relationships with PD, and the results were not heterogeneous and pleiotropic (P>0.05). In addition, TIBC (β=-0.142; 95%Cl=-0.197-0.481; P=0.414), TSAT (β=-0.316; 95%Cl=-0.861-0.229; P=0.255), and ferritin (β=-0.101; 95%Cl=--0.987 to -0.405; P=0.823) did not have genetic causal relationships with PD, and the results were not heterogeneous and pleiotropic (P>0.05). TIBC (P=0.008), TSAT (P=0.000) and ferritin (P=0.013) were all consistent with the estimation of MR Steiger directivity test. CONCLUSION Our study found that among the four iron homeostasis markers, there was a genetic causal association between serum iron and PD, and the serum iron level was negatively correlated with the risk of PD. In addition, TIBC, TSAT, ferritin had no genetic causal relationship with PD.
Collapse
Affiliation(s)
- Hong Chen
- Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xie Wang
- Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ze Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Juan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| | - Daojun Xie
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| |
Collapse
|
3
|
Yuzawa S, Nakashio M, Ichimura S, Shimoda M, Nakashima A, Marukawa-Hashimoto Y, Kawano Y, Suzuki K, Yoshitomi K, Kawahara M, Tanaka KI. Ergothioneine Prevents Neuronal Cell Death Caused by the Neurotoxin 6-Hydroxydopamine. Cells 2024; 13:230. [PMID: 38334622 PMCID: PMC10854700 DOI: 10.3390/cells13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
Collapse
Affiliation(s)
- Saho Yuzawa
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Motonari Nakashio
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Suzuna Ichimura
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ayaka Nakashima
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yuka Marukawa-Hashimoto
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yusuke Kawano
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kengo Suzuki
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kenichi Yoshitomi
- Sakichi, Co., Ltd., 5-531 Kuromaru-Machi, Omura, Nagasaki 856-0808, Japan;
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ken-ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| |
Collapse
|
4
|
Kamienieva I, Charzyńska A, Duszyński J, Malińska D, Szczepanowska J. In search for mitochondrial biomarkers of Parkinson's disease: Findings in parkin-mutant human fibroblasts. Biochim Biophys Acta Mol Basis Dis 2023:166787. [PMID: 37302428 DOI: 10.1016/j.bbadis.2023.166787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.
Collapse
Affiliation(s)
- Iryna Kamienieva
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Agata Charzyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| |
Collapse
|
5
|
Sakakibara O, Shimoda M, Yamamoto G, Higashi Y, Ikeda-Imafuku M, Ishima Y, Kawahara M, Tanaka KI. Effectiveness of Albumin-Fused Thioredoxin against 6-Hydroxydopamine-Induced Neurotoxicity In Vitro. Int J Mol Sci 2023; 24:ijms24119758. [PMID: 37298708 DOI: 10.3390/ijms24119758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by oxidative stress-dependent loss of dopaminergic neurons in the substantia nigra and elevated microglial inflammatory responses. Recent studies show that cell loss also occurs in the hypothalamus in PD. However, effective treatments for the disorder are lacking. Thioredoxin is the major protein disulfide reductase in vivo. We previously synthesized an albumin-thioredoxin fusion protein (Alb-Trx), which has a longer plasma half-life than thioredoxin, and reported its effectiveness in the treatment of respiratory and renal diseases. Moreover, we reported that the fusion protein inhibits trace metal-dependent cell death in cerebrovascular dementia. Here, we investigated the effectiveness of Alb-Trx against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. Alb-Trx significantly inhibited 6-OHDA-induced neuronal cell death and the integrated stress response. Alb-Trx also markedly inhibited 6-OHDA-induced reactive oxygen species (ROS) production, at a concentration similar to that inhibiting cell death. Exposure to 6-OHDA perturbed the mitogen-activated protein kinase pathway, with increased phosphorylated Jun N-terminal kinase and decreased phosphorylated extracellular signal-regulated kinase levels. Alb-Trx pretreatment ameliorated these changes. Furthermore, Alb-Trx suppressed 6-OHDA-induced neuroinflammatory responses by inhibiting NF-κB activation. These findings suggest that Alb-Trx reduces neuronal cell death and neuroinflammatory responses by ameliorating ROS-mediated disruptions in intracellular signaling pathways. Thus, Alb-Trx may have potential as a novel therapeutic agent for PD.
Collapse
Affiliation(s)
- Okina Sakakibara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Gaku Yamamoto
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
6
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Javadi A, Nikhbakht MR, Ghasemian Yadegari J, Rustamzadeh A, Mohammadi M, Shirazinejad A, Azadbakht S, Abdi Z. In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review. Int J Radiat Biol 2023; 99:155-165. [PMID: 35549605 DOI: 10.1080/09553002.2022.2078007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects. METHODS The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds. RESULTS Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals. CONCLUSION In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.
Collapse
Affiliation(s)
- Anis Javadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Nikhbakht
- Department of Physiology and Pharmacology, School of Medicine Medicinal Plants Research Center Yasuj, University of Medical Sciences, Yasuj, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mohammadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shirazinejad
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Saleh Azadbakht
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Abdi
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Zuo T, Xie M, Yan M, Zhang Z, Tian T, Zhu Y, Wang L, Sun Y. In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson's disease. Cell Prolif 2022; 55:e13213. [PMID: 35274781 PMCID: PMC9055900 DOI: 10.1111/cpr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Acupuncture stimulation has proven to protect dopaminergic neurons from oxidative damage in animal models of Parkinson's disease (PD), but it remains unclear about the in situ information of biochemical components in dopaminergic neurons. Here, we aimed to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in PD mice treated with acupuncture by synchrotron FTIR micro‐spectroscopy technique. Materials and Methods About 9–10‐week‐old C57BL/6 mice were used to establish PD model by intraperitoneal injection of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 30 mg/kg for 5 days). Acupuncture stimulation was performed once a day for 12 days. Behaviour test was determined using the rotarod instrument. Biochemical compositions of dopaminergic neurons in substantia nigra pars compacta were analysed by synchrotron FTIR micro‐spectroscopy technique. The number and ultrastructure of dopaminergic neurons were respectively observed by immunofluorescence and transmission electron microscopy (TEM). Results We found that the number and protein expression of dopaminergic neurons in MPTP‐treated mice were reduced by about half, while that in the mice treated by acupuncture were significantly restored. Acupuncture treatment also restored the motor ability of PD mice. The results of single cell imaging with synchrotron FTIR micro‐spectroscopy technique showed that the proportion of lipid in MPTP treated mice increased significantly. Especially the ratio of CH2 asymmetric stretching and CH3 asymmetric stretching increased significantly, suggesting that MPTP induced lipid peroxidation damage of dopaminergic neurons. It is also supported by the result of TEM, such as mitochondrial swelling or atrophy, loss of mitochondrial crests and mitochondrial vacuolization. Compared with MPTP treated mice, the proportion of lipid in acupuncture treated mice decreased and the mitochondrial structure was restored. Conclusions Acupuncture can inhibit the level of lipid peroxides in dopaminergic neurons and protect neurons from oxidative damage. The study provides a promising method for in situ analysis of biochemical compositions in PD mice and reveals the mechanism of acupuncture in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tingting Zuo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Meiling Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zengyan Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Tian Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Mansouri Z, Dianat M, Radan M, Badavi M. Ellagic Acid Ameliorates Lung Inflammation and Heart Oxidative Stress in Elastase-Induced Emphysema Model in Rat. Inflammation 2021; 43:1143-1156. [PMID: 32103438 DOI: 10.1007/s10753-020-01201-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most important factors in the progress of cardiovascular disease (CVD) which is associated with limited airflow and alveolar demolition. The aim of this study is to investigate the possible protective effect of ellagic acid (EA), as a natural anti-oxidant, against pulmonary arterial hypertension (PAH) and development of lung and heart injuries induced by elastase. Sixty healthy male Sprague-Dawley rats (150-180 g) were divided into six groups: control (saline 0.9%, 1 ml/kg, by gavage), porcine pancreatic elastase (PPE) (25 UI/kg, intratracheal), EA (10, 15, and 30 mg/kg, gavage), PPE + EA (30 mg/kg, by gavage). Lead II electrocardiogram was used to evaluate the inotropic and chronotropic parameters of rat heart using Bio-Amp device and the LabChart software. The anti-oxidant levels (superoxide dismutase, catalase, and glutathione) and malondialdehyde were measured by appropriate kits, and right ventricular systolic pressure (RVSP) was recorded by the PowerLab system and measured by the LabChart software (ADInstruments). Elastase administration caused an increase in RVSP which was in line with elevated inflammatory cells and cytokines, as well as lipid peroxidation, and decreased anti-oxidant levels. Also, electrocardiogram parameters significantly changed in elastase group compared with control rats. Co-treatment with EA not only restored elastase-depleted anti-oxidant levels and prevented pulmonary arterial hypertension but also improved cardiac chronotropic and inotropic properties. Our results documented that elastase administration leads to pulmonary arterial hypertension and EA, as an anti-inflammatory and anti-oxidant factor, can protect development of lung and heart injuries induced by elastase.
Collapse
Affiliation(s)
- Zahra Mansouri
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Radan
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
11
|
Abiodun OO, Nnoruka ME, Tijani RO. Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Seed of Spondias mombin L. (Anacardiaceae). Turk J Pharm Sci 2020; 17:343-348. [PMID: 32636713 DOI: 10.4274/tjps.galenos.2020.38801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/11/2020] [Indexed: 12/01/2022]
Abstract
Objectives Increased generation of free radicals exceeding the antioxidant capacity of the host is deleterious. Thus new, potent, and safe antioxidants will be a valuable addition to the limited antioxidant arsenals available. Therefore, the antioxidant activity, cytotoxicity potential, and phytochemical constituents of the methanol extract of Spondias mombin seed (MESSM) were investigated. Materials and Methods 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and hydrogen peroxide (H2O2) were the antioxidant assays used. The cytotoxicity of MESSM was evaluated against a rhabdomyosarcoma (RD) cell line in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide based assay. The phytochemical constituents of MESSM were identified using gas chromatography-mass spectrometry. Results MESSM produced better antioxidant activity in the DPPH (IC50=58.64±1.49 μg/mL) and H2O2 (IC50=44.03±5.57 μg/mL) assays than in the NO (IC50=494.55±12.68 μg/mL, p<0.0001) assay. Moreover, MESSM was nontoxic (CC50=139.6±0.54 μg/mL) in comparison to cyclophosphamide (CC50=0.97±0.03 μg/mL) against the RD cell line. The major compounds in MESSM were dodecanoic acid (22.48%), tetradecanoic acid (17.95%), n-hexadecanoic acid (15.35%), capsaicin (12.11%), and dihydrocapsaicin (5.23%). Conclusion The seed extract of Spondias mombin contains nontoxic antioxidant compounds that could be explored in the pharmaceutical and cosmetics industries for the development of antioxidant agents.
Collapse
Affiliation(s)
| | - Mesoma Esther Nnoruka
- University of Ibadan College of Medicine, Department of Pharmacology and Therapeutics, Ibadan, Nigeria
| | - Rasidat Olufunke Tijani
- University of Ibadan College of Medicine, Department of Pharmacology and Therapeutics, Ibadan, Nigeria
| |
Collapse
|
12
|
Hill RL, Singh IN, Wang JA, Kulbe JR, Hall ED. Protective effects of phenelzine administration on synaptic and non-synaptic cortical mitochondrial function and lipid peroxidation-mediated oxidative damage following TBI in young adult male rats. Exp Neurol 2020; 330:113322. [PMID: 32325157 DOI: 10.1016/j.expneurol.2020.113322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations, with synaptic mitochondria being more vulnerable to injury-dependent consequences. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following TBI using phenelzine (PZ), an aldehyde scavenger, would preferentially protect synaptic mitochondria against LP-mediated damage in a dose- and time-dependent manner. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ (3-30 mg/kg) was administered subcutaneously (subQ) at different times post-injury. We found PZ treatment preserves both synaptic and non-synaptic mitochondrial bioenergetics at 24 h and that this protection is partially maintained out to 72 h post-injury using various dosing regimens. The results from these studies indicate that the therapeutic window for the first dose of PZ is likely within the first hour after injury, and the window for administration of the second dose seems to fall between 12 and 24 h. Administration of PZ was able to significantly improve mitochondrial respiration compared to vehicle-treated animals across various states of respiration for both the non-synaptic and synaptic mitochondria. The synaptic mitochondria appear to respond more robustly to PZ treatment than the non-synaptic, and further experimentation will need to be done to further understand these effects in the context of TBI.
Collapse
Affiliation(s)
- Rachel L Hill
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America.
| | - Indrapal N Singh
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| | - Juan A Wang
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Jacqueline R Kulbe
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Edward D Hall
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| |
Collapse
|
13
|
Melatonin improves the structure and function of autografted mice ovaries through reducing inflammation: A stereological and biochemical analysis. Int Immunopharmacol 2019; 74:105679. [PMID: 31202180 DOI: 10.1016/j.intimp.2019.105679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Melatonin has anti-oxidant, anti-inflammatory and anti-apoptotic properties. We aimed to investigate the effect of melatonin on the structure and function of mice ovaries following autograft transplantation. NMRI mice were divided into: control, autografted + saline, autografted + melatonin (20 mg/kg/day i.p. injection for 1 day before until 7 days after transplantation). 28 days post transplantation, ovary compartments were studied stereologically. Follicle apoptosis and the level of progesterone and estradiol were also measured. The inflammation, serum MDA concentration and total antioxidant capacity were also assessed on day 7 post transplantation. The total volume of the ovary, cortex and medulla (P < 0.05) and the number of different types of follicles (P < 0.001), the concentration of IL-10, progesterone and estradiol (P < 0.001) and TAC (P < 0.01) significantly decreased in the autografted + saline group compared to the control. The levels of IL-6 (P < 0.01), TNF-α, MDA and the apoptotic rate (P < 0.001) increased significantly in the autografted + saline group compared to the control, while the total volume of the ovary, cortex and medulla (P < 0.05) and the number of different types of follicles (P < 0.001), the concentration of IL-10, progesterone and estradiol (P < 0.001) and TAC (P < 0.01) significantly increased in the autografted + melatonin group compared to the autografted + saline group. The levels of IL-6 (P < 0.01), TNF-α, MDA and the apoptotic rate (P < 0.001) decreased significantly in the autografted + melatonine group compared to the autografted + saline group. In the autografted + melatonin group, the localization of CD31-positive cells in the theca layer was similar to the control group. Melatonin can improve the structure and function of the grafted ovary.
Collapse
|
14
|
Hill RL, Singh IN, Wang JA, Hall ED. Effects of Phenelzine Administration on Mitochondrial Function, Calcium Handling, and Cytoskeletal Degradation after Experimental Traumatic Brain Injury. J Neurotrauma 2019; 36:1231-1251. [PMID: 30358485 PMCID: PMC6479250 DOI: 10.1089/neu.2018.5946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in the production of peroxynitrite (PN), leading to oxidative damage of lipids and protein. PN-mediated lipid peroxidation (LP) results in production of reactive aldehydes 4-hydroxynonenal (4-HNE) and acrolein. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following a TBI via phenelzine (PZ), analdehyde scavenger, would protect against LP-mediated mitochondrial and neuronal damage. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ was administered subcutaneously (s.c.) at 15 min (10 mg/kg) and 12 h (5 mg/kg) post-injury and for the therapeutic window/delay study, PZ was administered at 1 h (10 mg/kg) and 24 h (5 mg/kg). Mitochondrial and cellular protein samples were obtained at 24 and 72 h post-injury (hpi). Administration of PZ significantly improved mitochondrial respiration at 24 and 72 h compared with vehicle-treated animals. These results demonstrate that PZ administration preserves mitochondrial bioenergetics at 24 h and that this protection is maintained out to 72 hpi. Additionally, delaying the administration still elicited significant protective effects. PZ administration also improved mitochondrial Ca2+ buffering (CB) capacity and mitochondrial membrane potential parameters compared with vehicle-treated animals at 24 h. Although PZ treatment attenuated aldehyde accumulation post-injury, the effects were insignificant. The amount of α-spectrin breakdown in cortical tissue was reduced by PZ administration at 24 h, but not at 72 hpi compared with vehicle-treated animals. In conclusion, these results indicate that acute PZ treatment successfully attenuates LP-mediated oxidative damage eliciting multiple neuroprotective effects following TBI.
Collapse
Affiliation(s)
- Rachel L. Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
| | - Indrapal N. Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Juan A. Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
15
|
Vida C, Kobayashi H, Garrido A, Martínez de Toda I, Carro E, Molina JA, De la Fuente M. Lymphoproliferation Impairment and Oxidative Stress in Blood Cells from Early Parkinson's Disease Patients. Int J Mol Sci 2019; 20:ijms20030771. [PMID: 30759742 PMCID: PMC6386872 DOI: 10.3390/ijms20030771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
In Parkinson’s Disease (PD), the peripheral changes in the functional capacity and redox state of immune cells has been scarcely investigated, especially in the early PD stages. Aging is a risk factor for PD, and the age-related impairment of the immune system, based on a chronic-oxidative stress situation, is involved in the rate of aging. We analyzed several functions in isolated peripheral blood neutrophils and mononuclear cells from PD stage 2 patients, and compared the results to those in healthy elderly and adult controls. Several oxidative stress and damage parameters were studied in whole blood cells. The results showed an impairment of the lymphoproliferative response in stimulated conditions in the PD patients compared with age-matched controls, who also showed typical immunosenescence in comparison with adult individuals. Higher oxidative stress and damage were observed in whole blood cells from PD patients (lower glutathione peroxidase activity, and higher oxidized glutathione and malondialdehyde contents). Our results suggest an accelerated immunosenescence in PD stage 2, and that several of the parameters studied could be appropriate peripheral biomarkers in the early stages of PD.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Hikaru Kobayashi
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Eva Carro
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - José Antonio Molina
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
16
|
Choi H, Koh SH. Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson’s disease. Expert Opin Drug Metab Toxicol 2017; 14:83-90. [DOI: 10.1080/17425255.2018.1417387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Miletić J, Drakulić D, Pejić S, Petković M, Ilić TV, Miljković M, Stefanović A, Prostran M, Stojanov M. Prooxidant-antioxidant balance, advanced oxidation protein products and lipid peroxidation in Serbian patients with Parkinson's disease. Int J Neurosci 2017; 128:600-607. [PMID: 29148896 DOI: 10.1080/00207454.2017.1403916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Biomarkers of oxidative stress are relevant in the evaluation of the disease status and prooxidant-antioxidant balance, advanced oxidation protein products and lipid peroxidation products (malondialdehyde and 4-hydroxynonenal) are being extensively evaluated regarding their relationship with clinical presentation and disease severity. AIM OF THE STUDY The aim of this study was to evaluate the levels of the above-mentioned parameters in plasma of 39 men and 17 women with Parkinson's disease, originated from the Republic of Serbia and their relation to clinicopathological characteristics (gender, age at examination, duration of the disease, and Hoehn and Yahr score) and oxidative status. RESULTS The incidence of disease was 2:1 towards males. The investigated oxidative parameters were gender and Hoehn and Yahr related. Significant association of higher Hoehn and Yahr scores was observed for malondialdehyde (p = 0.01) and prooxidant-antioxidant balance (p = 0.02). Relation between oxidant-antioxidant status was further supported by observed positive correlation between 4-hydroxynonenal (p = 0.04) and prooxidant-antioxidant balance (p = 0.03). Finally, the multivariate analysis indicated that prooxidant-antioxidant balance and malondialdehyde were partially determined by gender (10.6% and 7.6%) and Hoehn and Yahr scores (13.6% and 18.8%), while Hoehn and Yahr scores contributed to the variance of advanced oxidation protein products with 13.2%. CONCLUSION Our results indicate the higher level of oxidative stress (oxidant-antioxidant imbalance) and possible relation of several markers with gender and disease stage in patients with Parkinson's disease. The analyzed markers could be used to specify the severity of oxidative stress; however, their potential value should be analyzed in further studies.
Collapse
Affiliation(s)
- Jadranka Miletić
- a Department of Physical Chemistry , VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade , Republic of Serbia
| | - Dunja Drakulić
- b Department of Molecular Biology and Endocrinology , VINČA Institute of Nuclear Sciences - University of Belgrade , Belgrade , Republic of Serbia
| | - Snežana Pejić
- b Department of Molecular Biology and Endocrinology , VINČA Institute of Nuclear Sciences - University of Belgrade , Belgrade , Republic of Serbia
| | - Marijana Petković
- a Department of Physical Chemistry , VINČA Institute of Nuclear Sciences - University of Belgrade, Belgrade , Republic of Serbia
| | - Tihomir V Ilić
- c Medical Faculty of Medical Military Academy, Clinic of Neurology , University of Defense , Belgrade , Republic of Serbia
| | - Milica Miljković
- d Department of Medical Biochemistry , Faculty of Pharmacy - University of Belgrade , Belgrade , Republic of Serbia
| | - Aleksandra Stefanović
- d Department of Medical Biochemistry , Faculty of Pharmacy - University of Belgrade , Belgrade , Republic of Serbia
| | - Milica Prostran
- e Department of Pharmacology, Clinical Pharmacology and Toxicology , School of Medicine - University of Belgrade , Belgrade , Republic of Serbia
| | - Marina Stojanov
- d Department of Medical Biochemistry , Faculty of Pharmacy - University of Belgrade , Belgrade , Republic of Serbia
| |
Collapse
|
18
|
Mitochondrial Respiration in Intact Peripheral Blood Mononuclear Cells and Sirtuin 3 Activity in Patients with Movement Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9703574. [PMID: 29081897 PMCID: PMC5610844 DOI: 10.1155/2017/9703574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction is considered a unifying pathophysiological explanation for movement disorders. Sirtuin 3 (SIRT3) exhibits deacetylase activity and antioxidant properties. The aim of the study was to analyze the mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and the SIRT3 activity in patients with movement disorders. METHODS Mitochondrial respiration was analyzed in intact PBMCs using the ROUTINE, LEAK, electron transfer system (ETS), and residual oxygen consumption (ROX) protocol by means of high-resolution respirometry. The SIRT3 expression and PBMC activity were measured using fluorometry. Ultrasound measurements of the echogenicity of the substantia nigra and the diameter of the 3rd ventricle were also performed. RESULTS Patients with movement disorders exhibited a lower ROUTINE respiration than controls (P = 0.0237). Reduced oxygen fluxes in the LEAK (P = 0.033) and ROX (P = 0.0486) states were observed in patients with movement disorders compared with controls. Decreased ROUTINE respiration (P = 0.007) and oxygen flux in the LEAK state (P = 0.0203) were observed in patients with PD with substantia nigra hyperechogenicity compared with controls. Decreased SIRT 3 deacetylase activity was found in patients with movement disorders. CONCLUSION Impaired mitochondrial respiration in intact PBMCs was associated with inhibited SIRT3 activity and neurodegeneration measures evaluated using ultrasound in patients with PD.
Collapse
|
19
|
Laloux C, Gouel F, Lachaud C, Timmerman K, Do Van B, Jonneaux A, Petrault M, Garcon G, Rouaix N, Moreau C, Bordet R, Duce JA, Devedjian JC, Devos D. Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson's disease? Neurobiol Dis 2017; 103:24-31. [PMID: 28363801 DOI: 10.1016/j.nbd.2017.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 01/11/2023] Open
Abstract
In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia.
Collapse
Affiliation(s)
- C Laloux
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - F Gouel
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - C Lachaud
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - K Timmerman
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - B Do Van
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - A Jonneaux
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - M Petrault
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - G Garcon
- Institut Pasteur de Lille, EA4483-IMPECS, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, Lille, France
| | - N Rouaix
- Service de biochimie, dosage des catécholamines, et biologie moléculaire, CHRU de Lille, France
| | - C Moreau
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France; Université de Lille, CHU de Lille, INSERM UMRS_1171, Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, France
| | - R Bordet
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - J A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK; Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - J C Devedjian
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France
| | - D Devos
- Département de Pharmacologie médicale, INSERM UMRS-1171, Université Lille Nord de France, CHRU de Lille, Faculté de médecine, Pôle Recherche, 1 place de Verdun, 59045 Lille cedex, France; Université de Lille, CHU de Lille, INSERM UMRS_1171, Service de Pharmacologie Clinique et service de Neurologie LICEND COEN Center Lille, France.
| |
Collapse
|
20
|
Speen A, Jones C, Patel R, Shah H, Nallasamy P, Brooke EA, Zhu H, Li YR, Jia Z. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes. Toxicol Lett 2015. [DOI: 10.1016/j.toxlet.2015.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP. Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism. J Physiol Biochem 2014; 70:915-24. [PMID: 25270427 DOI: 10.1007/s13105-014-0359-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a motor scarcity disorder characterized by the striatal dopamine deficiency owing to the selective degeneration of the nigrostriatal dopaminergic neurons. While oxidative stress is implicated in PD, prolonged exposure to moderate dose of cypermethrin induces Parkinsonism. The study aimed to investigate the status of oxidative stress indicators and antioxidant defence system of the polymorphonuclear leukocytes (PMNs), platelets and plasma to delineate the effect of Parkinsonian dose of cypermethrin in the peripheral blood of rats and its subsequent relevance to Parkinsonism. Nitrite content, lipid peroxidation (LPO) and activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR) and glutathione-S-transferase (GST) were measured in the PMNs, platelets and plasma of control and cypermethrin-treated rats in the presence or absence of a microglial activation inhibitor, minocycline or a dopamine precursor containing the peripheral 3,4-dihydroxyphenylalanine decarboxylase inhibitor, named syndopa, employing the standard procedures. The striatal dopamine was measured to assess the degree of neurodegeneration/neuroprotection. Cypermethrin increased nitrite and LPO in the plasma, platelets and PMNs while it reduced the striatal dopamine content. Catalase and GST activity were increased in the PMNs and platelets; however, it was reduced in the plasma. Conversely, SOD and GR activities were reduced in the PMNs and platelets but increased in the plasma. Minocycline or syndopa reduced the cypermethrin-mediated changes towards normalcy. The results demonstrate that cypermethrin alters the status of oxidative stress indicators and impairs antioxidant defence system of the peripheral blood, which could be effectively salvaged by minocycline or syndopa. The results could be of value for predicting the nigrostriatal toxicity relevant to Parkinsonism.
Collapse
Affiliation(s)
- Pratibha Tripathi
- CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Post Box No. 80, Lucknow, 226 001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
22
|
Jang W, Park HH, Lee KY, Lee YJ, Kim HT, Koh SH. 1,25-dyhydroxyvitamin D3 Attenuates l-DOPA-Induced Neurotoxicity in Neural Stem Cells. Mol Neurobiol 2014; 51:558-70. [DOI: 10.1007/s12035-014-8835-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
23
|
Pinazo-Durán MD, Gallego-Pinazo R, García-Medina JJ, Zanón-Moreno V, Nucci C, Dolz-Marco R, Martínez-Castillo S, Galbis-Estrada C, Marco-Ramírez C, López-Gálvez MI, Galarreta DJ, Díaz-Llópis M. Oxidative stress and its downstream signaling in aging eyes. Clin Interv Aging 2014; 9:637-52. [PMID: 24748782 PMCID: PMC3990383 DOI: 10.2147/cia.s52662] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) and its biomarkers are the biochemical end point of the imbalance between reactive oxygen species (ROS) production and the ability of the antioxidant (AOX) biological systems to fight against oxidative injury. OBJECTIVE We reviewed the role of OS and its downstream signaling in aging eyes. METHODS A search of the literature and current knowledge on the physiological and pathological mechanisms of OS were revisited in relation to the eyes and the aging process. Most prevalent ocular diseases have been analyzed herein in relation to OS and nutraceutic supplements, such as dry-eye disorders, glaucoma, age-related macular degeneration, and diabetic retinopathy. RESULTS Clinical, biochemical, and molecular data from anterior and posterior eye segment diseases point to OS as the common pathogenic mechanism in the majority of these ocular disorders, many of which are pathologies causing visual impairment, blindness, and subsequent loss of life quality. Studies with nutraceutic supplements in aging eye-related pathologies have also been reviewed. CONCLUSION OS, nutritional status, and nutraceutic supplements have to be considered within the standards of care of older ophthalmologic patients. OS biomarkers and surrogate end points may help in managing the aging population with ocular diseases.
Collapse
Affiliation(s)
| | - Roberto Gallego-Pinazo
- Department of Ophthalmology, Macula Section, The University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose Javier García-Medina
- Ophthalmic Research Unit “Santiago Grisolía”, Valencia, Spain
- Department of Ophthalmology, University Hospital Reina Sofia, Murcia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”, Valencia, Spain
- Faculty of Medicine, University of Valencia, Spain
| | | | - Rosa Dolz-Marco
- Department of Ophthalmology, Macula Section, The University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85. [PMID: 24673905 PMCID: PMC9359148 DOI: 10.1016/j.jfda.2014.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials that have been manufactured worldwide and applied in different commercial realms. The well-recognized ability of TiO2 to promote the formation of reactive oxygen species (ROS) has been extensively studied as one of the important mechanisms underlying TiO2 NPs toxicity. As the “gold standard” method to quantify and identify ROS, electron spin resonance (ESR) spectroscopy has been employed in many studies aimed at evaluating TiO2 NPs safety. This review aims to provide a thorough discussion of current studies using ESR as the primary method to unravel the mechanism of TiO2 NPs toxicity. ESR spin label oximetry and immune-spin trapping techniques are also briefly introduced, because the combination of spin trapping/labeling techniques offers a promising tool for studying the oxidative damage caused by TiO2 NPs.
Collapse
Affiliation(s)
- Meng Li
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Soares AR, Marchiosi R, Siqueira-Soares RDC, Barbosa de Lima R, Dantas dos Santos W, Ferrarese-Filho O. The role of L-DOPA in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28275. [PMID: 24598311 PMCID: PMC4091518 DOI: 10.4161/psb.28275] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-DOPA, which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This mini-review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions.
Collapse
Affiliation(s)
- Anderson Ricardo Soares
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, PR, Brazil
- Correspondence to: Anderson Ricardo Soares,
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, PR, Brazil
| | | | - Rogério Barbosa de Lima
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, PR, Brazil
| | - Wanderley Dantas dos Santos
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, PR, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, PR, Brazil
| |
Collapse
|
26
|
Abo-Grisha N, Essawy S, Abo-Elmatty DM, Abdel-Hady Z. Effects of intravenous human umbilical cord blood CD34+ stem cell therapy versus levodopa in experimentally induced Parkinsonism in mice. Arch Med Sci 2013; 9:1138-51. [PMID: 24482663 PMCID: PMC3902714 DOI: 10.5114/aoms.2013.39237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/13/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Parkinsonism is a neurodegenerative disease with impaired motor function. The current research was directed to investigate the effect of CD34+ stem cells versus levodopa in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. MATERIAL AND METHODS Mice were divided into 4 groups; saline-injected, MPTP: received four MPTP injections (20 mg/kg, i.p.) at 2 h intervals, MPTP groups treated with levodopa/carbidopa (100/10 mg/kg/twice/day for 28 days) or single intravenous injection of 10(6) CD34+ stem cells/mouse at day 7 and allowed to survive until the end of week 5. RESULTS Levodopa and stem cells improved MPTP-induced motor deficits; they abolished the difference in stride length, decreased percentage of foot slip errors and increased ambulation, activity factor and mobility duration in parkinsonian mice (p < 0.05). Further, they significantly (p < 0.05) increased striatal dopamine (85.3 ±4.3 and 110.6 ±5.3) and ATP levels (10.6 ±1.1 and 15.5 ±1.14) compared to MPTP (60.1 ±3.9 pmol/g and 3.6 ±0.09 mmol/g, respectively) (p < 0.05). Moreover, mitochondrial DNA from mice treated with levodopa or stem cells was in intact form; average concentration was (52.8 ±3.01 and 107.8 ±8.6) and no appreciable fragmentation of nuclear DNA was found compared to MPTP group. Regarding tyrosine hydroxylase (TH) immunostaining, stem cell group showed a marked increase of percentage of TH-immunopositive neurons (63.55 ±5.2) compared to both MPTP (37.6 ±3.1) and levodopa groups (41.6 ±3.5). CONCLUSIONS CD34+ cells ameliorated motor, biochemical and histological deficits in MPTP-parkinsonian mice, these effects were superior to those produced by levodopa that would be promising for the treatment of PD.
Collapse
Affiliation(s)
- Noha Abo-Grisha
- Department of Physiology, Faculty of Medicine, Suez Canal University, Suez, Egypt
| | - Soha Essawy
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Suez, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Suez, Egypt
| | - Zenab Abdel-Hady
- Department of Histology, Faculty of Medicine, Suez Canal University, Suez, Egypt
| |
Collapse
|
27
|
Sanders LH, Timothy Greenamyre J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 2013; 62:111-120. [PMID: 23328732 PMCID: PMC3677955 DOI: 10.1016/j.freeradbiomed.2013.01.003] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 11/25/2022]
Abstract
Parkinson disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. Although the underlying mechanisms contributing to neurodegeneration in PD seem to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or a consequence of dopaminergic death, there is substantial evidence for oxidative stress both in human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids, and proteins in both the brain and the peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help us design better targets for the treatment of PD.
Collapse
Affiliation(s)
- Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
28
|
Quinoprotein Adducts Accumulate in the Substantia Nigra of Aged Rats and Correlate with Dopamine-Induced Toxicity in SH-SY5Y Cells. Neurochem Res 2011; 36:2169-75. [DOI: 10.1007/s11064-011-0541-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
|
29
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
30
|
Park KH, Choi NY, Koh SH, Park HH, Kim YS, Kim MJ, Lee SJ, Yu HJ, Lee KY, Lee YJ, Kim HT. L-DOPA neurotoxicity is prevented by neuroprotective effects of erythropoietin. Neurotoxicology 2011; 32:879-87. [PMID: 21683736 DOI: 10.1016/j.neuro.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/21/2011] [Accepted: 05/19/2011] [Indexed: 01/27/2023]
Abstract
The neurotoxicity of L-3,4-dihydroxyphenylalanine (L-DOPA), one of the most important drugs for the treatment of Parkinson's disease, still remains controversial, although much more data on L-DOPA neurotoxicity have been presented. Considering the well known neuroprotective effects of erythropoietin (EPO), the inhibitory effects of EPO on L-DOPA neurotoxicity need to be evaluated. Neuronally differentiated PC12 (nPC12) cells were treated with different concentrations of L-DOPA and/or EPO for 24h. Cell viability was evaluated using trypan blue, 4',6-diamidino-2-phenylindole (DAPI) and TUNEL staining, and cell counting. Free radicals and intracellular signaling protein levels were measured with 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and Western blotting, respectively. L-DOPA reduced nPC12 cell viability at higher concentrations, but combined treatment with EPO and L-DOPA significantly restored cell viability. Free radicals and hydroxyl radical levels increased by L-DOPA were decreased after combined treatment of L-DOPA and EPO. Levels of survival-related intracellular signaling proteins decreased in nPC12 cells treated with 200 μM L-DOPA but increased significantly in cells treated with 200μM L-DOPA and 5 μM EPO. However, cleaved caspase-3, a death-related protein, increased in nPC12 cells treated with 200 μM L-DOPA but decreased significantly in cells treated with 200 μM L-DOPA and 5 μM EPO. Pretreatment with LY294002, a phosphatidylinositol 3-kinase inhibitor, prior to combined treatment with EPO and L-DOPA almost completely blocked the protective effects of EPO. These results indicate that EPO can prevent L-DOPA neurotoxicity by activating the PI3K pathway as well as reducing oxidative stress.
Collapse
Affiliation(s)
- Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Inchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Protective effects of statins on l-DOPA neurotoxicity due to the activation of phosphatidylinositol 3-kinase and free radical scavenging in PC12 cell culture. Brain Res 2011; 1370:53-63. [DOI: 10.1016/j.brainres.2010.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/18/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023]
|
32
|
Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic Res 2010; 44:1125-71. [PMID: 20836660 DOI: 10.3109/10715762.2010.498478] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation (LPO) product accumulation in human tissues is a major cause of tissular and cellular dysfunction that plays a major role in ageing and most age-related and oxidative stress-related diseases. The current evidence for the implication of LPO in pathological processes is discussed in this review. New data and literature review are provided evaluating the role of LPO in the pathophysiology of ageing and classically oxidative stress-linked diseases, such as neurodegenerative diseases, diabetes and atherosclerosis (the main cause of cardiovascular complications). Striking evidences implicating LPO in foetal vascular dysfunction occurring in pre-eclampsia, in renal and liver diseases, as well as their role as cause and consequence to cancer development are addressed.
Collapse
|
33
|
Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F. Oxidative stress and aminopeptidases in Parkinson's disease patients with and without treatment. NEURODEGENER DIS 2010; 8:109-16. [PMID: 20714110 DOI: 10.1159/000315404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/21/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/OBJECTIVE Mitochondrial dysfunction, oxidative stress and protein metabolism impairment are the main molecular events underlying the pathogenesis of Parkinson's disease (PD). However, only few studies have addressed the changes produced by these phenomena in the blood of PD patients. Our purpose was to compare oxidative stress between newly diagnosed PD patients (ntPD) and PD patients under treatment (tPD). We also analyzed changes in plasma activity of several aminopeptidases (AP) involved in the metabolism of various active peptides. METHODS Plasma lipid peroxide (LPO) and lactate (LAC) concentrations were measured by colorimetric methods, and plasma AP activities were determined by fluorometric assay. RESULTS LPO and LAC concentrations were significantly elevated in ntPD and tPD patients versus controls, but there were no differences between the PD groups. Alanine-, cystine- and aspartate-AP activities were significantly lower in tPD versus ntPD patients. Nondenaturing electrophoresis and Western blot results confirmed these findings. CONCLUSIONS The plasma LPO and LAC levels were high in both PD groups, indicating that they are elevated at an early stage of PD and are not affected by anti-PD treatment. The higher AP activities in ntPD versus tPD patients suggest that anti-PD treatment may improve protein metabolism while not altering oxidative stress. A therapy directed to reduce oxidative stress and normalize AP activity may be useful in the treatment of PD.
Collapse
Affiliation(s)
- Raquel Duran
- Department of Physiology and Institute of Neurosciences, Centro de Investigaciones Biomedicas, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
34
|
The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson's disease. Neurochem Res 2010; 35:1530-7. [PMID: 20535556 DOI: 10.1007/s11064-010-0212-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
We examined oxidative stress markers of 31 patients suffering from ALS, 24 patients suffering from PD and 30 healthy subjects were included. We determined the plasma levels of lipid peroxidation (malondialdehyde, MDA), of protein oxidative lesions (plasma glutathione, carbonyls and thiols) and the activity of antioxidant enzymes i.e. erythrocyte Cu,Zn-Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and catalase. MDA and thiols were significantly different in both neurodegenerative diseases versus control population. A trend for an enhancement of oxidized glutathione was noted in ALS patients. Univariate analysis showed that SOD activity was significantly decreased in ALS and GSH-Px activity was decreased in PD. After adjusting for demographic parameters and enzyme cofactors, we could emphasize a compensatory increase of SOD activity in PD. Different antioxidant systems were not involved in the same way in ALS and PD, suggesting that oxidative stress may be a cause rather than a consequence of the neuronal death.
Collapse
|
35
|
Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F. Plasma α-synuclein in patients with Parkinson's disease with and without treatment. Mov Disord 2010; 25:489-93. [DOI: 10.1002/mds.22928] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 2009; 46:241-81. [DOI: 10.3109/10408360903142326] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Koh SH, Kim SH, Kim HT. Role of glycogen synthase kinase-3 inl-DOPA-induced neurotoxicity. Expert Opin Drug Metab Toxicol 2009; 5:1359-68. [DOI: 10.1517/17425250903170663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Chen CM, Liu JL, Wu YR, Chen YC, Cheng HS, Cheng ML, Chiu DTY. Increased oxidative damage in peripheral blood correlates with severity of Parkinson's disease. Neurobiol Dis 2008; 33:429-35. [PMID: 19110057 DOI: 10.1016/j.nbd.2008.11.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/08/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022] Open
Abstract
Increased oxidative stress contributes to neuronal dysfunction in Parkinson's disease (PD). We investigated whether the pathological changes in PD brains may also be present in peripheral tissues. Leukocyte 8-hydroxydeoxyguanosine (8-OHdG), plasma malondialdehyde (MDA), erythrocyte glutathione peroxidase (GPx) and plasma vitamin E (Vit E) were measured for 211 PD patients and 135 healthy controls. Leukocyte 8-OHdG and plasma MDA were elevated, whereas erythrocyte GPx and plasma Vit E were reduced in PD patients when compared to the controls. After adjusting for environmental factors, logistic regression analysis showed that PD severity was independently correlated with 8-OHdG and MDA level, and inversely correlated with GPx activity and Vit E level. Leucocyte 8-OHdG level was continuously increased with advanced PD Hoehn-Yahr stages, while plasma MDA level peaked at early disease stages, among PD patients. These results suggest increased oxidative damage and decreased anti-oxidant capacity in peripheral blood, and a significant correlation between leucocyte 8-OHdG level and disease severity in PD.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Jia Z, Misra BR, Zhu H, Li Y, Misra HP. Upregulation of cellular glutathione by 3H-1,2-dithiole-3-thione as a possible treatment strategy for protecting against acrolein-induced neurocytotoxicity. Neurotoxicology 2008; 30:1-9. [PMID: 19073213 DOI: 10.1016/j.neuro.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/13/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Acrolein, an unsaturated aldehydic product of lipid peroxidation, has been implicated in the pathogenesis of various neurodegenerative disorders including Parkinson's disease. However, protection against acrolein toxicity in neuronal cells via chemical upregulation of cellular aldehyde-detoxification factors has not been investigated. In this study, we have investigated the induction of glutathione (GSH), GSH S-transferase (GST), and aldose reductase (AR) by the unique nutraceutical compound 3H-1,2-dithiole-3-thione (D3T); and the protective effects of the D3T-mediated cellular defenses on acrolein-mediated toxicity in human neuroblastoma SH-SY5Y cells. Incubation of SH-SY5Y cells with D3T (10-100 microM) resulted in a marked concentration- and time-dependent induction of GSH, but not GST or AR. D3T treatment also led to increased mRNA expression of gamma-glutamylcysteine ligase (GCL), the key enzyme in GSH biosynthesis. Incubation of SH-SY5Y cells with 40 microM acrolein for 0.5 or 1 h resulted in a significant depletion of cellular GSH, which preceded the decrease of cell viability, suggesting critical involvement of GSH in acrolein-induced cytotoxicity. Pretreatment of SH-SY5Y cells with 100 microM D3T afforded a dramatic protection against acrolein-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction, lactate dehydrogenase release, as well as morphological changes. To further demonstrate the involvement of GSH in protection against acrolein-induced cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. Depletion of cellular GSH by 25 microM BSO dramatically potentiated acrolein-induced cytotoxicity. Cotreatment of SH-SY5Y cells with BSO and D3T was found to prevent the D3T-mediated GSH induction and completely reverse the cytoprotective effects of D3T on acrolein-induced toxicity. Taken together, this study demonstrates that upregulation of GSH is a predominant mechanism underlying D3T-mediated protection against acrolein-induced neurocytotoxicity.
Collapse
Affiliation(s)
- Zhenquan Jia
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | | | | | | | | |
Collapse
|
40
|
Levodopa therapy reduces DNA damage in peripheral blood cells of patients with Parkinson's disease. Cell Biol Toxicol 2008; 25:321-30. [PMID: 18523852 DOI: 10.1007/s10565-008-9086-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/01/2008] [Indexed: 11/27/2022]
Abstract
Oxidative stress seems to play a major role in the pathogenesis of neurodegeneration. In Parkinson's disease (PD) patients, the dopaminergic neurons are subjected to oxidative stress resulting from reduced levels of antioxidant defenses such as glutathione and high amount of intracellular iron. Levodopa (LD) is widely used for the symptomatic treatment of PD, but its role in oxidative damage control is still unclear. The aim of this study was to analyze the presence of DNA damage in peripheral blood lymphocytes (PBL) of PD patients, during a washout and a controlled LD dosage and to evaluate the oxidative damage fluctuation after LD intake. The standard and the Fpg-modified version of Comet assay were applied in analyzing DNA damage in PBL from blood samples of nine PD patients and nine matched controls. Due to the limited number of patients we cannot reach definite conclusions even if our data confirm the accumulation of DNA lesions in PD patients; these lesions decrease after LD intake.
Collapse
|
41
|
Koh SH, Song C, Noh MY, Kim HY, Lee KY, Lee YJ, Kim J, Kim SH, Kim HT. Inhibition of glycogen synthase kinase-3 reduces l-DOPA-induced neurotoxicity. Toxicology 2008; 247:112-8. [DOI: 10.1016/j.tox.2008.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/20/2008] [Indexed: 12/25/2022]
|
42
|
Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol Aging 2007; 30:1011-25. [PMID: 18053617 DOI: 10.1016/j.neurobiolaging.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/21/2007] [Accepted: 10/13/2007] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that affect different parts of the central nervous system. However, a review of the literature indicates that certain biochemical reactions involved in neurodegeneration in these three diseases are quite similar and could be partly identical. This article critically examines the similarities and, based on data from our own and other laboratories, proposes a novel explanation for neurodegeneration in these three diseases. We identified about 20 commonalities that exist in the neurodegenerative process of each disease. We hypothesize that there are two enzyme-catalyzed pathways that operate in affected neurons: an oxidative pathway leading to destruction of various neuronal proteins and lipids, and an apoptotic pathway which the body normally uses to remove unwanted and dysfunctional cells. Data from many laboratories indicate that oxidative reactions are primarily responsible for neurodegeneration, whereas apoptosis may well be a secondary response to the presence of neurons that have already been severely damaged by oxidative reactions. Attempts to inhibit apoptosis for the purpose of attenuating progression of these diseases may therefore be only of marginal benefit. Specific oxidative reactions within affected neurons led us to propose that one or more heme peroxidases may be the catalyst(s) involved in oxidation of proteins and lipids. Support for this proposal is provided by the recent finding that amyloi-beta peptide may act as a peroxidase in AD. Possible participation of the peroxidase activity of cytochrome c, herein designated as cytochrome c(px) to distinguish it from yeast cytochrome c peroxidase, is discussed. Of special interest is our recent finding that many compounds that cause attenuation of neurodegeneration are inhibitors of the peroxidase activity of cytochrome c. Several inhibitors were subsequently identified as suicide substrates. Such inhibitors could be ideally suited for targeted clinical approaches aimed at arresting progression of neurodegeneration. Finally, it is possible that immobilized yet still active peroxidase(s) may be present in protein aggregates in AD, PD, and ALS. This activity could be the catalyst for the slow, self-perpetuating and irreversible degeneration of affected neurons that occurs over long periods of time in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
43
|
Túnez I, Montilla P, del Carmen Muñoz M, Medina FJ, Drucker-Colín R. Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res 2006; 56:91-5. [PMID: 16837092 DOI: 10.1016/j.neures.2006.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/02/2006] [Accepted: 05/30/2006] [Indexed: 11/16/2022]
Abstract
This study evaluates the effect of transcranial magnetic stimulation (TMS; 60 Hz and 0.7 mT) treatment on 3-nitropropionic acid (20 mg/kg i.p./day for 4 days)-induced oxidative stress in cortical synaptosomes of Wistar rats. The oxidative derangement was confirmed by a high level of lipid peroxidation products and protein carbonyls, together with a decreased in reduced glutathione (GSH) content, catalase and GSH-peroxidase (GSH-Px) activities. Additionally, it was observed a reduction in succinate dehydrogenase (SDH) activity. All changes were partially prevented or reversed by administration of TMS. These results show that TMS reduces oxidative stress in cortical synaptosomes, and suggest that TMS may protect neuronal and maintain synaptic integrity.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Córdoba, Spain.
| | | | | | | | | |
Collapse
|