1
|
Durán Jiménez D, Venema T, de Bruin-Hoegée M, Alkema DPW, Busker RW, van Wuijckhuijse AL. CHART: a novel system for detector evaluation against toxic chemical aerosols. Sci Rep 2024; 14:1050. [PMID: 38200048 PMCID: PMC10781669 DOI: 10.1038/s41598-023-50718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Concern over the possibility of deliberate dispersion of chemical warfare agents and highly toxic pharmaceutical based agents as persistent aerosols has raised the need for experimental assessment of current and future defensive capabilities of armed forces and law enforcement agencies. Therefor we herewith present the design, realization and validation of the Chemical Hot Aerosol Research Tool (CHART) as a validated and safe experimental set-up for performance evaluation of chemical detection and identification equipment against chemical warfare agents and other highly toxic compounds. In the CHART liquid and solid compounds in solution or suspension are being dispersed as aerosols in a nebulization chamber. A broad dynamic particle size range can be generated, including particles known to be able to reach the lower respiratory tract. The aerosol generated is presented to the detection system-under-test while being monitored and characterized in real-time, using an optical particle counter and a time-of-flight aerosol analyzer, respectively. Additionally, the chemical composition of the aerosol is ex situ measured by analytical chemical methods. Evidently, in the design of the CHART significant emphasis was placed on laboratory safety and containment of toxic chemicals. The CHART presented in this paper has proven to be an indispensable experimental tool to study detectors and fieldable identification equipment against toxic chemical aerosols.
Collapse
Affiliation(s)
- Dinesh Durán Jiménez
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands.
| | - Tom Venema
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Mirjam de Bruin-Hoegée
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Duurt P W Alkema
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Ruud W Busker
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Arjan L van Wuijckhuijse
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| |
Collapse
|
2
|
Abdalfattah S, Knorz C, Ayoobi A, Omer EA, Rosellini M, Riedl M, Meesters C, Efferth T. Identification of Antagonistic Action of Pyrrolizidine Alkaloids in Muscarinic Acetylcholine Receptor M1 by Computational Target Prediction Analysis. Pharmaceuticals (Basel) 2024; 17:80. [PMID: 38256913 PMCID: PMC10818892 DOI: 10.3390/ph17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.
Collapse
Affiliation(s)
- Sara Abdalfattah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Caroline Knorz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Akhtar Ayoobi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran 19938 93973, Iran
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Christian Meesters
- High Performance Computing Group, University of Mainz, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| |
Collapse
|
3
|
Amend N, Koller M, Schmitt C, Worek F, Wille T. The suitability of a polydimethylsiloxane-based (PDMS) microfluidic two compartment system for the toxicokinetic analysis of organophosphorus compounds. Toxicol Lett 2023; 388:24-29. [PMID: 37827339 DOI: 10.1016/j.toxlet.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Organ-on-a-chip platforms are an emerging technology in experimental and regulatory toxicology (species-specific differences, ethical considerations). They address gaps between in vivo and in vitro models. However, there are still certain limitations considering material, setup and applicability. The current study examined the suitability of a commercially available polydimethylsiloxane-based (PDMS) organ-chip for the toxicokinetic characterization of the highly toxic nerve agent VX and the organophosphate pesticide parathion. The respective concentrations of 1000 µmol/L and 100 µmol/L VX and parathion were chosen deliberately high in order to study concentrations even if high compound absorption by PDMS might occur. Neuronal and liver spheroids, totaling 2 × 106 cells were used to study concentration changes of VX and parathion. In addition, VX enantiomers were quantified. The current study suggests a significant absorption of VX, respectively parathion by PDMS. This might require future investigation of alternative materials or coatings to limit absorption for organophosphorus compounds in toxicokinetic studies.
Collapse
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Christian Schmitt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany; Department F, Medical CBRN Defence, Bundeswehr Medical Academy, Ingolstädter Str 240, Munich 80939, Germany
| |
Collapse
|
4
|
De Rouck R, Benhassine M, Debacker M, Dugauquier C, Dhondt E, Van Utterbeeck F, Hubloue I. Creating realistic nerve agent victim profiles for computer simulation of medical CBRN disaster response. Front Public Health 2023; 11:1167706. [PMID: 37457279 PMCID: PMC10347399 DOI: 10.3389/fpubh.2023.1167706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
In the last decades, Chemical, Biological, Radiological and Nuclear (CBRN) threats have become serious risks prompting countries to prioritize preparedness for such incidents. As CBRN scenarios are very difficult and expensive to recreate in real life, computer simulation is particularly suited for assessing the effectiveness of contingency plans and identifying areas of improvement. These computer simulation exercises require realistic and dynamic victim profiles, which are unavailable in a civilian context. In this paper we present a set of civilian nerve agent injury profiles consisting of clinical parameters and their evolution, as well as the methodology used to create them. These injury profiles are based on military injury profiles and adapted to the civilian population, using sarin for the purpose of illustration. They include commonly measured parameters in the prehospital setting. We demonstrate that information found in military sources can easily be adjusted for a civilian population using a few simple assumptions and validated methods. This methodology can easily be expanded to other chemical warfare agents as well as different ways of exposure. The resulting injury profiles are generic so they can also be used in tabletop and live simulation exercises. Modeling and simulation, if used correctly and in conjunction with empirical data gathered from lessons learned, can assist in providing the evidence practices for effective and efficient response decisions and interventions, considering the contextual factors of the affected area and the specific disaster scenario.
Collapse
Affiliation(s)
- Ruben De Rouck
- Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mehdi Benhassine
- Department of Mathematics, Royal Military Academy, Brussels, Belgium
| | - Michel Debacker
- Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christian Dugauquier
- Twenty-third Medical Battalion, Belgian Defence, Tournai, Belgium
- Belgian Delegate in The NATO Biological Medical Panel, Brussels, Belgium
| | | | | | - Ives Hubloue
- Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Gerlits O, Fajer M, Cheng X, Blumenthal DK, Radić Z, Kovalevsky A. Structural and dynamic effects of paraoxon binding to human acetylcholinesterase by X-ray crystallography and inelastic neutron scattering. Structure 2022; 30:1538-1549.e3. [PMID: 36265484 PMCID: PMC9637784 DOI: 10.1016/j.str.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Organophosphorus (OP) compounds, including nerve agents and some pesticides, covalently bind to the catalytic serine of human acetylcholinesterase (hAChE), thereby inhibiting acetylcholine hydrolysis necessary for efficient neurotransmission. Oxime antidotes can reactivate the OP-conjugated hAChE, but reactivation efficiency can be low for pesticides, such as paraoxon (POX). Understanding structural and dynamic determinants of OP inhibition and reactivation can provide insights to design improved reactivators. Here, X-ray structures of hAChE with unaged POX, with POX and oximes MMB4 and RS170B, and with MMB4 are reported. A significant conformational distortion of the acyl loop was observed upon POX binding, being partially restored to the native conformation by oximes. Neutron vibrational spectroscopy combined with molecular dynamics simulations showed that picosecond vibrational dynamics of the acyl loop soften in the ∼20-50 cm-1 frequency range. The acyl loop structural perturbations may be correlated with its picosecond vibrational dynamics to yield more comprehensive template for structure-based reactivator design.
Collapse
Affiliation(s)
- Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN 37303, USA
| | - Mikolai Fajer
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0657, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
6
|
Bugay V, Gregory SR, Belanger-Coast MG, Zhao R, Brenner R. Effects of Sublethal Organophosphate Toxicity and Anti-cholinergics on Electroencephalogram and Respiratory Mechanics in Mice. Front Neurosci 2022; 16:866899. [PMID: 35585917 PMCID: PMC9108673 DOI: 10.3389/fnins.2022.866899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organophosphates are used in agriculture as insecticides but are potentially toxic to humans when exposed at high concentrations. The mechanism of toxicity is through antagonism of acetylcholinesterase, which secondarily causes excess activation of cholinergic receptors leading to seizures, tremors, respiratory depression, and other physiological consequences. Here we investigated two of the major pathophysiological effects, seizures and respiratory depression, using subcutaneous injection into mice of the organophosphate diisopropylfluorophosphate (DFP) at sublethal concentrations (2.1 mg/Kg) alone and co-injected with current therapeutics atropine (50 mg/Kg) or acetylcholinesterase reactivator HI6 (3 mg/Kg). We also tested a non-specific cholinergic antagonist dequalinium chloride (2 mg/Kg) as a novel treatment for organophosphate toxicity. Electroencephalogram (EEG) recordings revealed that DFP causes focal delta frequency (average 1.4 Hz) tonic spikes in the parietal region that occur transiently (lasting an average of 171 ± 33 min) and a more sustained generalized theta frequency depression in both parietal and frontal electrode that did not recover the following 24 h. DFP also caused behavioral tremors that partially recovered the following 24 h. Using whole body plethysmography, DFP revealed acute respiratory depression, including reduced breathing rates and tidal volumes, that partially recover the following day. Among therapeutic treatments, dequalinium chloride had the most potent effect on all physiological parameters by reducing acute EEG abnormalities and promoting a full recovery after 24 h from tremors and respiratory depression. Atropine and HI6 had distinct effects on EEGs. Co-treatment with atropine converted the acute 1.4 Hz tonic spikes to 3 Hz tonic spikes in the parietal electrode and promoted a partial recovery after 24 h from theta frequency and respiratory depression. HI6 fully removed the parietal delta spike increase and promoted a full recovery in theta frequency and respiratory depression. In summary, while all anticholinergic treatments promoted survival and moderated symptoms of DFP toxicity, the non-selective anti-cholinergic dequalinium chloride had the most potent therapeutic effects in reducing EEG abnormalities, moderating tremors and reducing respiratory depression.
Collapse
|
7
|
Stigler L, Köhler A, Koller M, Job L, Escher B, Potschka H, Thiermann H, Skerra A, Worek F, Wille T. Post-VX exposure treatment of rats with engineered phosphotriesterases. Arch Toxicol 2021; 96:571-583. [PMID: 34962578 PMCID: PMC8837561 DOI: 10.1007/s00204-021-03199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022]
Abstract
The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M−1 min−1) towards VX and a preferential hydrolysis of the more toxic P(−) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg−1 i.v.: PTE-2 dosed at 1.3 mg kg−1 i.v. (PTE-2.1) and 2.6 mg kg−1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg−1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.
Collapse
Affiliation(s)
- Lisa Stigler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Laura Job
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Benjamin Escher
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, Königinstraße 16, 80539, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
8
|
Rodríguez-Massó SR, Erickson MA, Banks WA, Ulrich H, Martins AH. The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood-Brain Barrier Disruption Without Evidence of Early Brain Injury. Front Neurosci 2021; 15:791709. [PMID: 34975388 PMCID: PMC8715084 DOI: 10.3389/fnins.2021.791709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The blood-brain barrier (BBB) describes the brain's highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics. Several strategies to facilitate drug delivery into the brain parenchyma via disruption of the BBB have been proposed. Bradykinin has proven effective in disrupting mechanisms across the blood-tumor barrier. Unfortunately, bradykinin has limited therapeutic value because of its short half-life and the undesirable biological activity elicited by its active metabolites. Objective: To evaluate NG291, a stable bradykinin analog, with selective agonist activity on the bradykinin-B2 receptor and its ability to disrupt the BBB transiently. Methods: Sprague Dawley rats and CD-1 mice were subjected to NG291 treatment (either 50 or 100 μg/kg, intravenously). Time and dose-dependent BBB disruption were evaluated by histological analysis of Evans blue (EB) extravasation. Transcellular and paracellular BBB leakage were assessed by infiltration of 99mTc-albumin (66.5 KDa) and 14C-sucrose (340 Da) radiolabeled probes into the brains of CD-1 mice treated with NG291. NG291 influence on P-glycoprotein (P-gp) efflux pump activity was evaluated by quantifying the brain accumulation of 3H-verapamil, a known P-gp substrate, in CD-1 mice. Results: NG291-mediated BBB disruption was localized, dose-dependent, and reversible as measured by EB extravasation. 99mTc-albumin leakage was significantly increased by 50 μg/kg of NG291, whereas 100 μg/kg of NG291 significantly augmented both 14C-sucrose and 99mTc-albumin leakage. NG291 enhanced P-gp efflux transporter activity and was unable to increase brain uptake of the P-gp substrate pralidoxime. NG291 did not evoke significant short-term neurotoxicity, as it did not increase brain water content, the number of Fluoro-Jade C positive cells, or astrocyte activation. Conclusion: Our findings strongly suggest that NG291 increases BBB permeability by two different mechanisms in a dose-dependent manner and increases P-gp efflux transport. This increased permeability may facilitate the penetration into the brain of therapeutic candidates that are not P-gp substrates.
Collapse
Affiliation(s)
- Sergio R. Rodríguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
9
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
10
|
Herbert J, Laskin DL, Gow AJ, Laskin JD. Chemical warfare agent research in precision-cut tissue slices-a useful alternative approach. Ann N Y Acad Sci 2020; 1480:44-53. [PMID: 32808309 DOI: 10.1111/nyas.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
The use of chemical warfare agents (CWAs) in military conflicts and against civilians is a recurrent problem. Despite ongoing CWA research using in vitro or in vivo models, progress to elucidate mechanisms of toxicity and to develop effective therapies, decontamination procedures, and general countermeasures is still limited. Novel scientific approaches to address these questions are needed to expand perspectives on existing knowledge and gain new insights. To achieve this, the use of ex vivo techniques like precision-cut tissue slices (PCTSs) can be a valuable approach. Existing studies employing this economical and relatively easy to implement method show model suitability and comparability with the use of in vitro and in vivo models. In this article, we review research on CWAs in PCTSs to illustrate the advantages of the approach and to promote future applications.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
11
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr Med Chem 2020; 27:2994-3011. [PMID: 30706778 DOI: 10.2174/0929867326666190130161202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Two cholinesterases exist: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE plays a crucial role in neurotransmissions, BChE has no specific function apart from the detoxification of some drugs and secondary metabolites from plants. Thus, both AChE and BChE can serve as biochemical markers of various pathologies. Poisoning by nerve agents like sarin, soman, tabun, VX, novichok and overdosing by drugs used in some neurodegenerative disorders like Alzheimer´s disease and myasthenia gravis, as well as poisoning by organophosphorus pesticides are relevant to this issue. But it appears that changes in these enzymes take place in other processes including oxidative stress, inflammation, some types of cancer and genetically conditioned diseases. In this review, the cholinesterases are introduced, the mechanism of inhibitors action is explained and the relations between the cholinesterases and pathologies are explained.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Kranawetvogl T, Steinritz D, Thiermann H, John H. A novel high‐performance liquid chromatography with diode array detector method for the simultaneous quantification of the enzyme‐reactivating oximes obidoxime, pralidoxime, and HI‐6 in human plasma. Drug Test Anal 2020; 12:938-947. [DOI: 10.1002/dta.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
- Walther‐Straub‐Institut, Ludwig‐Maximilians‐Universität Munich Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
- Walther‐Straub‐Institut, Ludwig‐Maximilians‐Universität Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| |
Collapse
|
14
|
Gore A. Broad Spectrum Treatment for Ocular Insult Induced by Organophosphate Chemical Warfare Agents. Toxicol Sci 2020; 177:1-10. [DOI: 10.1093/toxsci/kfaa095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Warfare organophosphates nerve agents constitute one of the prime threats to mankind on the battlefield and in the scenario of civilian terror. Exposure to organophosphate (OP) nerve agents dose-dependently result in incapacitation. They affect multiple organs, but the eye is one of the first and most frequently affected. Ocular OP insult may result in long-term miosis, impaired visual function, and ocular pain thus inducing functional incapacitation. The currently recommended military medical doctrine of using 1% atropine eye drops is far from being the optimal treatment. Although effective in reducing ocular pain and the miotic response, this treatment induces long-term mydriasis and cycloplegia promoting photophobia and restricted accommodation, which may result in further impairment in visual function. An optimal treatment must ameliorate the long-term ocular insult enabling rapid return of normal visual function, while avoiding the induction of mydriasis and cycloplegia side effects, which could possibly worsen the visual performance. Optimal treatment should also keep effects of misuse to a minimum. Work done in recent years examined treatments with various anticholinergic drugs alone or used in combination with oxime treatments and may offer improved efficacy in ameliorating the ocular insult. This review is a summary of the applied research in animals and will discuss clinical implications and possible alterations in treatment protocols following OP exposure. Taken together the data points toward the use of topical low concentrations of potent anticholinergic ophthalmic drops such as atropine or homatropine, which rapidly ameliorate the long-term OP-induced ocular insult.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
15
|
Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime. Biomolecules 2020; 10:biom10060858. [PMID: 32512884 PMCID: PMC7355633 DOI: 10.3390/biom10060858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood–brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.
Collapse
|
16
|
Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy. Toxicol Lett 2020; 324:86-94. [DOI: 10.1016/j.toxlet.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022]
|
17
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
18
|
McGarry KG, Schill KE, Winters TP, Lemmon EE, Sabourin CL, Harvilchuck JA, Moyer RA. Characterization of Cholinesterases From Multiple Large Animal Species for Medical Countermeasure Development Against Chemical Warfare Nerve Agents. Toxicol Sci 2019; 174:124-132. [DOI: 10.1093/toxsci/kfz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a “bioscavenger” that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Collapse
Affiliation(s)
| | | | | | - Erin E Lemmon
- Battelle Memorial Institute, Columbus, OH 43201, Ohio
| | | | | | | |
Collapse
|
19
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules 2019; 9:biom9100583. [PMID: 31597234 PMCID: PMC6843506 DOI: 10.3390/biom9100583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.
Collapse
|
21
|
Lumley L, Miller D, Muse WT, Marrero‐Rosado B, de Araujo Furtado M, Stone M, McGuire J, Whalley C. Neurosteroid and benzodiazepine combination therapy reduces status epilepticus and long-term effects of whole-body sarin exposure in rats. Epilepsia Open 2019; 4:382-396. [PMID: 31440720 PMCID: PMC6698686 DOI: 10.1002/epi4.12344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Our objective was to evaluate the protective efficacy of the neurosteroid pregnanolone (3α-hydroxy-5β pregnan-20-one), a GABAA receptor-positive allosteric modulator, as an adjunct to benzodiazepine therapy against the chemical warfare nerve agent (CWNA) sarin (GB), using whole-body exposure, an operationally relevant route of exposure to volatile GB. METHODS Rats implanted with telemetry transmitters for the continuous measurement of cortical electroencephalographic (EEG) activity were exposed for 60 minutes to 3.0 LCt50 of GB via whole-body exposure. At the onset of toxic signs, rats were administered an intramuscular injection of atropine sulfate (2 mg/kg) and the oxime HI-6 (93.6 mg/kg) to increase survival rate and, 30 minutes after seizure onset, treated subcutaneously with diazepam (10 mg/kg) and intravenously with pregnanolone (4 mg/kg) or vehicle. Animals were evaluated for GB-induced status epilepticus (SE), spontaneous recurrent seizures (SRS), impairment in spatial memory acquisition, and brain pathology, and treatment groups were compared. RESULTS Delayed dual therapy with pregnanolone and diazepam reduced time in SE in GB-exposed rats compared to those treated with delayed diazepam monotherapy. The combination therapy of pregnanolone with diazepam also prevented impairment in the Morris water maze and reduced the neuronal loss and neuronal degeneration, evaluated at one and three months after exposure. SIGNIFICANCE Neurosteroid administration as an adjunct to benzodiazepine therapy offers an effective means to treat benzodiazepine-refractory SE, such as occurs following delayed treatment of GB exposure. This study is the first to present data on the efficacy of delayed pregnanolone and diazepam dual therapy in reducing seizure activity, performance deficits and brain pathology following an operationally relevant route of exposure to GB and supports the use of a neurosteroid as an adjunct to standard anticonvulsant therapy for the treatment of CWNA-induced SE.
Collapse
Affiliation(s)
- Lucille Lumley
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Dennis Miller
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - William T. Muse
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Brenda Marrero‐Rosado
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | | | - Michael Stone
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Jeffrey McGuire
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher Whalley
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| |
Collapse
|
22
|
Gore A, Lazar S, Yacov G, Gez R, Rabinowitz I, Nili U, Egoz I, Kadar T. Ocular surface histopathological insult following sarin and VX exposure and potential treatments in the rat model. Toxicol Lett 2019; 314:153-163. [PMID: 31408696 DOI: 10.1016/j.toxlet.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/14/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
Eye exposure to organophosphate (OP) chemical warfare irreversible acetylcholinesterase inhibitors, results in long-term miosis and impaired visual function. In contrast to the well-documented miotic and ciliary muscle spasm observed following chemical warfare, OP ocular exposure, little is known regarding the ocular surface histopathological insult. The aim of the present study was to determine the degree of the ocular surface insult following sarin or VX ocular exposure and to evaluate potential anti-cholinergic treatments in counteracting this insult. Rats that were whole body exposed to various sarin concentrations (0.049-43 μg/L; 5 min exposure), showed a dose-dependent miotic response and light reflex impairment. Following whole body sarin exposure, a dose dependent ocular surface histopathological insult was developed. A week following exposure to a low concentration of 0.05 μg/L, conjunctival pathology was observed, while corneal insult was noticed only following exposure to a concentration of 0.5 μg/L and above. Both tissues presented poorer outcomes when exposed to higher sarin concentrations. In contrast, eyes topically exposed to 1 μg sarin demonstrated no ocular insult a week following exposure. On the contrary, topical exposure to 1 μg VX resulted in a significant corneal insult. Anticholinergic treatments such as 0.1% atropine or 2% homatropine, given shortly following VX exposure, counteracted this insult. The results of this study show that not only do anti-cholinergic treatments counteract the miotic response, but also prevent the histopathological insult observed when given shortly following OP exposure.
Collapse
Affiliation(s)
- Ariel Gore
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.
| | - Shlomi Lazar
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Guy Yacov
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Rellie Gez
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Ishai Rabinowitz
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Uri Nili
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Inbal Egoz
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Tamar Kadar
- Dept. Of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| |
Collapse
|
23
|
Nervo A, Calas AG, Nachon F, Krejci E. Respiratory failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology 2019; 424:152232. [PMID: 31175885 DOI: 10.1016/j.tox.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
Respiration failure during exposure by cholinesterase inhibitors has been widely assumed to be due to inhibition of cholinesterase in the brain. Using a double chamber plethysmograph to measure various respiratory parameters, we observed long "end inspiratory pauses" (EIP) during most exposure that depressed breathing. Surprisingly, Colq KO mice that have a normal level of acetylcholinesterase (AChE) in the brain but a severe deficit in muscles and other peripheral tissues do not pause the breathing by long EIP. In mice, long EIP can be triggered by a nasal irritant. Eucalyptol, an agonist of cold receptor (TRPM8) acting on afferent sensory neurons and known to reduce the EIP triggered by such irritants, strongly reduced the EIP induced by cholinesterase inhibitor. These results suggest that acetylcholine (ACh) spillover from the neuromuscular junction, which is unchanged in Colq KO mice, may activate afferent sensory systems and trigger sensory reflexes, as reversed by eucalyptol. Indeed, the role of AChE at the cholinergic synapses is not only to accurately control the synaptic transmission but also to prevent the spillover of ACh. In the peripheral tissues, the ACh flood induced by cholinesterase inhibition may be very toxic due to interaction with non-neuronal cells that use ACh at low levels to communicate with afferent sensory neurons.
Collapse
Affiliation(s)
- Aurélie Nervo
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - André-Guilhem Calas
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Eric Krejci
- COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France.
| |
Collapse
|
24
|
Cavalcante SFDA, Kitagawa DAS, Rodrigues RB, Bernardo LB, da Silva TN, Dos Santos WV, Correa ABDA, de Almeida JSFD, França TCC, Kuča K, Simas ABC. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem Biol Interact 2019; 309:108682. [PMID: 31163137 DOI: 10.1016/j.cbi.2019.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Casualties caused by nerve agents, potent acetylcholinesterase inhibitors, have attracted attention from media recently. Poisoning with these chemicals may be fatal if not correctly addressed. Therefore, research on novel antidotes is clearly warranted. Pyridinium oximes are the only clinically available compounds, but poor penetration into the blood-brain barrier hampers efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in SAR studies, we synthesized and evaluated neutral aryloximes as reactivators for acetylcholinesterase inhibited by NEMP, a VX surrogate. Although few tested compounds reached comparable reactivation results with clinical standards, they may be considered as leads for further optimization.
Collapse
Affiliation(s)
- Samir F de A Cavalcante
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil; Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil; University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic.
| | - Daniel A S Kitagawa
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Rafael B Rodrigues
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Leandro B Bernardo
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Thiago N da Silva
- University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil
| | - Wellington V Dos Santos
- Emergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMERJ), Praça São Salvador 4, Rio de Janeiro, 22231-170, Brazil; University Universus Veritas (UNIVERITAS), School of Biomedicine, Rua Marquês de Abrantes 55, Rio de Janeiro, 22230-060, Brazil
| | - Ana Beatriz de A Correa
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Tanos C C França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic; Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
25
|
Shrivastav AM, Sharma G, Jha R. Hypersensitive and selective biosensing based on microfiber interferometry and molecular imprinted nanoparticles. Biosens Bioelectron 2019; 141:111347. [PMID: 31226605 DOI: 10.1016/j.bios.2019.111347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
The molecular imprinting techniques with interferometric platform are promising for next-generation optical sensors for online and remote biosensing and device applications. This technique has shown a tremendous potential to provide a highly specific detection of target analyte/molecule with artificial complementary scaffolds in the polymeric nanostructures relay with tunable aspect ratio, low cost synthesis procedure and applicability in harsh environment. To date, no molecular imprinted nanoparticles has been integrated with optical microwire platform in the literature. Here, we report the synthesis of a molecularly imprinted nanocarrier using hydrothermal process that act as receptors and combines optical microwire as transducing support. The detailed sensing process for one of the widely used pesticides (parathion methyl) in the detection range of 10-12 to 10-4 M with hyper-sensitivity and detection limit of 1.30 × 1012 nm/M and 79.43 fM respectively have been achieved. The compact sensing probe tested with real water samples collected from various sources show percentage recovery of around 100%. We strongly believe that the process for probe development will open a new gateway for next generation selective biosensing for biomedical research applications.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Nanophotonics & Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Gaurav Sharma
- Nanophotonics & Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Rajan Jha
- Nanophotonics & Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India.
| |
Collapse
|
26
|
Marrero-Rosado B, Rossetti F, Rice MW, Moffett MC, Lee RB, Stone MF, Lumley LA. Age-Related Susceptibility to Epileptogenesis and Neuronal Loss in Male Fischer Rats Exposed to Soman and Treated With Medical Countermeasures. Toxicol Sci 2019; 164:142-152. [PMID: 29596688 DOI: 10.1093/toxsci/kfy065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Elderly individuals compose a large percentage of the world population; however, few studies have addressed the efficacy of current medical countermeasures (MCMs) against the effects of chemical warfare nerve agent exposure in aged populations. We evaluated the efficacy of the anticonvulsant diazepam in an old adult rat model of soman (GD) poisoning and compared the toxic effects to those observed in young adult rats when anticonvulsant treatment is delayed. After determining their respective median lethal dose (LD50) of GD, we exposed young adult and old adult rats to an equitoxic 1.2 LD50 dose of GD followed by treatment with atropine sulfate and the oxime HI-6 at 1 min after exposure, and diazepam at 30 min after seizure onset. Old adult rats that presented with status epilepticus were more susceptible to developing spontaneous recurrent seizures (SRSs). Neuropathological analysis revealed that in rats of both age groups that developed SRS, there was a significant reduction in the density of mature neurons in the piriform cortex, thalamus, and amygdala, with more pronounced neuronal loss in the thalamus of old adult rats compared with young adult rats. Furthermore, old adult rats displayed a reduced density of cells expressing glutamic acid decarboxylase 67, a marker of GABAergic interneurons, in the basolateral amygdala and piriform cortex, and a reduction of astrocyte activation in the piriform cortex. Our observations demonstrate the reduced effectiveness of current MCM in an old adult animal model of GD exposure and strongly suggest the need for countermeasures that are more tailored to the vulnerabilities of an aging population.
Collapse
Affiliation(s)
- Brenda Marrero-Rosado
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| | - Franco Rossetti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Matthew W Rice
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| | - Mark C Moffett
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| | - Michael F Stone
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010
| |
Collapse
|
27
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1556] [Impact Index Per Article: 311.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
28
|
Herbert J, Thiermann H, Worek F, Wille T. COPD and asthma therapeutics for supportive treatment in organophosphate poisoning. Clin Toxicol (Phila) 2019; 57:644-651. [PMID: 30696282 DOI: 10.1080/15563650.2018.1540785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Nerve agents like sarin or VX have repeatedly been used in military conflicts or homicidal attacks, as seen in Syria or Malaysia 2017. Together with pesticides, nerve agents assort as organophosphorus compounds (OP), which inhibit the enzyme acetylcholinesterase. To counteract subsequent fatal symptoms due to acetylcholine (ACh) accumulation, oximes plus atropine are administered, a regimen that lacks efficacy in several cases of OP poisoning. New therapeutics are in development, but still need evaluation before clinical employment. Supportive treatment with already approved drugs presents an alternative, whereby compounds from COPD and asthma therapy are likely options. A recent pilot study by Chowdhury et al. included β2-agonist salbutamol in the treatment of OP-pesticide poisoned patients, yielding ambiguous results concerning the addition. Here, we provide experimental data for further investigations regarding the value of these drugs in OP poisoning. Methods: By video-microscopy, changes in airway area were analyzed in VX-poisoned rat precision cut lung slices (PCLS) after ACh-induced airway contraction and subsequent application of selected anticholinergics/β2-agonists. Results: Glycopyrrolate and ipratropium efficiently antagonized an ACh-induced airway contraction in VX-poisoned PCLS (EC50 glycopyrrolate 15.8 nmol/L, EC50 ipratropium 2.3 nmol/L). β2-agonists formoterol and salbutamol had only negligible effects when solely applied in the same setting. However, combination of formoterol or salbutamol with low dosed glycopyrrolate or atropine led to an additive effect compared to the sole application [50.6 ± 8.8% airway area increase after 10 nmol/L formoterol +1 nmol/L atropine versus 11.7 ± 9.2% (10 nmol/L formoterol) or 8.6 ± 5.9% (1 nmol/L atropine)]. Discussion: We showed antagonizing effects of anticholinergics and β2-agonists on ACh-induced airway contractions in VX-poisoned PCLS, thus providing experimental data to support a prospective comprehensive clinical study. Conclusions: Our results indicate that COPD and asthma therapeutics could be a valuable addition to the treatment of OP poisoning.
Collapse
Affiliation(s)
- Julia Herbert
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Horst Thiermann
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Franz Worek
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| | - Timo Wille
- a Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, Munich , Germany
| |
Collapse
|
29
|
Grunkemeyer TJ, Mata DG, Doddapaneni K, Murali S, Magliery TJ. Insights into the mechanism of paraoxonase-1: Comparing the reactivity of the six-bladed β-propeller hydrolases. Biochemistry 2018:acs.biochem.8b01115. [PMID: 30547569 DOI: 10.1021/acs.biochem.8b01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian protein paraoxonase-1 (PON1) has been explored as a promising bioscavenger treatment for organophosphorus (OP) agent poisoning, but it is not active enough to protect against many agents. Engineering is limited because PON1's catalytic mechanism is poorly understood; moreover, its native activity and substrate are unknown. PON1 is a calcium-bound six-bladed β-propeller hydrolase that shares high structural homology, a conserved metal-coordinating active site, and substrate specificity overlap with other members of a superfamily that includes squid diisopropylfluorophosphatase (DFPase), bacterial drug responsive protein 35 (Drp35), and mammalian senescence marker protein 30 (SMP30). We hypothesized that, by examining the reactivity of all four hydrolases using a common set of conservative mutations, we could gain further insight into the catalytic mechanism of PON1. We chose a set of mutations to examine conserved Asp and Glu residues in the hydrolase active sites, as well as the ligation sphere around the catalytic calcium and a His-His dyad seen in PON1. The wild-type (WT) and mutant hydrolases were assayed against a set of lactones, aryl esters, and OPs that PON1 is known to hydrolyze. Surprisingly, some mutations of Ca2+ coordinating residues, previously thought to be essential for turnover, resulted in significant activity toward all substrate classes examined. Additionally, merely maintaining WT-like charge in the active site of PON1 was insufficient for high activity. Finally, the H115-H134 dyad does not appear to be essential for catalysis against any substrate. Therefore, previously proposed mechanisms must be re-evaluated.
Collapse
|
30
|
de Paula RL, de Almeida JSFD, Cavalcante SFA, Gonçalves AS, Simas ABC, Franca TCC, Valis M, Kuca K, Nepovimova E, Granjeiro JM. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon. Molecules 2018; 23:E2954. [PMID: 30424582 PMCID: PMC6278417 DOI: 10.3390/molecules23112954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.
Collapse
Affiliation(s)
- Reuel L de Paula
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
| | - Samir F A Cavalcante
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Arlan S Gonçalves
- Federal Institute of Education, Science and Technology, Avenida Ministro Salgado Filho S/N, Vila Velha 29106-010, Brazil.
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Tanos C C Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Simkova 870, 50003 Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
| |
Collapse
|
31
|
Moyer RA, McGarry KG, Babin MC, Platoff GE, Jett DA, Yeung DT. Kinetic analysis of oxime-assisted reactivation of human, Guinea pig, and rat acetylcholinesterase inhibited by the organophosphorus pesticide metabolite phorate oxon (PHO). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:93-99. [PMID: 29482737 PMCID: PMC5830159 DOI: 10.1016/j.pestbp.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/14/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Phorate is a highly toxic agricultural pesticide currently in use throughout the world. Like many other organophosphorus (OP) pesticides, the primary mechanism of the acute toxicity of phorate is acetylcholinesterase (AChE) inhibition mediated by its bioactivated oxon metabolite. AChE reactivation is a critical aspect in the treatment of acute OP intoxication. Unfortunately, very little is currently known about the capacity of various oximes to rescue phorate oxon (PHO)-inhibited AChE. To help fill this knowledge gap, we evaluated the kinetics of inhibition, reactivation, and aging of PHO using recombinant AChE derived from three species (rat, guinea pig and human) commonly utilized to study the toxicity of OP compounds and five oximes that are currently fielded (or have been deemed extremely promising) as anti-OP therapies by various nations around the globe: 2-PAM Cl, HI-6 DMS, obidoxime Cl2, MMB4-DMS, and HLö7 DMS. The inhibition rate constants (ki) for PHO were calculated for AChE derived from each species and found to be low (i.e., 4.8×103 to 1.4×104M-1min-1) compared to many other OPs. Obidoxime Cl2 was the most effective reactivator tested. The aging rate of PHO-inhibited AChE was very slow (limited aging was observed out to 48h) for all three species. CONCLUSIONS (1) Obidoxime Cl2 was the most effective reactivator tested. (2) 2-PAM Cl, showed limited effectiveness in reactivating PHO-inhibited AChE, suggesting that it may have limited usefulness in the clinical management of acute PHO intoxication. (3) The therapeutic window for oxime administration following exposure to phorate (or PHO) is not limited by aging.
Collapse
Affiliation(s)
| | | | | | - Gennady E Platoff
- National Institutes of Health/National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - David A Jett
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Rockville, MD, United States
| | - David T Yeung
- National Institutes of Health/National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| |
Collapse
|
32
|
Bielmann A, Curty C, Bochet CG. Solid-Phase Synthesis of the Aged-Nonapeptide-Nerve-Agent Adduct of Butyrylcholinesterase as Reference Materials for Analytical Verification. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Bielmann
- Spiez Laboratory; Austrasse 3700 Spiez Switzerland
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | | | - Christian G. Bochet
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
33
|
De Cauwer H, Somville FJMP, Joillet M. Neurological aspects of chemical and biological terrorism: guidelines for neurologists. Acta Neurol Belg 2017; 117:603-611. [PMID: 28343251 DOI: 10.1007/s13760-017-0774-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
Abstract
This statement paper deals with the key role an neurologist plays in the management of victims of chemical warfare/terrorist attacks. Because terrorist factions have expanded the war zone creating a worldwide risk of terrorist attacks, not only limited to some conflict zones in the Middle East, neurologists in all countries/regions have to be prepared for disaster response. The scope of this paper is to provide guidelines for the neurological management of victims of chemical and biological terrorist attacks.
Collapse
Affiliation(s)
- Harald De Cauwer
- Department of Neurology, Dimpna Regional Hospital, AZ St Dimpna, JB Stessenstraat 2, 2440, Geel, Belgium.
| | - Francis J M P Somville
- Department of Emergency Medicine, Dimpna Regional Hospital, Geel, Belgium
- Department of Health Psychology, University of Leiden, Leiden, The Netherlands
- Clerkships Office, Faculty of Medicine, University of Leuven, Louvain, Belgium
| | - Marieke Joillet
- Department of Emergency Medicine, Dimpna Regional Hospital, Geel, Belgium
- Faculty of Medicine, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
34
|
A primer on nerve agents: what the emergency responder, anesthesiologist, and intensivist needs to know. Can J Anaesth 2017; 64:1059-1070. [PMID: 28766156 DOI: 10.1007/s12630-017-0920-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/03/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The purpose of this review article is to familiarize first responders, anesthesiologists, and intensivists with the medical management of patients exposed to nerve agents. SOURCE This review is based on the current medical literature available to the general medical community. PRINCIPAL FINDINGS Nerve agents are some of the deadliest substances known to humanity. Though they kill primarily via muscle paralysis, which leads to respiratory arrest, these agents affect virtually every organ system in the body. Their primary mechanism of action is the body-wide inhibition of cholinesterases. This inhibition leads to the accumulation of acetylcholine, stimulating both nicotinic and muscarinic receptors. After decontamination, the primary treatment is with atropine to control muscarinic symptoms and with oximes to reactivate the cholinesterases and treat the nicotinic symptoms. Atropine doses can be much higher than conventionally used. Seizures are generally best treated with benzodiazepines. Patients with substantial exposure may require ventilatory and intensive care unit support for prolonged periods of time. CONCLUSION While it is unlikely that most medical practitioners will ever encounter nerve agent poisoning, it is critical to be aware of the presenting symptoms and how best to treat patients exposed to these deadly agents. History has shown that rapid medical treatment can easily mean the difference between life and death for a patient in this situation.
Collapse
|
35
|
Herbert J, Thiermann H, Worek F, Wille T. Precision cut lung slices as test system for candidate therapeutics in organophosphate poisoning. Toxicology 2017; 389:94-100. [DOI: 10.1016/j.tox.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023]
|
36
|
Egoz I, Nili U, Grauer E, Gore A. Optimization of the Ocular Treatment Following Organophosphate Nerve Agent Insult. Toxicol Sci 2017; 159:50-63. [DOI: 10.1093/toxsci/kfx119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
de Castro AA, Assis LC, Silva DR, Corrêa S, Assis TM, Gajo GC, Soares FV, Ramalho TC. Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes. AIMS Microbiol 2017; 3:108-135. [PMID: 31294152 PMCID: PMC6604975 DOI: 10.3934/microbiol.2017.1.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 11/18/2022] Open
Abstract
Chemical weapons are a major worldwide problem, since they are inexpensive, easy to produce on a large scale and difficult to detect and control. Among the chemical warfare agents, we can highlight the organophosphorus compounds (OP), which contain the phosphorus element and that have a large number of applications. They affect the central nervous system and can lead to death, so there are a lot of works in order to design new effective antidotes for the intoxication caused by them. The standard treatment includes the use of an anticholinergic combined to a central nervous system depressor and an oxime. Oximes are compounds that reactivate Acetylcholinesterase (AChE), a regulatory enzyme responsible for the transmission of nerve impulses, which is one of the molecular targets most vulnerable to neurotoxic agents. Increasingly, enzymatic treatment becomes a promising alternative; therefore, other enzymes have been studied for the OP degradation function, such as phosphotriesterase (PTE) from bacteria, human serum paraoxonase 1 (HssPON1) and diisopropyl fluorophosphatase (DFPase) that showed significant performances in OP detoxification. The understanding of mechanisms by which enzymes act is of extreme importance for the projection of antidotes for warfare agents, and computational chemistry comes to aid and reduce the time and costs of the process. Molecular Docking, Molecular Dynamics and QM/MM (quantum-mechanics/molecular-mechanics) are techniques used to investigate the molecular interactions between ligands and proteins.
Collapse
Affiliation(s)
| | - Letícia C. Assis
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R. Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Silviana Corrêa
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Tamiris M. Assis
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Giovanna C. Gajo
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003, Czech Republic
| |
Collapse
|
38
|
Althaus AL, McCarren HS, Alqazzaz A, Jackson C, McDonough JH, Smith CD, Hoffman E, Hammond RS, Robichaud AJ, Doherty JJ. The synthetic neuroactive steroid SGE-516 reduces status epilepticus and neuronal cell death in a rat model of soman intoxication. Epilepsy Behav 2017; 68:22-30. [PMID: 28109985 DOI: 10.1016/j.yebeh.2016.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/18/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022]
Abstract
Organophosphorus nerve agents (OPNAs) are irreversible inhibitors of acetylcholinesterase that pose a serious threat to public health because of their use as chemical weapons. Exposure to high doses of OPNAs can dramatically potentiate cholinergic synaptic activity and cause status epilepticus (SE). Current standard of care for OPNA exposure involves treatment with cholinergic antagonists, oxime cholinesterase reactivators, and benzodiazepines. However, data from pre-clinical models suggest that OPNA-induced SE rapidly becomes refractory to benzodiazepines. Neuroactive steroids (NAS), such as allopregnanolone, retain anticonvulsant activity in rodent models of benzodiazepine-resistant SE, perhaps because they modulate a broader variety of GABAA receptor subtypes. SGE-516 is a novel, next generation NAS and a potent and selective GABAA receptor positive allosteric modulator (PAM). The present study first established that SGE-516 reduced electrographic seizures in the rat lithium-pilocarpine model of pharmacoresistant SE. Then the anticonvulsant activity of SGE-516 was investigated in the soman-intoxication model of OPNA-induced SE. SGE-516 (5.6, 7.5, and 10mg/kg, IP) significantly reduced electrographic seizure activity compared to control when administered 20min after SE onset. When 10mg/kg SGE-516 was administered 40min after SE onset, seizure activity was still significantly reduced compared to control. In addition, all cohorts of rats treated with SGE-516 exhibited significantly reduced neuronal cell death as measured by FluoroJade B immunohistochemistry. These data suggest synthetic NASs that positively modulate both synaptic and extrasynaptic GABAA receptors may be candidates for further study in the treatment of OPNA-induced SE.
Collapse
Affiliation(s)
| | - Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Aymen Alqazzaz
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Cecelia Jackson
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Carl D Smith
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Ethan Hoffman
- Drug Discovery, Sage Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | |
Collapse
|
39
|
Reed BA, Sabourin CL, Lenz DE. Human butyrylcholinesterase efficacy against nerve agent exposure. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Beth A. Reed
- Battelle Memorial Institute; Columbus OH 43201-2693 USA
| | | | | |
Collapse
|
40
|
A. de Castro A, C. Assis L, R. Silva D, Corrêa S, M. Assis T, C. Gajo G, V. Soares F, C. Ramalho T. Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes. AIMS Microbiol 2017. [DOI: 10.3934/microbiol.2017.2.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Use of V agents and V-analogue compounds to probe the active site of atypical butyrylcholinesterase from Oryzias latipes. Chem Biol Interact 2016; 259:182-186. [PMID: 27000540 DOI: 10.1016/j.cbi.2016.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
The atypical butyrylcholinesterase (aBuChE) from Oryzias latipes shares approximately 65% sequence similarity to both acetylcholinesterase and butyrylcholinesterase and was studied for its capacity to spontaneously reactivate following inhibition by organophosphorus nerve agents. Like other cholinesterases, aBuChE was inhibited by all G- and V-type nerve agents. Interestingly, aBuChE was able to undergo spontaneous reactivation after inhibition with VR (t1/2 = 5.5 ± 0.2 h). Mass spectrometry of aBuChE after VR inhibition confirmed the presence of a covalently bound adduct of the size expected for non-aged VR on the peptide containing the active site serine. To understand the effect of substrate volume on rates of reactivation, the capacity of aBuChE to bind and spontaneously reactivate after inhibition with five V-agent analogues was examined. No appreciable reactivation was detected for enzyme inhibited by V2 (VX with O-isopropyl on retained group), V4 (VX with N-diethyl leaving group termination), or V5 (VX with N-dimethyl leaving group termination). Minimal reactivation was detected with V1 (VX with O-propyl on retained group). Conversely, spontaneous reactivation was observed when aBuChE was inhibited by V3 (VX with O-isobutyl on retained group; t1/2 = 6.3 ± 0.4 h). The data suggest that the ability of aBuChE to spontaneously reactivate after inhibition by V-agent analogues is related to the structure of the retained group. These results provide structural information that may shed light on the design of improved small molecule reactivators of nerve agent-inhibited acetylcholinesterase or butyrylcholinesterase, and further suggest that re-engineering the active site of a cholinesterase could result in enzymes with clinically relevant rates of nerve agent hydrolysis.
Collapse
|
42
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Rice H, Mann TM, Armstrong SJ, Price ME, Green AC, Tattersall JE. The potential role of bioscavenger in the medical management of nerve-agent poisoned casualties. Chem Biol Interact 2016; 259:175-181. [DOI: 10.1016/j.cbi.2016.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
|
44
|
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit Rev Toxicol 2016; 46:845-875. [PMID: 27705071 PMCID: PMC5764759 DOI: 10.1080/10408444.2016.1220916] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as "cholinergic crisis" (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Briana Siracuse
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Natasha Gupta
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Ashly Sobel Sokol
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| |
Collapse
|
45
|
Goldsmith M, Ashani Y, Margalit R, Nyska A, Mirelman D, Tawfik DS. A new post-intoxication treatment of paraoxon and parathion poisonings using an evolved PON1 variant and recombinant GOT1. Chem Biol Interact 2016; 259:242-251. [DOI: 10.1016/j.cbi.2016.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/04/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
46
|
Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: molecular docking and reaction mechanism calculations. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Worek F, Koller M, Thiermann H, Wille T. Reactivation of nerve agent-inhibited human acetylcholinesterase by obidoxime, HI-6 and obidoxime+HI-6: Kinetic in vitro study with simulated nerve agent toxicokinetics and oxime pharmacokinetics. Toxicology 2016; 350-352:25-30. [PMID: 27153754 DOI: 10.1016/j.tox.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/15/2022]
Abstract
Despite extensive research for decades no effective broad-spectrum oxime for the treatment of poisoning by a broad range of nerve agents is available. Previous in vitro and in vivo data indicate that the combination of in service oximes could be beneficial. To investigate the ability of obidoxime, HI-6 and the combination of both oximes to reactivate inhibited human AChE in the presence of sarin, cyclosarin or tabun we adopted a dynamic in vitro model with real-time and continuous determination of AChE activity to simulate inhalation nerve agent exposure and intramuscular oxime administration. The major findings of this kinetic study are that the extent and velocity of reactivation is dependent on the nerve agent and the oxime-specific reactivating potency. The oxime-induced reactivation of inhibited human AChE in the presence of nerve agents is markedly impaired and the combination of obidoxime and HI-6 had no additive effect but could broaden the spectrum. In conclusion, these data indicate that a combination of obidoxime and HI-6 would be beneficial for the treatment of poisoning by a broad spectrum of nerve agents and could present an interim solution until more effective and broad-spectrum reactivators are available.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
48
|
What roles do the residue Asp229 and the coordination variation of calcium play of the reaction mechanism of the diisopropyl-fluorophosphatase? A DFT investigation. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Worek F, Thiermann H, Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem Biol Interact 2016; 259:93-98. [PMID: 27125761 DOI: 10.1016/j.cbi.2016.04.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/05/2016] [Accepted: 04/24/2016] [Indexed: 11/28/2022]
Abstract
The high number of annual fatalities following suicidal poisoning by organophosphorus (OP) pesticides and the recent homicidal use of the chemical warfare nerve agent sarin against civilian population in Syria underlines the continuous threat by these highly toxic agents. The need for an effective treatment of OP poisoning resulted in the implementation of a combination therapy with the muscarinic receptor antagonist atropine and an oxime for the reactivation of OP-inhibited acetylcholinesterase (AChE). Since the invention of the first clinically used oxime pralidoxime (2-PAM) in the 1950s ongoing research attempted to identify more effective oximes. In fact, several thousand oximes were synthesized in the past six decades. These include charged and non-charged compounds, mono- and bispyridinium oximes, asymmetric oximes, oximes with different substitutes and more recently non-oxime reactivators. Multiple in vitro and in vivo studies investigated the potential of oximes to reactivate OP-inhibited AChE and to reverse OP-induced cholinergic signs. Depending on the experimental model, the investigated species and the tested OP largely variable results were obtained by different laboratories. These findings and the inconsistent effectiveness of oximes in the treatment of OP-pesticide poisoned patients led to a continuous discussion on the value of oximes. In order to provide a forward-looking evaluation of the significance of oximes in OP poisoning multiple aspects, including intrinsic toxicity, in vitro reactivation potency, efficacy and pharmacokinetics, as well as the impact of the causative OP have to be considered. The different influencing factors in order to define the benefit and limitations of oximes in OP poisoning will be discussed.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
50
|
Manfredi AM, Demos W, Wanderlind EH, Silva BV, Pinto AC, Souza BS, Nome F. Rapid cleavage of phosphate triesters by the oxime 2-(hydroxyimino)-N
-phenyl-acetamide. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alex M. Manfredi
- INCT-Catalysis, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Willian Demos
- INCT-Catalysis, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Eduardo H. Wanderlind
- INCT-Catalysis, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Bárbara V. Silva
- Instituto de Química-CT, Bloco A; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-970 Brazil
| | - Angelo C. Pinto
- Instituto de Química-CT, Bloco A; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-970 Brazil
| | - Bruno S. Souza
- INCT-Catalysis, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| | - Faruk Nome
- INCT-Catalysis, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC 88040-900 Brazil
| |
Collapse
|