1
|
Eltokhi A, Lundstrom BN, Li J, Zweifel LS, Catterall WA, Gamal El-Din TM. Pathogenic gating pore current conducted by autism-related mutations in the Na V1.2 brain sodium channel. Proc Natl Acad Sci U S A 2024; 121:e2317769121. [PMID: 38564633 PMCID: PMC11009634 DOI: 10.1073/pnas.2317769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Brian Nils Lundstrom
- Department of Neurology in the Division of Epilepsy, Mayo Clinic, Rochester, MN55905
| | - Jin Li
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA98195
| | | | | |
Collapse
|
2
|
Theme 12 - Clinical Management and Support. Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wang D, Xia T, Wang Y, Chen Y, Zhang C, Murray W, Schultz AT, Liu Z, Yang J. Citrate-based fluorometric sensor for multi-halide sensing. SMART MATERIALS IN MEDICINE 2022; 3:374-381. [PMID: 38031570 PMCID: PMC10686323 DOI: 10.1016/j.smaim.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Halides play important roles in human health and environmental monitoring. However, different halides interfere with each other in current measurement methods. Simultaneous sensing of multiple halides in a fast and low-cost manner remains a challenge. Here, we report a fluorometric multi-halide sensing method by using a single citrate-based fluorophore, CA-Cys, on a custom-made portable device. The fluorescence emitted by CA-Cys is quenched due to the dynamic quenching of halide ions; the sensitivities vary from halide types and pH, providing the capability to obtain multiple Stern-Volmer equations at various pH values. The concentration of each halide can then be obtained by solving the resultant set of equations. A mM scale detection limit is demonstrated, which is suitable for halide wastewater monitoring. A proof-of-concept smartphone-based portable device is also fabricated and tested. The results from the fluorometer and portable device indicated that our multi-halide system is promising for real-world multi-halide sensing applications. This work represents a new direction in developing portable, low-cost, and simultaneous multi-halide sensing technologies.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tunan Xia
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chenji Zhang
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William Murray
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adam Thomas Schultz
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Das T, Mohar M, Bag A. Regioselective nitration of a biphenyl derivative to derive a fluorescent chloride sensor. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
|
6
|
Development of a selective chloride sensing platform using a screen-printed platinum electrode. Talanta 2018; 195:771-777. [PMID: 30625616 DOI: 10.1016/j.talanta.2018.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
A new and selective voltammetric method for chloride determination is proposed, based on platinum and chloride interactions. A screen-printed platinum electrode (SPPtE) functions as a sensing platform, which promotes the formation of chloro-adsorbed species on the electrode surface, acting as an effective means of anion-determination in several matrices. The pretreatment of the SPPtE and careful control of the cathodic stripping voltammetric parameters yielded a well-defined electrochemical signal. This cathodic peak was due to the adsorption of chlorine, which had previously been oxidized from chloride anions in the initial anodic deposition step. It offers a simple, low-cost, fast, reproducible (RSD < 6%) and precise method for selective chloride determination, with limit of detection of 0.76 mM, and a sensitivity of - 24.147 µA mM -1 for a broad determination range of up to 150 mM. Chloride determination was correctly performed with single drops of environmental, pharmaceutical and food samples. In addition, the sensor was successfully adapted as a flexible screen-printed platinum electrode sensor using Gore-Tex® as support for printing.
Collapse
|
7
|
Vallejos S, Hernando E, Trigo M, García FC, García-Valverde M, Iturbe D, Cabero MJ, Quesada R, García JM. Polymeric chemosensor for the detection and quantification of chloride in human sweat. Application to the diagnosis of cystic fibrosis. J Mater Chem B 2018; 6:3735-3741. [PMID: 32254835 DOI: 10.1039/c8tb00682b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have developed a new extremely hydrophilic polymeric film suitable for the detection and quantification of chloride in human sweat directly on the skin. The film, or membrane, has chemically anchored 6-methoxyquinoline groups as chloride responsive fluorescent motifs. We have prepared the sensory material from a standard vinyl copolymer, by a convenient and easy solid-phase reaction. The sensory material has a water swelling percentage of 700%, facilitating an immediate detection of chloride, is reusable for at least 6 cycles and can be handled without care by unskilled persons. The initially high fluorescence of the material decreases in the presence of chloride, allowing the quantification of chloride concentration by using the colour definition of a digital picture or a fluorimeter. The suitability of the material to perform quantitative chloride analysis of human sweat by putting it in contact with the skin offers promise for its application in the sweat test used for the diagnosis of cystic fibrosis (CF).
Collapse
Affiliation(s)
- Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sangari S, Giron A, Marrelec G, Pradat PF, Marchand-Pauvert V. Abnormal cortical brain integration of somatosensory afferents in ALS. Clin Neurophysiol 2017; 129:874-884. [PMID: 29317192 DOI: 10.1016/j.clinph.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Infraclinical sensory alterations have been reported at early stages of amyotrophic lateral sclerosis (ALS). While previous studies mainly focused on early somatosensory evoked potentials (SEPs), late SEPs, which reflect on cortical pathways involved in cognitive-motor functions, are relatively underinvestigated. Early and late SEPs were compared to assess their alterations in ALS. METHODS Median and ulnar nerves were electrically stimulated at the wrist, at 9 times the perceptual threshold, in 21 ALS patients without clinical evidence of sensory deficits, and 21 age- and gender-matched controls. SEPs were recorded at the Erb point using surface electrodes and using a needle inserted in the scalp, in front of the primary somatosensory area (with reference electrode on the ear lobe). RESULTS Compared to controls, ALS patients showed comparable peripheral (N9) and early cortical component (N20, P25, N30) reductions, while the late cortical components (N60, P100) were more depressed than the early ones. CONCLUSIONS The peripheral sensory alteration likely contributed to late SEP depression to a lesser extent than that of early SEPs. SIGNIFICANCE Late SEPs may provide new insights on abnormal cortical excitability affecting brain areas involved in cognitive-motor functions.
Collapse
Affiliation(s)
- Sina Sangari
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Alain Giron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Guillaume Marrelec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France
| | - Pierre-François Pradat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France; Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Véronique Marchand-Pauvert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inserm, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France.
| |
Collapse
|
9
|
A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens Bioelectron 2017; 97:164-168. [DOI: 10.1016/j.bios.2017.05.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022]
|
10
|
Kim JP, Xie Z, Creer M, Liu Z, Yang J. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis. Chem Sci 2017; 8:550-558. [PMID: 28348728 PMCID: PMC5351803 DOI: 10.1039/c6sc02962k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.
Collapse
Affiliation(s)
- Jimin P. Kim
- Department of Biomedical Engineering , Materials Research Institutes , The Huck Institutes of Life Sciences , The Pennsylvania State University , University Park , PA 16802 , USA .
| | - Zhiwei Xie
- Department of Biomedical Engineering , Materials Research Institutes , The Huck Institutes of Life Sciences , The Pennsylvania State University , University Park , PA 16802 , USA .
| | - Michael Creer
- Department of Pathology , College of Medicine , The Pennsylvania State University , Hershey , PA 17033 , USA
| | - Zhiwen Liu
- Department of Electrical Engineering , The Pennsylvania State University , University Park , PA 16802 , USA
| | - Jian Yang
- Department of Biomedical Engineering , Materials Research Institutes , The Huck Institutes of Life Sciences , The Pennsylvania State University , University Park , PA 16802 , USA .
| |
Collapse
|
11
|
Caioli S, Pieri M, Antonini A, Guglielmotti A, Severini C, Zona C. Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: Evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. Neuropharmacology 2013; 73:247-60. [DOI: 10.1016/j.neuropharm.2013.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/06/2013] [Accepted: 05/27/2013] [Indexed: 02/06/2023]
|
12
|
Pradat PF, Attarian S, Camdessanché JP, Carluer L, Cintas P, Corcia P, Echaniz-Laguna A, Gonzalez-Bermejo J, Guy N, Nicolas G, Perez T, Soriani MH, Vandenberghe N, Verschueren A. [Research in amyotrophic lateral sclerosis: what is new in 2009?]. Rev Neurol (Paris) 2010; 166:683-98. [PMID: 20472259 DOI: 10.1016/j.neurol.2010.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/03/2010] [Indexed: 12/12/2022]
Abstract
This paper, written by French amyotrophic lateral sclerosis (ALS) center experts, presents an update of recent advances in fundamental, epidemiological and clinical research in ALS based on a review of the literature between September 2008 and November 2009. Among other pathophysiological mechanisms, the role of stress of the endoplasmic reticulum and the importance of energetic metabolic disturbances have been underscored. In the field of genetics, research has been advanced through the identification of mutations of the gene FUsed in Sarcoma/Translated in LipoSarcoma (FUS/TLS) in individuals with familial and sporadic ALS. This gene is involved in the regulation of transcription, splicing and RNA transport, and has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration. A report showed that mice expressing a mutant form of human TDP-43 develop a progressive and fatal neurodegenerative disease reminiscent of both ALS and frontotemporal lobar degeneration with ubiquitin aggregates (FTLD-U), providing a new animal model that may help to better understand the pathophysiology and test new therapeutics. Beside genetic studies, several epidemiologic studies have investigated the role of environmental factors. A recent study suggests that smoking is a risk factor for developing ALS and it is hypothesized that this could occur through lipid peroxidation via formaldehyde exposure. From a neuroprotective perspective, trials with IGF-1, sodium valproate, coenzyme Q or glatiramer acetate have failed to demonstrate any beneficial effect. A study published in 2008 argued that lithium may have a neuroprotective effect in ALS mice and also in patients. However, two preclinical studies failed to replicate the neuroprotective effect of lithium in ALS mice. Therapeutic trials have been performed or are currently ongoing in Europe and North America. Their results have not yet been published.
Collapse
Affiliation(s)
- P-F Pradat
- CHU Pitié-Salpêtrière, AP-HP, Paris cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|