1
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
2
|
Quan Y, Xu J, Xu Q, Guo Z, Ou R, Shang H, Wei Q. Association between the risk and severity of Parkinson's disease and plasma homocysteine, vitamin B12 and folate levels: a systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1254824. [PMID: 37941998 PMCID: PMC10628521 DOI: 10.3389/fnagi.2023.1254824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Background Parkinson's disease (PD) is recognized as the second most prevalent progressive neurodegenerative disease among the elderly. However, the relationship between PD and plasma homocysteine (Hcy), vitamin B12, and folate has yielded inconsistent results in previous studies. Hence, in order to address this ambiguity, we conducted a meta-analysis to summarize the existing evidence. Methods Suitable studies published prior to May 2023 were identified by searching PubMed, EMBASE, Medline, Ovid, and Web of Science. The methodological quality of eligible studies was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). Meta-analysis and publication bias were then performed using R version 4.3.1. Results The results of our meta-analysis, consisting of case-control and cross-sectional studies, showed that PD patients had lower folate and vitamin B12 levels (SMD [95%CI]: -0.30[-0.39, -0.22], p < 0.001 for Vitamin B12; SMD [95%CI]: -0.20 [-0.28, -0.13], p < 0.001 for folate), but a significant higher Hcy level (SMD [95%CI]: 0.86 [0.59, 1.14], p < 0.001) than healthy people. Meanwhile, PD was significantly related to hyperhomocysteinemia (SMD [95%]: 2.02 [1.26, 2.78], p < 0.001) rather than plasma Hcy below 15 μmol/L (SMD [95%]: -0.31 [-0.62, 0.00], p = 0.05). Subgroup analysis revealed associations between the Hcy level of PD patients and region (p = 0.03), age (p = 0.03), levodopa therapy (p = 0.03), Hoehn and Yahr stage (p < 0.001), and cognitive impairment (p < 0.001). However, gender (p = 0.38) and sample size (p = 0.49) were not associated. Conclusion Hcy, vitamin B12, and folic acid potentially predict the onset and development of PD. Additionally, multiple factors were linked to Hcy levels in PD patients. Further studies are needed to comprehend their roles in PD.
Collapse
Affiliation(s)
- Yuxin Quan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jisen Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqing Guo
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson's Disease: A Meta-Analysis. Nutrients 2023; 15:nu15040901. [PMID: 36839259 PMCID: PMC9964466 DOI: 10.3390/nu15040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Levodopa (L-dopa) and catechol-O-methyltransferase (COMT) inhibition are widely used therapeutics in Parkinson's disease (PD). Despite their therapeutic effects, it was raised that nutrients involved in one-carbon metabolism can be deteriorated by PD therapies. The aim of this meta-analysis was to investigate the impact of L-dopa and COMT inhibitors on levels of homocysteine (Hcy), vitamin B12 and folate in patients with PD. A total of 35 case-control studies from 14 different countries were selected through PubMed, MEDLINE and Google Scholar and were meta-analyzed. In the L-dopa group, the Hcy level was higher compared to the PD without L-dopa group (SMD: 5.11 μmol/L, 95% CI: 3.56 to 6.66). Moreover, vitamin B12 and folate levels in the L-dopa group were lower compared to the healthy control (SMD: -62.67 pg/mL, 95% CI: -86.53 to -38.81; SMD: -0.89 ng/mL, 95% CI: -1.44 to -0.33, respectively). The COMT inhibitor group showed lower levels of Hcy (SMD: -3.78 μmol/L, 95% CI: -5.27 to -2.29) and vitamin B12 (SMD: -51.01 pg/mL, 95% CI: -91.45 to -10.57), but higher folate levels (SMD: 1.78 ng/mL, 95% CI: -0.59 to 4.15) compared to the L-dopa group. COMT inhibitors may ameliorate L-dopa-induced hyper-homocysteine and folate deficiency but exacerbate vitamin B12 deficiency.
Collapse
|
4
|
Rahnemayan S, Ahari SG, Rikhtegar R, Riyahifar S, Sanaie S. An umbrella review of systematic reviews with meta-analysis on the role of vitamins in Parkinson's disease. Acta Neurol Belg 2023; 123:69-83. [PMID: 35920987 DOI: 10.1007/s13760-022-02055-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION This umbrella review aimed to systematically review the available literature and assess the association of dietary intake or serum levels of different vitamins and the risk of PD, to help find out more efficient treatments for PD patients by replenishing the deficiency of vitamins. METHODS Pubmed/Medline, Scopus, Google Scholar and hand searching bibliographies of retrieved articles in duplicate, were used to detect all relevant meta-analyses investigating the relationship between vitamins and PD. After study selection, data were extracted from previously published meta-analyses and pooled by Review Manager version 5.4 and CMA software version 2.2.064 to achieve effect sizes. Level of statistical significance was set at P ≤ 0.05. RESULTS 14 meta-analyses were included in the meta-review. Serum vitamin D and B12 levels were significantly lower in PD (SMD = -0.67 and SMD = -0.40 respectively). Homocysteine (Hcy) levels were significantly higher in PD patients (SMD = 1.26). Also the odds ratio for highest vs. lowest vitamin E intake was 0.73 which was significant. However, there was no significant difference between vitamin A, C and B6 intake or serum levels in PD vs. control groups. CONCLUSION Serum vitamin D and B12 levels were significantly lower in PD in comparison to healthy individuals, while Hcy level was significantly higher in PD patients. Also higher vitamin E intake was associated with significantly lower risk of development of PD in comparison to lower vitamin E intake. However, there was no significant difference between risk of PD and higher vitamin A, C and B6 intake or serum levels of folate.
Collapse
Affiliation(s)
- Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rikhtegar
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
| | - Sevda Riyahifar
- Department of Biostatics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran.
| |
Collapse
|
5
|
Stroke in Parkinson's disease: a review of epidemiological studies and potential pathophysiological mechanisms. Acta Neurol Belg 2023:10.1007/s13760-023-02202-4. [PMID: 36710306 DOI: 10.1007/s13760-023-02202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is the fastest growing neurological disorder and one of the leading neurological causes of disability worldwide following stroke. An overall aging global population, as well as general changes in lifestyle associated with mass industrialization in the last century, may be linked to both increased incidence rates of PD and an increase in cumulative cardiovascular risk. Recent epidemiological studies show an increased risk of stroke, post-stroke complications, and subclinical ischemic insults in PD. PD patients have a host of characteristics that might contribute to increasing the risk of developing ischemic stroke including motor impairment, dysautonomia, and sleep disorders. This increases the urgency to study the interplay between PD and other neurological disorders, and their combined effect on mortality, morbidity, and quality of life. In this review, we provide a comprehensive overview of the studied etiological factors and pathological processes involved in PD, specifically with regard to their relationship to stroke. We hope that this review offers an insight into the relationship between PD and ischemic stroke and motivates further studies in this regard.
Collapse
|
6
|
Nguyen VP, Collins AE, Hickey JP, Pfeifer JA, Kalisch BE. Sex Differences in the Level of Homocysteine in Alzheimer's Disease and Parkinson's Disease Patients: A Meta-Analysis. Brain Sci 2023; 13:brainsci13010153. [PMID: 36672134 PMCID: PMC9856546 DOI: 10.3390/brainsci13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Although recent studies suggest homocysteine (Hcy) is an independent risk factor for neurodegenerative disorders, little is known about sex differences in the levels of Hcy. In this study, we conducted a comparative meta-analysis to investigate sex differences in the levels of Hcy in both Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients. Reports of Hcy stratified by sex in both AD and PD patients were obtained from electronic databases. From the initial 1595 records, 921 were assessed for eligibility, of which 16 sufficiently reported sex differences. Standardized mean difference (SMDs) using random effects together with tests of heterogeneity and quality assessment were applied in this meta-analysis. Data from 3082 diagnosed patients (1162 males and 1920 females) were included. There were statistically significant differences in the levels of Hcy between sexes in AD and PD patients, with an SMD of 0.291 [0.17, 0.41], p < 0.05, 95% CI, with higher Hcy levels detected in males. Subgroup comparisons did not find a statistically significant difference in the levels of Hcy between AD and PD patients. The overall risk of bias for the analyzed studies was low, with some moderate risk of bias across select domains. This meta-analysis determined that compared to females, males with either AD or PD have higher levels of Hcy. These findings suggest that Hcy could be a useful biomarker for predicting neurodegenerative diseases in males; however, further studies are needed to confirm the clinical utility of this suggestion.
Collapse
|
7
|
Yi M, Li J, Jian S, Li B, Huang Z, Shu L, Zhang Y. Quantitative and causal analysis for inflammatory genes and the risk of Parkinson's disease. Front Immunol 2023; 14:1119315. [PMID: 36926335 PMCID: PMC10011457 DOI: 10.3389/fimmu.2023.1119315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Background The dysfunction of immune system and inflammation contribute to the Parkinson's disease (PD) pathogenesis. Cytokines, oxidative stress, neurotoxin and metabolism associated enzymes participate in neuroinflammation in PD and the genes involved in them have been reported to be associated with the risk of PD. In our study, we performed a quantitative and causal analysis of the relationship between inflammatory genes and PD risk. Methods Standard process was performed for quantitative analysis. Allele model (AM) was used as primary outcome analysis and dominant model (DM) and recessive model (RM) were applied to do the secondary analysis. Then, for those genes significantly associated with the risk of PD, we used the published GWAS summary statistics for Mendelian Randomization (MR) to test the causal analysis between them. Results We included 36 variants in 18 genes for final pooled analysis. As a result, IL-6 rs1800795, TNF-α rs1799964, PON1 rs854560, CYP2D6 rs3892097, HLA-DRB rs660895, BST1 rs11931532, CCDC62 rs12817488 polymorphisms were associated with the risk of PD statistically with the ORs ranged from 0.66 to 3.19 while variants in IL-1α, IL-1β, IL-10, MnSOD, NFE2L2, CYP2E1, NOS1, NAT2, ABCB1, HFE and MTHFR were not related to the risk of PD. Besides, we observed that increasing ADP-ribosyl cyclase (coded by BST1) had causal effect on higher PD risk (OR[95%CI] =1.16[1.10-1.22]) while PON1(coded by PON1) shown probably protective effect on PD risk (OR[95%CI] =0.81[0.66-0.99]). Conclusion Several polymorphisms from inflammatory genes of IL-6, TNF-α, PON1, CYP2D6, HLA-DRB, BST1, CCDC62 were statistically associated with the susceptibility of PD, and with evidence of causal relationships for ADP-ribosyl cyclase and PON1 on PD risk, which may help understand the mechanisms and pathways underlying PD pathogenesis.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shijie Jian
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Binbin Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zini Huang
- Bangor College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Li Shu
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Vuletić V, Rački V, Papić E, Peterlin B. A Systematic Review of Parkinson's Disease Pharmacogenomics: Is There Time for Translation into the Clinics? Int J Mol Sci 2021; 22:ijms22137213. [PMID: 34281267 PMCID: PMC8268929 DOI: 10.3390/ijms22137213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disease, which creates a significant public health burden. There is a challenge for the optimization of therapies since patients not only respond differently to current treatment options but also develop different side effects to the treatment. Genetic variability in the human genome can serve as a biomarker for the metabolism, availability of drugs and stratification of patients for suitable therapies. The goal of this systematic review is to assess the current evidence for the clinical translation of pharmacogenomics in the personalization of treatment for Parkinson's disease. METHODS We performed a systematic search of Medline database for publications covering the topic of pharmacogenomics and genotype specific mutations in Parkinson's disease treatment, along with a manual search, and finally included a total of 116 publications in the review. RESULTS We analyzed 75 studies and 41 reviews published up to December of 2020. Most research is focused on levodopa pharmacogenomic properties and catechol-O-methyltransferase (COMT) enzymatic pathway polymorphisms, which have potential for clinical implementation due to changes in treatment response and side-effects. Likewise, there is some consistent evidence in the heritability of impulse control disorder via Opioid Receptor Kappa 1 (OPRK1), 5-Hydroxytryptamine Receptor 2A (HTR2a) and Dopa decarboxylase (DDC) genotypes, and hyperhomocysteinemia via the Methylenetetrahydrofolate reductase (MTHFR) gene. On the other hand, many available studies vary in design and methodology and lack in sample size, leading to inconsistent findings. CONCLUSIONS This systematic review demonstrated that the evidence for implementation of pharmacogenomics in clinical practice is still lacking and that further research needs to be done to enable a more personalized approach to therapy for each patient.
Collapse
Affiliation(s)
- Vladimira Vuletić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Correspondence:
| | - Valentino Rački
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Eliša Papić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Differences in MTHFR and LRRK2 variant's association with sporadic Parkinson's disease in Mexican Mestizos correlated to Native American ancestry. NPJ Parkinsons Dis 2021; 7:13. [PMID: 33574311 PMCID: PMC7878860 DOI: 10.1038/s41531-021-00157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, has a complex etiology where environmental and genetic factors intervene. While a number of genes and variants have been identified in recent decades as causative or protective agents of this condition, a limited number of studies have been conducted in mixed populations, such as Mexican Mestizos. The historical convergence of two founding groups and three ethnicities, and the increasing north-to-south gradient of Native American ancestry in Mexico resulted in a subpopulation structure with considerable genetic diversity. In this work, we investigate the influence of 21 known susceptibility variants for PD. Our case-control study, with a cohort of 311 Mexican Mestizo subjects, found a significant risk association for the variant rs1491942 in LRRK2. However, when stratification by ancestry was performed, a risk effect for MTHFR rs1801133 was observed only in the group with the highest percentage of European ancestry, and the PD risk effect for LRRK2 rs1491942 was significant in subjects with a higher ratio of Native American ancestry. Meta-analyses of these SNP revealed the effect of LRRK2 rs1491942 to be even more significant than previously described in populations of European descent. Although corroboration is necessary, our findings suggest that polymorphism rs1491942 may be useful as a risk marker of PD in Mexican Mestizos with greater Native American ancestry. The absence of associations with the remaining known risk factors is, in itself, a relevant finding and invites further research into the shared risk factors' role in the pathophysiological mechanisms of this neurodegenerative disorder.
Collapse
|
10
|
Diao HM, Song ZF, Xu HD. Association Between MTHFR Genetic Polymorphism and Parkinson's Disease Susceptibility: A Meta-analysis. Open Med (Wars) 2019; 14:613-624. [PMID: 31428686 PMCID: PMC6698055 DOI: 10.1515/med-2019-0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Folate metabolism plays quite a critical role in Parkinson’s disease (PD). Previous published research works have studied the link existing between the folate metabolism genetic polymorphisms and PD susceptibility; nevertheless, the results continue having controversies and inconclusiveness. Accordingly, we carried out the present meta-analysis for the assessment of the potential link between the folate metabolism genetic polymorphisms and the susceptibility to PD. In addition we carried out a literature search in the PubMed, EMBASE, Cochrane Library, and WanFang databases till November 10, 2018. The odds ratios (ORs) with corresponding 95% credible interval (95%CI) were put to use for evaluating the strength of the association of three folate metabolism genetic polymorphism ( C677T, A1298C, and A2756G) with the susceptibility to PD. Each statistical analysis was carried out with the use of STATA 15.0. An aggregate of twenty-one case-control investigations were retrieved, which involved 3,944 PD patients and 4,412 controls. We discovered the existence of no substantial link between the C677T and A1298C polymorphism and PD risk in any genetic framework comparisons. With regard to A2756G polymorphism, we discovered that there was an association between the A2756G genetic polymorphism and an augmented threat of PD in the co-dominant genetic framework (GG vs. AA: OR=1.86, 95%CI=1.02-3.37, P=0.042) and the recessive genetic model (GG vs. GA+AA: OR=1.90, 95%CI=1.06-3.41, P=0.031). To summarize, our research work indicates that the A2756G polymorphism of the folate metabolism gene had an association with an augmented threat of PD. Also, A1298C polymorphisms is unlikely to significantly contribute towards the susceptibility to PD. Further large-scale case-control studies are still required.
Collapse
Affiliation(s)
- Hong-Mei Diao
- Department of Neurology, the Central People's Hospital of Tengzhou City, Tengzhou 277500, Shandong, China
| | - Zheng-Feng Song
- Department of Neurology, the Central People's Hospital of Tengzhou City, Tengzhou 277500, Shandong, China
| | - Hai-Dong Xu
- Department of Neurology, the Central People's Hospital of Tengzhou City, Tengzhou 277500, Shandong, China
| |
Collapse
|
11
|
The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms. Nutr Res Rev 2019; 32:218-230. [DOI: 10.1017/s0954422419000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractParkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterised by the progressive degeneration of dopaminergic (DA) neurons. The cause of degeneration is not well understood; however, both genetics and environmental factors, such as nutrition, have been implicated in the disease process. Deficiencies in one-carbon metabolism in particular have been associated with increased risk for PD onset and progression, though the precise relationship is unclear. The aim of the present review is to determine the role of one-carbon metabolism and elevated levels of homocysteine in PD onset and pathology and to identify potential mechanisms involved. A search of PubMed, Google Scholar and Web of Science was undertaken to identify relevant human and animal studies. Case–control, prospective cohort studies, meta-analyses and non-randomised trials were included in the present review. The results from human studies indicate that polymorphisms in one-carbon metabolism may increase risk for PD development. There is an unclear role for dietary B-vitamin intake on PD onset and progression. However, dietary supplementation with B-vitamins may be beneficial for PD-affected individuals, particularly those onl-DOPA (levodopa orl-3,4-dihydroxyphenylalanine) treatment. Additionally, one-carbon metabolism generates methyl groups, and methylation capacity in PD-affected individuals is reduced. This reduced capacity has an impact on expression of disease-specific genes that may be involved in PD progression. During B-vitamin deficiency, animal studies report increased vulnerability of DA cells through increased oxidative stress and altered methylation. Nutrition, especially folates and related B-vitamins, may contribute to the onset and progression of PD by making the brain more vulnerable to damage; however, further investigation is required.
Collapse
|
12
|
Jadavji NM, Murray LK, Emmerson JT, Rudyk CA, Hayley S, Smith PD. Paraquat Exposure Increases Oxidative Stress Within the Dorsal Striatum of Male Mice With a Genetic Deficiency in One-carbon Metabolism. Toxicol Sci 2019; 169:25-33. [PMID: 30726997 PMCID: PMC6484892 DOI: 10.1093/toxsci/kfz034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paraquat is an herbicide that is commonly used worldwide. Exposure to paraquat results in Parkinson's disease (PD)-like symptoms including dopaminergic cell loss. Nutrition has also been linked in the pathogenesis of PD, such as reduced levels of folic acid, a B-vitamin, and component of one-carbon metabolism. Within one-carbon metabolism, methylenetetrahydrofolate reductase (MTHFR) catalyzes the irreversible conversion of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. A polymorphism in MTHFR (677 C&→T) has been reported in 5%-15% of North American and European human populations. The MTHFR polymorphism is also prevalent in PD patients. The goal of this study was to investigate the impact of paraquat-induced PD-like pathology in the context of reduced levels of MTHFR. Three-month-old male Mthfr+/- mice, which model the MTHFR polymorphism observed in humans, were administered intraperitoneal injections of paraquat (10 mg/kg) or saline 6 times over 3 weeks. At the end of paraquat treatment, motor and memory function were assessed followed by collection of brain tissue for biochemical analysis. Mthfr+/- mice treated with paraquat showed impaired motor function. There was increased microglial activation within the substantia nigra (SN) of Mthfr+/- mice treated with paraquat. Additionally, all Mthfr+/- mice that were treated with paraquat showed increased oxidative stress within the dorsal striatum, but not the SN. The present results show that paraquat exposure increases PD-like pathology in mice deficient in one-carbon metabolism.
Collapse
Affiliation(s)
- Nafisa M Jadavji
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauren K Murray
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Joshua T Emmerson
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Chris A Rudyk
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Yan LY, He QF, Lu MY, Wang SL, Qi ZQ, Dong HR. Association between carotid plaque and Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:94. [PMID: 31019944 DOI: 10.21037/atm.2019.01.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Epidemiological studies show that patients with Parkinson's disease (PD) are prone to have a reduced incidence of ischemic cerebrovascular disease. Previous studies show the correlation between PD and the lipids serum levels. The PD,s patients are found with a reduced serum level of triglyceride and low-density lipoprotein cholesterol (LDL-C); thus, the level of serum uric acid (UA) is closely related to the occurrence and development of PD. Patients with low serum UA levels have a higher chance of developing PD than the ones who do not. However, the relationship between carotid plaques and PD is still unknown. Methods Our study was based on 68 patients with PD (known as the PD group) and 81 people without PD (known as the control group). Patients in the PD group were of the same age and gender. Both groups were recorded and analyzed for UA, LDL-C, and carotid plaques or intima-media thickness (IMT). The PD group was then divided into three subgroups: the stable plaque group, the unstable plaque group, and the non-plaque group. Results In the present study, the PD group showed a significantly lower level of UA and LDL-C than the control group (P<0.01); somehow there were no statistically significant differences in the IMT and plaque incidence between the two groups (P>0.05). There were also no significant differences (P>0.05) in both the LDL-C and UA levels in all subgroups, but there was a close relation in both age and duration of disease to IMT. According to the Hoehn and Yahr staging scale, serum levels of LDL-C were inversely correlated in PD patients, while UA was related to the duration of the disease. Conclusions Our study suggested that there were no differences in carotid artery arteriosclerosis plaque and IMT, but the PD progress was indeed correlated with IMT. Meanwhile, LDL-C and UA had different priorities in H&Y and disease progression.
Collapse
Affiliation(s)
- Lan-Yun Yan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing-Fang He
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Min-Yan Lu
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Sheng-Long Wang
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Zhi-Qiang Qi
- Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Hai-Rong Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Neurology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| |
Collapse
|
14
|
Romagnolo A, Merola A, Artusi CA, Rizzone MG, Zibetti M, Lopiano L. Levodopa-Induced Neuropathy: A Systematic Review. Mov Disord Clin Pract 2018; 6:96-103. [PMID: 30838307 DOI: 10.1002/mdc3.12688] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background Clinical, neurophysiological, and pathological evidence suggest an association between Parkinson's disease (PD) and peripheral neuropathy (PNP), with a possible causative role of levodopa metabolic products, such as homocysteine and methylmalonic acid. Methods We conducted a systematic review of studies reporting cases of PNP in l-dopa-treated PD patients indexed in PubMed between January 1990 and March 2018. Results We identified 38 articles reporting cases of PNP in PD patients treated with oral l-dopa or with l-dopa/carbidopa intestinal gel infusion (LCIG). Prevalence of PNP was 30.2% in the former group and 42.1% in the latter. Oral l-dopa was mostly associated with slowly progressive PNP, whereas LCIG showed an acute or subacute onset in 35.7% of cases. In both groups, there was an association between PNP and higher l-dopa doses, as well as with the following biochemical alterations: increased homocysteine; reduced vitamin B12; increased methylmalonic acid; and reduced vitamin B6. A skin biopsy was performed in 181 patients, showing signs of small fibers neuropathy in 169 (93.4%). Positive, yet preliminary, results were observed in patients receiving periodic vitamin supplementation. Conclusions Over one third of PD patients in treatment with l-dopa may develop PNP, with a significantly higher prevalence of acute and subacute forms in those receiving LCIG. Pathogenic mechanisms remain unclear, but possibly related to a complex interplay between peripheral neurodegenerative processes and l-dopa neurotoxic metabolites. Prospective, randomized, clinical trials are required to identify factors associated with the onset and progression of PD-associated PNP and clarify the protective role of B-group vitamin supplementation.
Collapse
Affiliation(s)
- Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | - Aristide Merola
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology University of Cincinnati Cincinnati Ohio USA
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | | | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| |
Collapse
|
15
|
Wang J, Ouyang N, Qu L, Lin T, Zhang X, Yu Y, Jiang C, Xie L, Wang L, Wang Z, Ren S, Chen S, Huang J, Liu F, Huang W, Qin X. Effect of MTHFR A1298C and MTRR A66G Genetic Mutations on Homocysteine Levels in the Chinese Population: A Systematic Review and Meta-analysis. J Transl Int Med 2017; 5:220-229. [PMID: 29340279 DOI: 10.1515/jtim-2017-0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives The Chinese population typically has inadequate folate intake and no mandatory folic acid fortification. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) are the two key regulatory enzymes in the folate/homocysteine (Hcy) metabolism. Hcy has been implicated in the pathogenesis of cardiovascular disease. We conducted a meta-analysis to assess whether the MTHFR gene A1298C and the MTRR gene A66G polymorphisms affect Hcy levels in the Chinese population. Methods This analysis included 13 studies with Hcy levels reported as one of the study measurements. Summary estimates of weighted mean differences and 95% confidence intervals (CIs) were obtained using random-effect models. Results Overall, there were no significant differences in Hcy concentrations between participants with the MTHFR 1298 CC (12 trials, n = 129), AA (n = 2166; β, -0.51 μmol/L; 95%CI: -2.14, 1.11; P = 0.53), or AC genotype (n = 958; β, 0.55 μmol/L; 95%CI: -0.72, 1.82; P = 0.40). Consistently, compared to those with the MTRR 66 GG genotype (6 trials, n = 156), similar Hcy concentrations were found in participants with the AA (n = 832; β, -0.43 μmol/L; 95%CI: -1.04, 0.17; P = 0.16) or AG (n =743; β, -0.57 μmol/L; 95%CI: -1.46, 0.31; P = 0.21) genotype. Similar results were observed for the dominant and recessive models. Conclusions Neither the MTHFR A1298C polymorphism nor the MTRR A66G polymorphism affects Hcy levels in the Chinese population.
Collapse
Affiliation(s)
- Jiancheng Wang
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Nengtai Ouyang
- Cell Molecular Diagnostic Center, Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, the Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Long Qu
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tengfei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory for Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xianglin Zhang
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yaren Yu
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chongfei Jiang
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liling Xie
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liping Wang
- Department of Gynecology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhigui Wang
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuzhen Ren
- Department of Clinical Laboratory, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, Fujian Province, China
| | - Shizhi Chen
- Cell Molecular Diagnostic Center, Department of Clinical Laboratory, Second Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Jiang Huang
- Department of Cardiology, Xiangya Pingkuang Cooperation Hospital, Pingxiang, Jiangxi Province, China
| | - Fang Liu
- Department of Clinical Laboratory, West China Second University Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease; Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Andréasson M, Brodin L, Laffita-Mesa JM, Svenningsson P. Correlations Between Methionine Cycle Metabolism, COMT Genotype, and Polyneuropathy in L-Dopa Treated Parkinson’s Disease: A Preliminary Cross-Sectional Study. JOURNAL OF PARKINSONS DISEASE 2017; 7:619-628. [DOI: 10.3233/jpd-171127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mattias Andréasson
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lovisa Brodin
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - José Miguel Laffita-Mesa
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
MTHFR C677T and A1298C polymorphisms may contribute to the risk of Parkinson's disease: A meta-analysis of 19 studies. Neurosci Lett 2017; 662:339-345. [PMID: 29097250 DOI: 10.1016/j.neulet.2017.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 01/08/2023]
Abstract
The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene has been reported to be a candidate gene for susceptibility to Parkinson's disease (PD), but results of different studies are conflicting. Here, we conducted a meta-analysis of published case-control studies to evaluate the association between MTHFR C677T and A1298C gene polymorphisms with the risk of PD. Electronic search through PubMed, EmBase, ScienceDirect and Cochrane Library was conducted to identify all relevant studies. A total of 19 studies with 2746 cases and 8967 controls were included. No significant association between MTHFR C677T polymorphism and PD risk was found in the overall population in all five genetic models. In the subgroup analysis stratified by ethnicity, a significant association between MTHFR C677T and PD risk was observed in the dominant model in Caucasians (OR=1.175, 95%CI: 1.008-1.369, P=0.040), but not in Asians. Significant association was found between MTHFR A1298C polymorphism and PD risk in the overall population in the dominant (OR=1.168, 95%CI: 1.008-1.353, P=0.039) and heterozygous model (OR=1.172, 95%CI: 1.004-1.367, P=0.044). But in the subgroup analysis, no association was found between MTHFR A1298C and PD neither in Caucasians nor in Asians. Our meta-analysis suggests that MTHFR C677T polymorphism may be associated with increased PD risk in Caucasians and MTHFR A1298C polymorphism may also increase susceptibility to PD.
Collapse
|
18
|
Guin D, Mishra MK, Talwar P, Rawat C, Kushwaha SS, Kukreti S, Kukreti R. A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson's disease. BMC Med Genomics 2017; 10:56. [PMID: 28927418 PMCID: PMC5606117 DOI: 10.1186/s12920-017-0291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background PD is a progressive neurodegenerative disorder commonly treated by levodopa. The findings from genetic studies on adverse effects (ADRs) and levodopa efficacy are mostly inconclusive. Here, we aim to identify predictive genetic biomarkers for levodopa response (LR) and determine common molecular link with disease susceptibility. A systematic review for LR was conducted for ADR, and drug efficacy, independently. All included articles were assessed for methodological quality on 14 parameters. GWAS of PD were also reviewed. Protein-protein interaction (PPI) analysis using STRING and functional enrichment using WebGestalt was performed to explore the common link between LR and PD. Results From 37 candidate studies on levodopa toxicity, 18 genes were found associated, of which, CAn STR 13, 14 (DRD2) was most significantly associated with dyskinesia, followed by rs1801133 (MTHFR) with hyper-homocysteinemia, and rs474559 (HOMER1) with hallucination. Similarly, 8 studies on efficacy resulted in 4 genes in which rs28363170, rs3836790 (SLC6A3) and rs4680 (COMT), were significant. To establish the molecular connection between LR with PD, we identified 35 genes significantly associated with PD. With 19 proteins associated with LR and 35 with PD, two independent PPI networks were constructed. Among the 67 nodes (263 edges) in LR, and 62 nodes (190 edges) in PD pathophysiology, UBC, SNCA, FYN, SRC, CAMK2A, and SLC6A3 were identified as common potential candidates. Conclusion Our study revealed the genetically significant polymorphism concerning the ADRs and levodopa efficacy. The six common genes may be used as predictive markers for therapy optimization and as putative drug target candidates. Electronic supplementary material The online version of this article (10.1186/s12920-017-0291-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India
| | - Suman S Kushwaha
- Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi, India
| | - Shrikant Kukreti
- Department of Chemistry, Nucleic Acids Research Lab, University of Delhi (North Campus), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi, -110007, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.
| |
Collapse
|
19
|
Yuan L, Song Z, Deng X, Xiong W, Yang Z, Deng H. Association of the MTHFR rs1801131 and rs1801133 variants in sporadic Parkinson's disease patients. Neurosci Lett 2016; 616:26-31. [PMID: 26806866 DOI: 10.1016/j.neulet.2016.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common age-dependent neurodegenerative movement disorder related to multiple factors, and genetic factors play an important role in the pathogenesis of PD. Variants in the methylenetetrahydrofolate reductase gene (MTHFR), a gene encoding a folate-dependent enzyme that is involved in homocysteine metabolism, have been reported to be associated with PD. To explore the role of the MTHFR gene in the development of PD in Chinese Han population, we analyzed two MTHFR variants (rs1801131 and rs1801133) in a patient cohort consisting of 512 patients with PD from mainland China and a control cohort consisting of 512 age, gender and ethnicity matched normal subjects. Statistically significant differences in genotypic and allelic frequencies were detected in the MTHFR variant rs1801133 (P=0.022 and 0.007, respectively; odds ratio=0.780, 95% confidence interval=0.651-0.934). In addition, the A-T haplotype of rs1801131-rs1801133 showed a protective role against PD development (P=0.007, odds ratio=0.779, 95% confidence interval=0.650-0.933). Our results suggested that the T allele of rs1801133 variant and A-T haplotype of rs1801131-rs1801133 in the MTHFR gene may decrease the risk of developing PD in Chinese Han population from mainland China.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Associations between B Vitamins and Parkinson's Disease. Nutrients 2015; 7:7197-208. [PMID: 26343714 PMCID: PMC4586528 DOI: 10.3390/nu7095333] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023] Open
Abstract
B vitamins may correlate with Parkinson's disease (PD) through regulating homocysteine level. However, there is no comprehensive assessment on the associations between PD and B vitamins. The present study was designed to perform a meta-analytic assessment of the associations between folate, vitamin B6, and vitamin B12 and PD, including the status of B vitamins in PD patients compared with controls, and associations of dietary intakes of B vitamins and risk of PD. A literature search using Medline database obtained 10 eligible studies included in the meta-analyses. Stata 12.0 statistical software was used to perform the meta-analysis. Pooled data revealed that there was no obvious difference in folate level between PD patients and healthy controls, and PD patients had lower level of vitamin B12 than controls. Available data suggested that higher dietary intake of vitamin B6 was associated with a decreased risk of PD (odds ratio (OR) = 0.65, 95% confidence intervals (CI) = (0.30, 1.01)), while no significant association was observed for dietary intake of folate and vitamin B12 and risk of PD. PD patients had lower level of vitamin B12 and similar level of folate compared with controls. Dietary intake of vitamin B6 exhibited preventive effect of developing PD based on the available data. As the number of included studies is limited, more studies are needed to confirm the findings and elucidate the underpinning underlying these associations.
Collapse
|
21
|
Association of MTHFR C677T with total homocysteine plasma levels and susceptibility to Parkinson’s disease: a meta-analysis. Neurol Sci 2015; 36:945-51. [DOI: 10.1007/s10072-014-2052-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
22
|
A coumarin-based fluorescent probe as a central nervous system disease biomarker. SENSORS 2014; 14:21140-50. [PMID: 25390405 PMCID: PMC4279527 DOI: 10.3390/s141121140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022]
Abstract
Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS). The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients.
Collapse
|
23
|
Liao Q, Li NN, Mao XY, Chang XL, Zhao DM, Zhang JH, Yu WJ, Tan EK, Peng R. MTHFR C677T variant reduces risk of sporadic Parkinson's disease in ethnic Chinese. Acta Neurol Scand 2014; 130:e30-4. [PMID: 24628244 DOI: 10.1111/ane.12245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetic variability of methylenetetrahydrofolate reductase (MTHFR) may be associated with Parkinson's disease (PD). Its role in ethnic Chinese population is still unclear. Our study aimed to investigate whether MTHFR C677T variation was linked to PD risk in a Han Chinese population from mainland China. METHODS To investigate the association with the risk of PD, we analyzed the single-nucleotide polymorphism C677T in MTHFR gene using a case-control methodology. A total of 1482 subjects included 765 patients with idiopathic PD, and 717 age- and sex-matched controls were recruited in this study. RESULTS The T allele of MTHFR C677T was associated with a decreased risk of PD (OR = 0.80, 95% CI: 0.688-0.926, P = 0.003). Patients with CT + TT genotypes have a decreased risk of PD compared with those with CC genotypes (OR = 0.66, 95%CI: 0.532-0.813, P = 0.000). CT + TT subjects cannot be differentiated from CC subjects based on their clinical features. CONCLUSION We showed that the C677T polymorphism in MTHFR gene was associated with decreased PD susceptibility in a Han Chinese population from mainland China. Efforts to fully elucidate the pathophysiologic role of the variant in PD should be necessary.
Collapse
Affiliation(s)
- Q. Liao
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - N. N. Li
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - X. Y. Mao
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - X. L. Chang
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - D. M. Zhao
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - J. H. Zhang
- Department of Internal Medicine; Wangjiang Hospital; Sichuan University; Chengdu Sichuan Province China
| | - W. J. Yu
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| | - E. K. Tan
- Duke-NUS Graduate Medical School; Singapore Singapore
- Department of Neurology; Singapore General Hospital; National Neuroscience Institute; Singapore Singapore
| | - R. Peng
- Department of Neurology; West China Hospital; Sichuan University; Chengdu Sichuan Province China
| |
Collapse
|
24
|
Rozycka A, Jagodzinski PP, Kozubski W, Lianeri M, Dorszewska J. Homocysteine Level and Mechanisms of Injury in Parkinson's Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and L-Dopa Treatment. Curr Genomics 2014; 14:534-42. [PMID: 24532985 PMCID: PMC3924248 DOI: 10.2174/1389202914666131210210559] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
Abstract
An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.
Collapse
Affiliation(s)
- Agata Rozycka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St, 60-781, Poznan, Poland
| | - Pawel P Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St, 60-781, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St, 60-355 Poznan, Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St, 60-781, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St, 60-355 Poznan, Poland
| |
Collapse
|
25
|
Wu YL, Yang HY, Ding XX, Zhao X, Chen J, Bi P, Sun YH. Association between methylenetetrahydrofolate reductase C677T polymorphism and epilepsy susceptibility: a meta-analysis. Seizure 2014; 23:411-6. [PMID: 24556013 DOI: 10.1016/j.seizure.2014.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been implicated as a potential risk factor for epilepsy. To date, many case-control studies have investigated the association between MTHFR C677T polymorphism and epilepsy susceptibility. However, those findings were inconsistent. The objective of this study is to evaluate the precise association between MTHFR C677T polymorphism and epilepsy. METHODS An electronic search of PubMed, EMBASE for papers on the MTHFR C677T polymorphism and epilepsy susceptibility was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association. RESULTS Ten case-control studies containing 1713 cases and 1867 controls regarding MTHFR C677T polymorphism were selected. A significant association between the MTHFR C677T polymorphism and epilepsy susceptibility was revealed in this meta-analysis (for T vs. C: OR=1.19, 95% CI=1.08-1.32; for TT+CT vs. CC: OR=1.20, 95% CI=1.05-1.38; for TT vs. CC: OR=1.48, 95% CI=1.20-1.83; for TT vs. CT+CC: OR=1.35, 95% CI=1.12-1.64). In subgroup analysis by ethnicity, the results also indicated the association between the MTHFR C677T polymorphism and epilepsy susceptibility within the Asian populations (for T vs. C: OR=1.55, 95% CI=1.15-2.07; for TT+CT vs. CC: OR=1.67, 95% CI=1.08-2.59; for TT vs. CC: OR=2.33, 95% CI=1.30-4.20; for TT vs. CT+CC: OR=1.89, 95% CI=1.12-3.18). CONCLUSION The results indicated that MTHFR C677T polymorphism was associated with an increased risk of epilepsy. However, further studies in various regions are needed to confirm the findings from this meta-analysis.
Collapse
Affiliation(s)
- Yi-Le Wu
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui-Yun Yang
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiu-Xiu Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xue Zhao
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jian Chen
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Peng Bi
- Discipline of Public Health, The University of Adelaide, Australia
| | - Ye-Huan Sun
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
26
|
Zhu ZG, Ai QL, Wang WM, Xiao ZC. Meta-analysis supports association of a functional SNP (rs1801133) in the MTHFR gene with Parkinson's disease. Gene 2013; 531:78-83. [DOI: 10.1016/j.gene.2013.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/06/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
27
|
Wu YL, Ding XX, Sun YH, Yang HY, Sun L. Methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and susceptibility to Parkinson's disease: a meta-analysis. J Neurol Sci 2013; 335:14-21. [PMID: 24064257 DOI: 10.1016/j.jns.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The association between the methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and susceptibility to Parkinson's disease (PD) was controversial in previous studies. The present study was therefore designed to investigate a more reliable estimate. METHODS 15 studies were identified by a search of PubMed, EBMBASE, PDGENE, Elsevier, Springer Link, CBM (Chinese Biomedical Database), CNKI (Chinese National Knowledge Infrastructure), VIP (Chinese), and Wanfang (Chinese) databases, up to April 2013. Odds ratios (ORs) with corresponding 95% confidence interval (CI) were calculated using fixed effects model or random effects model. The subgroup analyses were made on the ethnicity. RESULTS MTHFR C677T polymorphism had a significant association with susceptibility to PD in all genetic models (for T vs. C: OR=1.24, 95% CI=1.11-1.38; for TT+CT vs. CC: OR=1.27, 95% CI=1.10-1.46; for TT vs. CC: OR=1.56, 95% CI=1.22-1.98; for TT vs. CT+CC: OR=1.43, 95% CI=1.14-1.79). Subgroup analyses by ethnicity revealed that the association between the MTHFR C677T polymorphism and PD existed in Caucasian population and Asian population. However, no association was detected between the MTHFR A1298C polymorphism and PD. CONCLUSIONS Results from this meta-analysis supported that the MTHFR C677T polymorphism was associated with an increased risk of PD. The MTHFR A1298C polymorphism may not increase the susceptibility to PD. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- Yi-Le Wu
- Department of Epidemiology and Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | | | | | | | | |
Collapse
|
28
|
Hu XW, Qin SM, Li D, Hu LF, Liu CF. Elevated homocysteine levels in levodopa-treated idiopathic Parkinson's disease: a meta-analysis. Acta Neurol Scand 2013; 128:73-82. [PMID: 23432663 DOI: 10.1111/ane.12106] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
Abstract
To assess the association between the elevation of plasma homocysteine (Hcy) level and long-term levodopa (L-dopa) therapy in idiopathic Parkinson's disease (PD). We performed a systematic literature review to recruit original studies published up to May 14, 2012. Studies enrolled should be controlled, with specific information of long-term L-dopa application and plasma Hcy in patients with PD. Effects were summarized using standardized mean differences (SMDs) or weighted mean differences (WMDs). Our search enrolled 22 eligible studies. Plasma Hcy levels were significantly higher in L-dopa-treated patients than those in healthy controls [SMD 0.97; 95% confidence interval (CI) 0.80-1.14, P < 0.001], L-dopa-naïve patients with PD (SMD 0.99; 95% CI 0.54-1.44, P < 0.001), and untreated patients (SMD 0.52; 95% CI 0.18-0.86, P < 0.01). However, its levels in untreated patients with PD were not significantly higher than in healthy controls (SMD 0.24; 95% CI -0.03 to 0.51, P > 0.05). Patients with PD treated with L-dopa plus catechol-O-methyltransferase inhibitor (COMT-I) showed lower plasma Hcy concentrations compared with L-dopa-treated patients (WMD 4.62; 95% CI 2.89-6.35, P < 0.001). L-dopa treatment is associated with the increase in plasma Hcy level in patients with PD. COMT-I may attenuate L-dopa-induced elevation of Hcy level.
Collapse
Affiliation(s)
- X-W Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
29
|
Association of COMT, MTHFR, and SLC19A1(RFC-1) polymorphisms with homocysteine blood levels and cognitive impairment in Parkinson's disease. Pharmacogenet Genomics 2013; 22:716-24. [PMID: 22890010 DOI: 10.1097/fpc.0b013e32835693f7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Elevated plasma homocysteine (Hcy) concentration is an independent risk factor for cardiovascular disease, and its involvement in endothelial cell dysfunction is well established. However, the role of Hcy and folate in the pathogenesis of Parkinson's disease (PD) remains controversial. OBJECTIVES The study was aimed at evaluating the relationships between Hcy, vitamin B12, and folic acid levels in the blood and cognitive status in PD patients with the genetic polymorphisms of MTHFR (rs1801133: C>T-677C>T, rs1801131: A>C-1298A>C), COMT (rs4680: A>G-Val158Met, rs6269: A>G, rs4633: C>T, rs4818: C>G), or SLC19A1 (rs1051266: G>A-80G>A). METHODS A total of 502 participants (248 with PD and 254 age-matched and sex-matched controls) were included in the study. The Unified Parkinson's Disease Rating Scale score, Hoehn-Yahr staging, and the Schwab-England scale were used to assess motor abilities and activity during daily life. Complex psychological examination with a battery of tests was used to classify patients into groups with (PDD) and without (nPDD) dementia. Blood samples were examined for Hcy, vitamin B12, and folic acid levels, as well as polymorphisms in genes related to Hcy metabolism, such as COMT, MTHFR, and SLC19A1(RFC-1). RESULTS The frequency of homozygous COMT rs4680G and rs4633C allele carriers was significantly decreased in PD patients in comparison with the controls (P=0.015; odds ratio=0.60; 95% confidence interval 0.41-0.90 and P=0.020; odds ratio=0.619; 95% confidence interval 0.42-0.92, respectively). No significant differences in the distribution of MTHFR 677C>T, 1298A>C, and SLC19A1 80G>A alleles and genotypes between PD patients and the controls were found. Hcy levels were significantly increased in PD patients (18±7.8 μmol/l) as compared with the controls (14.0±9.6 μmol/l, P=10(-8)) and were significantly associated with the MTHFR 677C>T polymorphism both in PD patients and controls, in which T allele carriers were characterized by markedly elevated Hcy plasma concentrations. No association was observed between Hcy plasma level and COMT and SLC19A polymorphisms. The results of multivariate logistic regression analysis revealed age (P=0.0003) and Hcy plasma levels (P=0.07) as independent risk factors predisposing individuals to PD dementia. The studied polymorphisms were not associated with cognitive status in PD patients. CONCLUSION The genetic factors studied were not associated with cognitive status in PD patients. Only age and Hcy plasma levels were found to be independent risk factors predisposing individuals to PD dementia. However, COMT: rs4680: A>G and rs4633: C>T polymorphisms were found to significantly affect PD risk, and the MTHFR 677C>T polymorphism helped determine plasma Hcy concentrations.
Collapse
|
30
|
Plaza-Plaza JC, Aguilera M, Cañadas-Garre M, Chemello C, González-Utrilla A, Faus Dader MJ, Calleja MA. Pharmacogenetic polymorphisms contributing to toxicity induced by methotrexate in the southern Spanish population with rheumatoid arthritis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:589-95. [PMID: 23095111 DOI: 10.1089/omi.2011.0142] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Rheumatoid arthritis (RA) is a common illness of global significance for public health. Methotrexate (MTX) is the most broadly used disease-modifying antirheumatic drug for the treatment of RA, but it displays marked person-to-person variation in its propensity for toxicity. Several studies have suggested that polymorphisms in methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, reduced folate carrier (RFC1) G80A, and ABCB1 C3435T, could be related to methotrexate toxicity. This prospective study examined the different frequencies of MTHFR, RFC1, and ABCB1 pharmacogenetic variations between patients who have RA and those without RA. We also sought to assess the association between these polymorphisms and MTX toxicity. Four single-nucleotide polymorphisms (SNPs) were genotyped: C677T and A1298C from MTHFR, G80A from RFC1, and C3435T from ABCB1. The efficacy and toxicity of MTX were evaluated through clinical follow-up during 1 year of treatment. RA patients showed a higher frequency of the T allele at MTHFR C677T than patients without RA (p=0.049). There was a significant association between the presence of both the T allele at MTHFR C677T (p=0.006), and the C allele at ABCB1 C3435T (p=0.046), with toxicity development after 12 months of MTX treatment. However, there was no correlation between MTX toxicity and either the A allele at MTHFR A1298C or the G allele at RFC1 A80G. These data suggest that the presence of the MTHFR C677T and ABCB1 C3435T SNPs contribute to MTX toxicity in patients with RA. These observations contribute to a rapidly-growing knowledge base on the pharmacogenetics of RA and personalized medicine.
Collapse
Affiliation(s)
- José Cristian Plaza-Plaza
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, Granada, Spain. ,
| | | | | | | | | | | | | |
Collapse
|
31
|
Acute administration of L-DOPA induces changes in methylation metabolites, reduced protein phosphatase 2A methylation, and hyperphosphorylation of Tau protein in mouse brain. J Neurosci 2012; 32:9173-81. [PMID: 22764226 DOI: 10.1523/jneurosci.0125-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson's disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes, including leucine carboxyl methyltransferase that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells, in dopaminergic neurons, and in wild-type mice that l-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer's disease-like PHF-1 phospho-epitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate-deficient mouse model, L-dopa resulted in a marked depletion of SAM and an increase in SAH in various brain regions with parallel downregulation of PP2A methylation and increased Tau phosphorylation. L-Dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells.
Collapse
|
32
|
Lane RM, He Y. Butyrylcholinesterase genotype and gender influence Alzheimer's disease phenotype. Alzheimers Dement 2012; 9:e1-73. [PMID: 22402324 DOI: 10.1016/j.jalz.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/04/2010] [Accepted: 12/02/2010] [Indexed: 10/28/2022]
Abstract
Retrospective data are presented to support a spectrum of early Alzheimer's disease (AD) along a continuum defined by gender and genotype. The putative neurodegenerative mechanisms driving distinct phenotypes at each end of the spectrum are glial hypoactivity associated with early failure of synaptic cholinergic neurotransmission and glial overactivation associated with loss of neural network connectivity due to accelerated age-related breakdown of myelin. In early AD, male butyrylcholinesterase K-variant carriers with one or two apolipoprotein ɛ4 alleles have prominent medial temporal atrophy, synaptic failure, cognitive decline, and accumulation of aggregated beta-amyloid peptide. Increasing synaptic acetylcholine in damaged but still functional cholinergic synapses improves cognitive symptoms, whereas increasing the ability of glia to support synapses and to clear beta-amyloid peptide might be disease-modifying. Conversely, chronic glial overactivation can also drive degenerative processes and in butyrylcholinesterase K-variant negative females generalized glial overactivation may be the main driver from mild cognitive impairment to AD. Females are more likely than males to have accelerated age-related myelin breakdown, more widespread white matter loss, loss of neural network connectivity, whole brain atrophy, and functional decline. Increasing extracellular acetylcholine levels blocks glial activation, reduces myelin loss and damage to neural network connectivity, and is disease-modifying. Between extremes characterized by gender, genotype, and age, pathophysiology may be mixed and this spectrum may explain much of the heterogeneity of amnestic mild cognitive impairment. Preservation of the functional integrity of the neural network may be an important component of strengthening cognitive reserve and significantly delaying the onset and progression of dementia, particularly in females. Prospective confirmation of these hypotheses is required. Implications for future research and therapeutic opportunities are discussed.
Collapse
Affiliation(s)
- Roger M Lane
- Bristol-Myers Squibb Global Clinical Research, Wallingford, CT, USA.
| | | |
Collapse
|
33
|
Fong CS, Shyu HY, Shieh JC, Fu YP, Chin TY, Wang HW, Cheng CW. Association of MTHFR, MTR, and MTRR polymorphisms with Parkinson's disease among ethnic Chinese in Taiwan. Clin Chim Acta 2010; 412:332-8. [PMID: 21070756 DOI: 10.1016/j.cca.2010.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Influence of folate/homocysteine conversion is considered to be important in the pathogenesis of Parkinson's disease (PD). However, association of the folate metabolic pathway gene polymorphisms with PD susceptibility remains unclear. METHODS To test this possibility in PD, we conducted a hospital-based case-control study constituting 211 patients and 218 age- and sex-matched controls of ethnic Chinese in Taiwan. Genotyping assay was performed to screen for polymorphisms of the methylenetetrahydrofolate reductase (MTHFR C677T), methyltetrahydrofolate-homocysteine methyltransferase (MTR A2756G), and 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR A1049G and C1783T) genes and assess the association between these genotype polymorphisms and PD risk using logistic regression analysis. RESULTS Of these four non-synonymous polymorphisms, the MTRR 1049GG variant was significantly associated with PD susceptibility (OR=3.17, 95%CI=1.08-9.35). Furthermore, we stratified our patients based on the MTHFR 677TT genotype in different strata, a significant association between the joint effect of polymorphisms and PD risk was observed in those patients whose genotypes were MTRR A1049G/MTR A2756G or MTRR C1783T/MTR A2756G (P<0.05). CONCLUSION Our findings provide support for the synergistic effects of polymorphisms in the folate metabolic pathway genes in PD susceptibility; the increased PD risk would be more significant in carriers with the polymorphisms of MTHFR, MTR, and MTRR genes.
Collapse
Affiliation(s)
- Chin-Shih Fong
- Department of Neurology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|