1
|
Ouhara K, Takemura T, Taniguchi Y, Fujimori R, Tamura T, Akane Y, Matsuda S, Hamamoto Y, Shintani T, Kajiya M, Munenaga S, Iwata T, Fujita T, Mizuno N. Leucine-rich alpha-2-glycoprotein 1 affects bone destruction via IL-6 in mouse periodontitis model. Oral Dis 2024; 30:5294-5304. [PMID: 38656694 PMCID: PMC11610699 DOI: 10.1111/odi.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE To investigate the production of leucine-rich α-2-glycoprotein-1 (LRG1) in periodontitis patients and its effectiveness as a new diagnostic marker for periodontitis. SUBJECTS AND METHODS In vitro experiments were conducted to analyze LRG1 mRNA expression in human gingival epithelial cells and fibroblasts via quantitative real-time PCR. In vivo experiments were conducted to analyze LRG1 localization in periodontitis patients. The correlation between the serum LRG1 levels and alveolar bone resorption in the mouse periodontitis model was also investigated. RESULTS A positive correlation existed between the periodontal inflamed surface area and serum LRG1 levels (Spearman's rank correlation coefficient: 0.60). LRG1 mRNA expression in human gingival epithelial cells and fibroblasts was upregulated by Porphyromonas gingivalis stimulation or tumor necrosis factor-α stimulation. Interleukin-6 in human gingival epithelial cells and fibroblasts induced the production of LRG1 and transforming growth factor-β. LRG1 levels in the periodontal tissue and serum in the periodontitis model were higher than those in control mice. LRG1 local administration resulted in alveolar bone resorption, whereas the administration of interleukin-6R antibody inhibited bone resorption. CONCLUSIONS LRG1 levels in serum and periodontal tissue are upregulated in periodontitis and are implicated in periodontal tissue destruction through interleukin-6 production.
Collapse
Affiliation(s)
- Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tasuku Takemura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ryousuke Fujimori
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tetsuya Tamura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuki Akane
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tomoaki Shintani
- Department of Innovation and Precision DentistryHiroshima University HospitalHiroshimaJapan
| | - Mikihito Kajiya
- Department of Innovation and Precision DentistryHiroshima University HospitalHiroshimaJapan
| | - Syuichi Munenaga
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Prasad R, Verma H, Srivastava R, Aishwarya, Kumar A. Cerebrospinal Fluid Leucine Rich Alpha-2 Glycoprotein in Children with Tubercular Meningitis with their Diagnostic and Prognostic Significance: A Prospective Study. Indian J Pediatr 2024; 91:305. [PMID: 37740143 DOI: 10.1007/s12098-023-04869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Rajniti Prasad
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Hemlata Verma
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Aishwarya
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Animesh Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Ma L, Wang W, Zhao Y, Liu M, Ye W, Li X. Application of LRG mechanism in normal pressure hydrocephalus. Heliyon 2024; 10:e23940. [PMID: 38223707 PMCID: PMC10784321 DOI: 10.1016/j.heliyon.2023.e23940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Normal pressure hydrocephalus (NPH) is a prevalent type of hydrocephalus, including secondary normal pressure hydrocephalus (SNPH) and idiopathic normal pressure hydrocephalus (INPH). However, its clinical diagnosis and pathological mechanism are still unclear. Leucine-rich α-2 glycoprotein (LRG) is involved in various human diseases, including cancer, diabetes, cardiovascular disease, and nervous system diseases. Now the physiological mechanism of LRG is still being explored. According to the current research results on LRG, we found that the agency of LRG has much to do with the known pathological process of NPH. This review focuses on analyzing the LRG signaling pathways and the pathological mechanism of NPH. According to the collected literature evidence, we speculated that LRG probably be involved in the pathological process of NPH. Finally, based on the mechanism of LRG and NPH, we also summarized the evidence of molecular targeted therapies for future research and clinical application.
Collapse
Affiliation(s)
| | | | - Yongqiang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Menghao Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
4
|
Cheng X, Wei H, Liu Y, Sun Y, Ye J, Lu P, Han B. Relation between LRG1 and CD4 + T cells, cognitive impairment and neurological function in patients with acute ischemic stroke. Biomark Med 2024; 18:5-14. [PMID: 38380988 DOI: 10.2217/bmm-2023-0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Objective: To assess the relationship between LRG1 and CD4+ T cells, cognitive impairment and neurological function in acute ischemic stroke (AIS). Methods: Plasma LRG1 was detected by ELISA in 175 patients with AIS at baseline, day (D) 1, D7, month (M) 1 and M3. Results: LRG1 was negatively related to Th2 and Treg cells and positively linked to Th17 (all p < 0.05). LRG1 increased from baseline to D1, then decreased until M3 (p < 0.001). LRG1 at each assessment point was increased in patients with cognitive impairment or poor neurological function at M3 versus those without (all p < 0.05). Conclusion: LRG1 is linked to decreased Th2 and Tregs, increased Th17, cognitive impairment and nonideal neurological function recovery in patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Hongen Wei
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Yi Liu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Yaxuan Sun
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, 350000, China
| | - Pengyu Lu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Bin Han
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| |
Collapse
|
5
|
Yekani M, Memar MY. Immunologic biomarkers for bacterial meningitis. Clin Chim Acta 2023; 548:117470. [PMID: 37419301 DOI: 10.1016/j.cca.2023.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Meningitis is defined as the inflammation of the meninges that is most often caused by various bacterial and viral pathogens, and is associated with high rates of mortality and morbidity. Early detection of bacterial meningitis is essential to appropriate antibiotic therapy. Alterations in immunologic biomarkers levels have been considered the diagnostic approach in medical laboratories for the identifying of infections. The early increasing immunologic mediators such as cytokines and acute phase proteins (APPs) during bacterial meningitis have made they significant indicators for laboratory diagnosis. Immunology biomarkers showed wide variable sensitivity and specificity values that influenced by different reference values, selected a certain cutoff point, methods of detection, patient characterization and inclusion criteria, as well as etiology of meningitis and time of CSF or blood specimens' collection. This study provides an overview of different immunologic biomarkers as diagnostic markers for the identification of bacterial meningitis and their efficiencies in the differentiating of bacterial from viral meningitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Savarraj JPJ, McBride DW, Park E, Hinds S, Paz A, Gusdon A, Xuefang R, Pan S, Ahnstedt H, Colpo GD, Kim E, Zhao Z, McCullough L, Choi HA. Leucine-Rich Alpha-2-Glycoprotein 1 is a Systemic Biomarker of Early Brain Injury and Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurocrit Care 2023; 38:771-780. [PMID: 36577901 PMCID: PMC10247387 DOI: 10.1007/s12028-022-01652-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND After subarachnoid hemorrhage (SAH), early brain injury (EBI) and delayed cerebral ischemia (DCI) lead to poor outcomes. Discovery of biomarkers indicative of disease severity and predictive of DCI is important. We tested whether leucine-rich alpha-2-glycoprotein 1 (LRG1) is a marker of severity, DCI, and functional outcomes after SAH. METHODS We performed untargeted proteomics using mass spectrometry in plasma samples collected at < 48 h of SAH in two independent discovery cohorts (n = 27 and n = 45) and identified LRG1 as a biomarker for DCI. To validate our findings, we used enzyme-linked immunosorbent assay and confirmed this finding in an internal validation cohort of plasma from 72 study participants with SAH (22 DCI and 50 non-DCI). Further, we investigated the relationship between LRG1 and markers of EBI, DCI, and poor functional outcomes (quantified by the modified Rankin Scale). We also measured cerebrospinal fluid (CSF) levels of LRG1 and investigated its relationship to EBI, DCI, and clinical outcomes. RESULTS Untargeted proteomics revealed higher plasma LRG1 levels across EBI severity and DCI in both discovery cohorts. In the validation cohort, the levels of LRG1 were higher in the DCI group compared with the non-DCI group (mean (SD): 95 [44] vs. 72 [38] pg/ml, p < 0.05, Student's t-test) and in study participants who proceeded to have poor functional outcomes (84 [39.3] vs. 72 [43.2] pg/ml, p < 0.05). Elevated plasma LRG1 levels were also associated with markers of EBI. However, CSF levels of LRG1 were not associated with EBI severity or the occurrence of DCI. CONCLUSIONS Plasma LRG1 is a biomarker for EBI, DCI, and functional outcomes after SAH. Further studies to elucidate the role of LRG1 in the pathophysiology of SAH are needed.
Collapse
Affiliation(s)
- Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Devin W McBride
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Eunsu Park
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sarah Hinds
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Atzhiry Paz
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Aaron Gusdon
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Ren Xuefang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eunhee Kim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huimahn Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Rzagalinski I, Bogdanova A, Raghuraman BK, Geertsma ER, Hersemann L, Ziemssen T, Shevchenko A. FastCAT Accelerates Absolute Quantification of Proteins Using Multiple Short Nonpurified Chimeric Standards. J Proteome Res 2022; 21:1408-1417. [PMID: 35561006 PMCID: PMC9171895 DOI: 10.1021/acs.jproteome.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Absolute (molar)
quantification of clinically relevant proteins
determines their reference values in liquid and solid biopsies. The
FastCAT (for Fast-track QconCAT) method employs multiple short (<50
kDa), stable-isotope labeled chimeric proteins (CPs) composed of concatenated
quantotypic (Q)-peptides representing the quantified proteins. Each
CP also comprises scrambled sequences of reference (R)-peptides that
relate its abundance to a single protein standard (bovine serum albumin,
BSA). FastCAT not only alleviates the need to purify CP or use sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but
also improves the accuracy, precision, and dynamic range of the absolute
quantification by grouping Q-peptides according to the expected abundance
of the target proteins. We benchmarked FastCAT against the reference
method of MS Western and tested it in the direct molar quantification
of neurological markers in human cerebrospinal fluid at the low ng/mL
level.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
8
|
Darrow JA, Lewis A, Gulyani S, Khingelova K, Rao A, Wang J, Zhang Y, Luciano M, Yasar S, Moghekar A. CSF Biomarkers Predict Gait Outcomes in Idiopathic Normal Pressure Hydrocephalus. Neurol Clin Pract 2022; 12:91-101. [PMID: 35733946 PMCID: PMC9208405 DOI: 10.1212/cpj.0000000000001156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives The assessment of biomarkers in selecting patients with idiopathic normal pressure hydrocephalus (iNPH) for shunt surgery has been limited to small cohort studies and those with limited follow-up. We assessed the potential for CSF biomarkers in predicting immediate response to CSF tap test (TT) and long-term response after shunt surgery. Methods CSF was obtained from patients with iNPH referred for CSF TT after baseline assessment of cognition and gait. CSF neurofilament light (NfL), β-amyloid 42 (Aβ1-42), β-amyloid 40 (Aβ1-40), total tau (tTau), and phosphorylated tau 181 (pTau181) and leucine-rich alpha-2-glycoprotein-1 (LRG1) were measured by ELISA. The ability of these measures to predict immediate improvement following CSF TT and long-term improvement following shunt surgery was compared by univariate and adjusted multivariate regression. Results Lower NfL, pTau181, tTau, and Aβ1-40 were individually predictive of long-term improvement in gait outcomes after shunt surgery. A multivariate model of these biomarkers and MRI Evans index, adjusted for age, improved prediction (area under the receiver operating curve 0.76, 95% confidence interval 0.66-0.86). tTau, pTau181, and Aβ1-40 levels were statistically different in those whose gait improved after CSF TT compared with those who did not. Using a multivariate model, combining these markers with Evans index and transependymal flow did not significantly improve prediction of an immediate response to CSF TT. Discussion A combination of CSF biomarkers can predict improvement following shunt surgery for iNPH. However, these measures only modestly discriminate responders from nonresponders following CSF TT. The findings further suggest that abnormal CSF biomarkers in nonresponders may represent comorbid neurodegenerative pathology or a predegenerative phase that presents with an iNPH phenotype.
Collapse
Affiliation(s)
| | | | - Seema Gulyani
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristina Khingelova
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aruna Rao
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiangxia Wang
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yifan Zhang
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark Luciano
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sevil Yasar
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abhay Moghekar
- Department of Neurology (JAD, AL, SG, KK, AR, AM), Johns Hopkins University School of Medicine; Department of Biostatistics (JW, YZ), Johns Hopkins University Bloomberg School of Public Health; Department of Neurosurgery (ML), and Department of Medicine (SY), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
10
|
Cerebrospinal Fluid Leucine-Rich Alpha-2 Glycoprotein (LRG) Levels in Children with Acute Bacterial Meningitis. Indian J Pediatr 2022; 89:192-194. [PMID: 34741254 DOI: 10.1007/s12098-021-03972-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/03/2021] [Indexed: 10/19/2022]
Abstract
This study evaluated the diagnostic role of cerebrospinal fluid leucine-rich alpha-2 glycoprotein (CSF LRG) concentration in children with acute bacterial meningitis, and its role in differentiation from aseptic meningitis. CSF LRG concentration was measured by ELISA Kit of 50 children with bacterial meningitis, 16 aseptic meningitis, and 20 children with normal CSF; control. CSF LRG was significantly elevated (p < 0.001) in bacterial meningitis with a sensitivity, specificity, PPV, and NPV of 96%, 100%, 100%, and 90.9%, respectively at a cutoff of 110.0 ng/mL, based on ROC curve. At the same cutoff value, CSF LRG has sensitivity, specificity, PPV, and NPV of 96%, 75%, 92.3%, and 85.7%, respectively in differentiating bacterial from aseptic meningitis. However, sensitivity, specificity, PPV, and NPV at 139.9 ng/mL for differentiating between definite and probable bacterial meningitis were 88%, 75%, 79.1%, and 84.9%, respectively. CSF LRG should be used as a diagnostic biomarker for bacterial meningitis.
Collapse
|
11
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Gong Z, Zhang C, Li Y, Jing L, Duan R, Yao Y, Teng J, Jia Y. NLRP3 in the Cerebrospinal Fluid as a Potential Biomarker for the Diagnosis and Prognosis of Community-Acquired Bacterial Meningitis in Adults. Front Cell Infect Microbiol 2022; 11:803186. [PMID: 35145923 PMCID: PMC8823704 DOI: 10.3389/fcimb.2021.803186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To discover the levels of NLR family pyrin domain-containing 3 (NLRP3) in the cerebrospinal fluid (CSF) from adult patients with community-acquired bacterial meningitis (CABM). Methods We enrolled 34 patients with CABM, 20 patients with viral meningitis (VM), and 25 patients with non-inflammatory neurological disease. Data on standard clinical parameters, scores, and outcomes were obtained from clinical records, and inflammasome levels in the CSF were measured by an enzyme-linked immunosorbent assay. The area under the receiver operating characteristic curve (AUROC) was used to quantify the diagnostic and prognostic performance of CSF NLRP3 as a biomarker of CABM. Results The levels of NLRP3 were elevated in the CSF of patients with CABM, but levels for ASC, caspase-1, or other inflammasomes did not vary significantly. CSF NLRP3 was positively correlated with clinical severity and with the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte count, albumin quotient (Qalb), and immunoglobulin G quotient (QIgG). Patients with unfavorable outcomes had higher levels of NLRP3 in the CSF, which were correlated with several blood indicators, including NLR, PLR, and lymphocyte and monocyte counts. Conclusions Our results suggested that the level of CSF NLRP3 could represent the severity of CABM in adults. CSF NLRP3 may be a good biomarker for the diagnosis of CABM and for the discrimination between CABM and VM. It may also be a better biomarker for predicting the prognosis of adult patients with CABM when compared to the NLR or the lymphocyte and monocyte counts.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaopeng Zhang
- Department of Neurology, The Peoples’ Hospital of Dengfeng, Dengfeng, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanjie Jia,
| |
Collapse
|
13
|
The Prognostic Value of Leucine-Rich α2 Glycoprotein 1 in Pediatric Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7365204. [PMID: 34307668 PMCID: PMC8285184 DOI: 10.1155/2021/7365204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Objective Leucine-rich α2 glycoprotein 1 (LRG1) is a novel cytokine, which is believed to be involved in the inflammatory process of a series of diseases. However, the relationship between LRG1 and spinal cord injury (SCI) has not been reported. The purpose of our study is to determine the predictive value of LRG1 for the prognosis of pediatric SCI (PSCI). Methods This study recruited 64 patients with confirmed PSCI and 40 healthy controls at Foshan Traditional Chinese Medicine Hospital from January 2016 to December 2020. The clinical information of all participants at the time of admission was recorded. Peripheral blood was collected, and commercial reagents were used to detect the level of serum LRG1. At the same time, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) was used to assess the severity of PSCI. Results All participants were divided into PSCI group (n = 64) and NC group (n = 40). There was no significant difference in clinical information (age, gender, heart rate, systolic blood pressure, diastolic blood pressure, sampling time from injury, white blood cells, and C-reactive protein) between the two groups (p > 0.05). According to the interquartile range of serum LRG1, we compared the motor and sensory scores of ISNCSCI and found that serum LRG1 levels were negatively correlated with the prognosis of PSCI patients (p < 0.001). The results of receiver operating curve (ROC) showed that the sensitivity, specificity, and AUC (Area Under the Curve) of serum LRG1 level in predicting the prognosis of PSCI were 68.4%, 69.1%, and 0.705, respectively. The cut-off value of serum LRG1 level predicting the prognosis of PSCI is 21.1 μg/ml. Conclusions Serum LRG1 level is significantly increased in PSCI patients, and the elevated LRG1 level is negatively correlated with the prognosis of PSCI patients. Serum LRG1 may be a potentially useful biomarker for predicting PSCI.
Collapse
|
14
|
Bakochi A, Mohanty T, Pyl PT, Gueto-Tettay CA, Malmström L, Linder A, Malmström J. Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis. eLife 2021; 10:64159. [PMID: 33821792 PMCID: PMC8043743 DOI: 10.7554/elife.64159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae, and treatment options. Here, we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell-, and plasma proteins in the CSF, where, in particular, a large increase of neutrophil-derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multiprotein LASSO regression model resulted in an 18-protein panel of cell- and tissue-associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen-specific host response patterns in CSF from different disease etiologies to support future classification of pathogen type based on host response patterns in meningitis.
Collapse
Affiliation(s)
- Anahita Bakochi
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Tirthankar Mohanty
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Paul Theodor Pyl
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden
| | | | - Lars Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Lolansen SD, Rostgaard N, Oernbo EK, Juhler M, Simonsen AH, MacAulay N. Inflammatory Markers in Cerebrospinal Fluid from Patients with Hydrocephalus: A Systematic Literature Review. DISEASE MARKERS 2021; 2021:8834822. [PMID: 33613789 PMCID: PMC7875647 DOI: 10.1155/2021/8834822] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this systematic review was to evaluate existing literature on inflammatory markers in CSF from patients with hydrocephalus and identify potential markers capable of promoting hydrocephalus development and progression. METHODS Relevant studies published before December 3rd 2020 were identified from PubMed, Embase, and reference lists. Studies were screened for eligibility using the predefined inclusion and exclusion criteria. Data from eligible studies were extracted, and sources of bias were evaluated. We included articles written in English investigating inflammatory markers in CSF from patients with hydrocephalus and control subjects. The review was conducted according to the PRISMA guidelines by three independent reviewers. RESULTS Twenty-two studies analyzed CSF from 311 patients with idiopathic normal pressure hydrocephalus (iNPH), 178 with posthemorrhagic hydrocephalus (PHH), 151 with other hydrocephalus diagnoses, and 394 control subjects. Fifty-eight inflammatory markers were investigated. The CSF of iNPH patients had increased CSF levels of IL-6, IL-1β, and LRG compared with control subjects, whereas the CSF of PHH patients had increased levels of IL-6, IL-18, and VEGF. CSF from patients with "other hydrocephalus diagnoses" had elevated IFN-γ compared to control subjects, and VEGF was increased in congenital hydrocephalus, spina bifida, and hydrocephalus associated with tuberculous meningitis compared with controls. CONCLUSION IL-6, IL-1β, LRG, IL-18, VEGF, and IFN-γ are elevated in CSF from patients with hydrocephalus and may be involved in promotion of hydrocephalus development and progression. They may serve as novel disease biomarkers, and their signaling pathways may represent targets for pharmacological management of hydrocephalus.
Collapse
Affiliation(s)
| | - Nina Rostgaard
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Eva Kjer Oernbo
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Keles Yucel ZP, Balli U. Leucine-rich alpha-2 glycoprotein (LRG): A novel acute phase protein expressed in Stage 3 Grade C periodontitis before and after periodontal therapy. J Periodontol 2020; 92:104-112. [PMID: 33128400 DOI: 10.1002/jper.20-0358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Leucine-rich alpha-2 glycoprotein (LRG) is a novel acute phase protein involved in inflammation-associated diseases and that considered to be induced by multiple proinflammatory cytokines. This study aimed to investigate gingival crevicular fluid (GCF) and serum levels of LRG, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in patients with Stage 3 periodontitis before and after non-surgical periodontal treatment. METHODS Twenty-five Stage 3 periodontitis and twenty-five periodontally healthy individuals were enrolled in the study. Clinical periodontal measurements were recorded; periodontitis patients received non-surgical periodontal treatment, and GCF and serum samples were obtained at baseline and at 6 weeks after treatment. LRG, IL-6 and TNF-α were determined by ELISA. RESULTS GCF and serum LRG, IL-6 and TNF-α were significantly higher in periodontitis group than healthy controls (P < .001). A significant decrease in GCF and serum LRG, IL-6 and TNF-α was detected after periodontal treatment compared with baseline values of periodontitis patients (P < .001). CONCLUSION Our findings revealed that LRG expression was increased in Stage 3 periodontitis both locally and systemically, and non-surgical periodontal therapy was effective in reducing LRG levels in GCF and serum of these patients.
Collapse
Affiliation(s)
| | - Umut Balli
- Department of Periodontology, Faculty of Dentistry, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|