1
|
Niemczak CE, Ford JC, Roth RM, Leigh SM, Parsonnet J, Martin C, Soule SO, Haron TM, Buckey JC, Wylie GR. Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection. Brain Cogn 2024; 183:106254. [PMID: 39667116 DOI: 10.1016/j.bandc.2024.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.
Collapse
Affiliation(s)
- Christopher E Niemczak
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA; Dartmouth Health, Department of Medicine, Lebanon, NH, USA.
| | - James C Ford
- Dartmouth Health/Geisel School of Medicine, Brain Imaging Laboratory, Department of Psychiatry, Lebanon, NH, USA
| | - Robert M Roth
- Dartmouth Health/Geisel School of Medicine, Brain Imaging Laboratory, Department of Psychiatry, Lebanon, NH, USA
| | - Samantha M Leigh
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA
| | - Jeffrey Parsonnet
- Dartmouth Health, Department of Infectious Disease, Lebanon, NH, USA
| | - Christina Martin
- Dartmouth Health, Department of Infectious Disease, Lebanon, NH, USA
| | - Shreve O Soule
- Dartmouth Health, Advanced Imaging Center, Lebanon, NH, USA
| | | | - Jay C Buckey
- Geisel School of Medicine at Dartmouth, Space Medicine Innovations Laboratory, Lebanon, NH, USA; Dartmouth Health, Department of Medicine, Lebanon, NH, USA
| | - Glenn R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, West Orange, NJ, USA; Rutgers University Medical School, Newark, NJ, USA; Department of Veterans' Affairs, East Orange, NJ, USA
| |
Collapse
|
2
|
Khormi I, Fazlollahi A, Al-iedani O, Vidyasagar R, Ayton S, Alshehri A, Paton B, Ramadan S, Lechner-Scott J. Quantitative susceptibility mapping of the fear circuit: Associations with silent symptoms in relapsing-remitting multiple sclerosis. Neuroradiol J 2024:19714009241303123. [PMID: 39631056 PMCID: PMC11618841 DOI: 10.1177/19714009241303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Background: Multiple sclerosis (MS) is a long-term autoimmune inflammatory disorder that affects the central nervous system leading to neurodegeneration, and can involve a variety of symptoms. These symptoms can include fatigue, anxiety, depression, and cognitive decline, which may be silent. The objective of this study was to explore changes in brain iron deposition in people with relapsing-remitting MS (pw-RRMS) compared to healthy controls (HCs), with a particular focus on regions of fear circuit. Additionally, the study aimed to evaluate relationship between iron deposition in these areas and clinical measurements. Methods: Pw-RRMS and HCs participants underwent brain MRI scans using quantitative susceptibility mapping (QSM) to assess iron deposition in the fear circuit between the two groups. The study analyzed correlations between brain susceptibility changes and clinical measurements. Results: We recruited 35 pw-RRMS (mean age = 46.7 ± 11 years; median EDSS = 2.5) and 18 HCs (mean age = 40.6 ± 17.8 years). Our research revealed significant increases in QSM signals relating to iron deposition in pw-RRMS compared to HCs, whole fear circuit (β = 5.82, p < 0.001), caudate (β = 21.48, p < 0.001), and putamen (β = 17.53, p = 0.03), showing the greatest difference. The whole fear circuit and particularly the caudate are strongly associated with fatigue in pw-RRMS. QSM values in the anterior cingulate cortex significantly differed between pw-RRMS with normal and abnormal depression scores (p = 0.007). Conclusions: These results strengthen the relationship between increased iron deposition in fear circuit regions and specific silent symptoms in pw-RRMS. However, further studies are required to confirm these findings and clarify the implications of iron accumulation in MS pathophysiology.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Amir Fazlollahi
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oun Al-iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Rishma Vidyasagar
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bryan Paton
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
3
|
Kuppuswamy A. Post-stroke fatigue - a multidimensional problem or a cluster of disorders? A case for phenotyping post-stroke fatigue. J Physiol 2024. [PMID: 39487999 DOI: 10.1113/jp285900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Post-stroke fatigue is a chronic problem with significant impact on morbidity and mortality, which urgently needs effective treatments. The last decade has seen a considerable increase in interest in understanding the pathophysiology of fatigue and developing treatments. In this review, following a summary of theoretical frameworks to understand chronic fatigue, I make a case for why phenotyping fatigue is a necessary step to fully understand pathophysiology, which in turn is essential for the development of robust treatments. I then appraise current post-stroke fatigue literature with the view of identifying post-stroke fatigue phenotypes.
Collapse
|
4
|
Diez-Cirarda M, Yus-Fuertes M, Polidura C, Gil-Martinez L, Delgado-Alonso C, Delgado-Álvarez A, Gomez-Ruiz N, Gil-Moreno MJ, Jorquera M, Oliver-Mas S, Gómez-Pinedo U, Matias-Guiu J, Arrazola J, Matias-Guiu JA. Neural basis of fatigue in post-COVID syndrome and relationships with cognitive complaints and cognition. Psychiatry Res 2024; 340:116113. [PMID: 39146616 DOI: 10.1016/j.psychres.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/14/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
The main objective was to evaluate structural and functional connectivity correlates of fatigue in post-COVID syndrome, and to investigate the relationships with an objective measure of mental fatigue and with subjective cognitive complaints. One-hundred and twenty-nine patients were recruited after 14.79 ± 7.17 months. Patients were evaluated with fatigue, neuropsychological, and subjective cognitive complaints assessments. Structural and functional magnetic resonance imaging were acquired, and functional connectivity, white matter diffusivity and grey matter volume were evaluated. Fatigue was present in 86 % of patients, and was highly correlated to subjective cognitive complaints. Fatigue was associated with structural and functional connectivity mostly in frontal areas but also temporal, and cerebellar areas, showing mental fatigue different pattern of functional connectivity correlates compared to physical fatigue. White matter diffusivity correlates were similar in fatigue and subjective cognitive complaints, located in the forceps minor, anterior corona radiata and anterior cingulum. Findings confirm that fatigue in post-COVID syndrome is related to cerebral connectivity patterns, evidencing its brain substrates. Moreover, results highlight the relationship between fatigue and subjective cognitive complaints. These findings point out the relevance of the multidisciplinary assessment of post-COVID syndrome patients with subjective cognitive complaints, in order to unravel the symptomatology beneath the patient's complaints.
Collapse
Affiliation(s)
- Maria Diez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain.
| | - Miguel Yus-Fuertes
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Gil-Martinez
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Delgado-Álvarez
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Natividad Gomez-Ruiz
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Maria José Gil-Moreno
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Oliver-Mas
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, "San Carlos" Health Research Institute (IdISCC), Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Jellinger KA. Behavioral disorders in multiple sclerosis: a comprehensive review. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02816-9. [PMID: 39231817 DOI: 10.1007/s00702-024-02816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
Multiple sclerosis (MS) is a heterogenous autoimmune-mediated disease of the central nervous system (CNS) characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of neuropsychiatric symptoms, behavioral changes are common, even from the early stages of the disease, while they are associated with cognitive deficits in advanced MS. According to DSM-5, behavioral disorders include attention deficits, oppositional, defiant and conduct disorders, anxiety, panic, obsessive-compulsive disorders (OCD), disruptive and emotional disorders, while others include also irritability, agitation, aggression and executive dysfunctions. Approximately 30 to 80% of individuals with MS demonstrate behavioral changes associated with disease progression. They are often combined with depression and other neuropsychiatric disorders, but usually not correlated with motor deficits, suggesting different pathomechanisms. These and other alterations contribute to disability in MS. While no specific neuropathological data for behavioral changes in MS are available, those in demyelination animal models share similarities with white matter and neuroinflammatory abnormalities in humans. Neuroimaging revealed prefrontal cortical atrophy, interhemispheric inhibition and disruption of fronto-striato-thalamic and frontoparietal networks. This indicates multi-regional patterns of cerebral disturbances within the MS pathology although their pathogenic mechanisms await further elucidation. Benefits of social, psychological, behavioral interventions and exercise were reported. Based on systematical analysis of PubMed, Google Scholar and Cochrane library, current epidemiological, clinical, neuroimaging and pathogenetic evidence are reviewed that may aid early identification of behavioral symptoms in MS, and promote new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
6
|
DeLuca J. Fatigue in multiple sclerosis: can we measure it and can we treat it? J Neurol 2024; 271:6388-6392. [PMID: 38967652 PMCID: PMC11377630 DOI: 10.1007/s00415-024-12524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
Fatigue is a common and debilitating symptom in multiple sclerosis (MS). However, after over 100 years of inquiry its definition, measurement and understanding remains elusive. This paper describes the challenges clinicians and researchers face when assessing and treating MS patients, as well as our understanding of neural mechanisms involved in fatigue. Challenges for the future are discussed.
Collapse
Affiliation(s)
- John DeLuca
- Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
7
|
Margoni M, Valsasina P, Bacchetti A, Mistri D, Preziosa P, Rocca MA, Filippi M. Resting state functional connectivity modifications in monoaminergic circuits underpin fatigue development in patients with multiple sclerosis. Mol Psychiatry 2024; 29:2647-2656. [PMID: 38528072 DOI: 10.1038/s41380-024-02532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Dysregulation of monoaminergic networks might have a role in the pathogenesis of fatigue in multiple sclerosis (MS). We investigated longitudinal changes of resting state (RS) functional connectivity (FC) in monoaminergic networks and their association with the development of fatigue in MS. Eighty-nine MS patients and 49 age- and sex-matched healthy controls (HC) underwent neurological, fatigue, and RS functional MRI assessment at baseline and after a median follow-up of 1.3 years (interquartile range = 1.01-2.01 years). Monoaminergic-related RS FC was estimated with an independent component analysis constrained to PET atlases for dopamine (DA), noradrenaline (NA), and serotonin (5-HT) transporters. At baseline, 24 (27%) MS patients were fatigued (F) and 65 were not fatigued (NF). Of these, 22 (34%) developed fatigue (DEV-FAT) at follow-up and 43 remained not fatigued (NO-FAT). At baseline, F-MS patients showed increased monoaminergic-related RS FC in the caudate nucleus vs NF-MS and in the hippocampal, postcentral, temporal, and occipital cortices vs NF-MS and HC. Moreover, F-MS patients exhibited decreased RS FC in the frontal cortex vs NF-MS and HC, and in the thalamus vs NF-MS. During the follow-up, no RS FC changes were observed in HC. NO-FAT patients showed limited DA-related RS FC modifications, whereas DEV-FAT MS patients showed increased DA-related RS FC in the left hippocampus, significant at time-by-group interaction analysis. In the NA-related network, NO-FAT patients showed decreased RS FC over time in the left superior frontal gyrus. This region showed increased RS FC in both DEV-FAT and F-MS patients; this divergent behavior was significant at time-by-group interaction analysis. Finally, DEV-FAT MS patients presented increased 5-HT-related RS FC in the angular and middle occipital gyri, while this latter region showed decreased 5-HT-related RS FC during the follow-up in F-MS patients. In MS patients, distinct patterns of alterations were observed in monoaminergic networks based on their fatigue status. Fatigue was closely linked to specific changes in the basal ganglia and hippocampal, superior frontal, and middle occipital cortices.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Bacchetti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Pauletti C, Mannarelli D, Pauri F, Petritis A, Maffucci A, Currà A, Fattapposta F. The role of fatigue in attentional processing in multiple sclerosis: data from event-related potentials. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02827-6. [PMID: 39196370 DOI: 10.1007/s00702-024-02827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Fatigue is an extremely common symptom in in people with multiple sclerosis (PwMS) and has a severe impact on quality of life. The purpose of the present study was to verify whether fatigue in PwMS is associated with a selective covert attention impairment, as measured by event-related potentials and to assess whether it is more associated with an impairment of top-down or bottom-up attentional control. Twenty-two PwMS and fatigue-MSF, 17 without fatigue-MSnF and 35 healthy volunteers underwent a three-stimulus P300 novelty task that elicits both the P3a and the P3b components. P3b latency was comparable between groups, but PwMS, independently from the presence of fatigue displayed significantly greater P3b amplitudes. P3a latency was significantly prolonged in MSF alone, while P3a amplitude in MSnF group was greater than controls. MSF were able to categorize the task-relevant target stimulus but the orienting response to a novel salient stimulus was delayed, indicating an impairment in bottom-up attentional control mechanism related to ventral attention network. Fatigue is selectively associated with a covert attentional deficit related to the ability to reallocate attentional resources to salient stimuli, a crucial function of adaptive decision-making behaviour.
Collapse
Affiliation(s)
- Caterina Pauletti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy.
| | - Daniela Mannarelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Flavia Pauri
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Alessia Petritis
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Maffucci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Antonio Currà
- Academic Neurology Unit, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Terracina, 04019, Italy
| | - Francesco Fattapposta
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| |
Collapse
|
9
|
Stalter J, Pars K, Witt K. Accelerated long-term forgetting reveals everyday memory deficits in early-stage multiple sclerosis. J Neurol 2024; 271:4644-4650. [PMID: 38587635 PMCID: PMC11233340 DOI: 10.1007/s00415-024-12359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) patients report subjective memory impairment (SMI) escaping routine neuropsychological testing. Accelerated long-term forgetting (ALF) refers to above average loss of information over an extended period of time (e.g., 7 days). This study investigates ALF in mildly affected MS patients and relates long-term memory performance to SMI. METHODS This prospective study included 30 patients with early MS (mean EDSS ± SD = 1.1 ± 0.9) and 30 healthy controls (HC) matched for age and education. Participants underwent ALF testing [word list (RAVLT), geometric figure (RCF), logical memory (WMS)] at three time points (baseline, 30 min, 7 days). Cognition (Montreal Cognitive Assessment), depression, SMI and fatigue were assessed. The primary outcome (PO) was defined as the quotient of the 7-day score and the 30-min memory score for the verbal (RAVLT, WMS) and figural (RCF) memory tests. The study was approved by the local ethics committee and is registered in the German Register of Clinical Studies (DRKS00025791). RESULTS MS patients showed impairments in PORAVLT (MS 0.66 ± 0.13 vs HC 0.82 ± 0.16; p < 0.001), whereas POWMS (MS 0.88 ± 0.15 vs HC 1.01 ± 0.12; p = 0.02) showed only a tendency. Regression analysis revealed significant associations for PORAVLT and fatigue (p = 0.034), and PORAVLT and SMI (p = 0.01) in patients but not in HC. CONCLUSION The ALF test quantifies SMI in MS-patients. With fatigue as a relevant associated factor, this fills the gap in objectifying SMI in MS for diagnostic purposes.
Collapse
Affiliation(s)
- J Stalter
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany.
| | - K Pars
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
| | - K Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
- Center of Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Guillemin C, Vandeleene N, Charonitis M, Requier F, Delrue G, Lommers E, Maquet P, Phillips C, Collette F. Brain microstructure is linked to cognitive fatigue in early multiple sclerosis. J Neurol 2024; 271:3537-3545. [PMID: 38538776 DOI: 10.1007/s00415-024-12316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 05/30/2024]
Abstract
Cognitive fatigue is a major symptom of Multiple Sclerosis (MS), from the early stages of the disease. This study aims to detect if brain microstructure is altered early in the disease course and is associated with cognitive fatigue in people with MS (pwMS) compared to matched healthy controls (HC). Recently diagnosed pwMS (N = 18, age < 45 years old) with either a Relapsing-Remitting or a Clinically Isolated Syndrome course of the disease, and HC (N = 19) matched for sex, age and education were analyzed. Quantitative multiparameter maps (MTsat, PD, R1 and R2*) of pwMS and HC were calculated. Parameters were extracted within the normal appearing white matter, cortical grey matter and deep grey matter (NAWM, NACGM and NADGM, respectively). Bayesian T-test for independent samples assessed between-group differences in brain microstructure while associations between score at a cognitive fatigue scale and each parameter in each tissue class were investigated with Generalized Linear Mixed Models. Patients exhibited lower MTsat and R1 values within NAWM and NACGM, and higher R1 values in NADGM compared to HC. Cognitive fatigue was associated with PD measured in every tissue class and to MTsat in NAWM, regardless of group. Disease-specific negative correlations were found in pwMS in NAWM (R1, R2*) and NACGM (R1). These findings suggest that brain microstructure within normal appearing tissues is already altered in the very early stages of the disease. Moreover, additional microstructure alterations (e.g. diffuse and widespread demyelination or axonal degeneration) in pwMS may lead to disease-specific complaint of cognitive fatigue.
Collapse
Affiliation(s)
- Camille Guillemin
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Nora Vandeleene
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maëlle Charonitis
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Florence Requier
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Gaël Delrue
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Emilie Lommers
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Pierre Maquet
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Christophe Phillips
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- GIGA In Silico Medicine, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium.
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.
| |
Collapse
|
11
|
Simpson AC, Hu C, Mowry EM, Naismith RT, Fitzgerald KC, Nourbakhsh B. Structural MRI measures are associated with fatigue severity and persistence in a large, real-world cohort of people with multiple sclerosis. Mult Scler 2024; 30:738-746. [PMID: 38525561 DOI: 10.1177/13524585241239473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND Results of research on radiological hallmarks of multiple sclerosis (MS) fatigue have been conflicting. OBJECTIVE To investigate the associations of lesion and brain compartment volumes with fatigue severity and persistence in people with multiple sclerosis (PwMS). METHODS The Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) network collects standardized data during routine care of PwMS from 10 healthcare institutions. Magnetic resonance imaging (MRI) predictors included baseline brain parenchymal (BPF) and gray matter fractions (GMF) and T2 lesion volume (T2LV). The Quality of Life in Neurological Disorders (Neuro-QOL) fatigue subscore was analyzed linearly and categorically using T-score cutpoints, with a period of elevated symptoms defined as T-score ⩾ mean + 0.5 SD over follow-up. RESULTS At baseline, of 4012 participants (average age: 45.6 ± 11.8 years; 73% female; 31% progressive MS), 2058 (51%) had no fatigue, 629 (16%) had mild fatigue, and 1325 (33%) had moderate-to-severe fatigue. One SD greater baseline BPF and GMF were associated with 0.83 (p < 0.001) and 0.38 (p = 0.02) lower values in the baseline Neuro-QOL fatigue T-score. A 1 SD lower log of total T2LV was associated with a 0.49 (p < 0.001) lower baseline fatigue T-score. Higher BPF and lower T2LV at baseline were associated with lower odds of subsequent periods of elevated fatigue. CONCLUSION Baseline lesion burden and lower generalized whole-brain volumes were associated with MS fatigue in cross-sectional and longitudinal analyses in a large, real-world cohort of PwMS.
Collapse
Affiliation(s)
- Alexandra C Simpson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJJ, Bastin ME, Chandran S, Waldman AD, Meijboom R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS One 2024; 19:e0299634. [PMID: 38551913 PMCID: PMC10980255 DOI: 10.1371/journal.pone.0299634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease affecting the central nervous system, characterised by neuroinflammation and neurodegeneration. Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting MS (pwRRMS). An increased understanding of brain changes and mechanisms underlying fatigue and depression in RRMS could lead to more effective interventions and enhancement of quality of life. To elucidate the relationship between depression and fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: studied participants with RRMS (n ≥ 20; ≥ 18 years old) and differentiated between MS subtypes; published between 2001-01-01 and 2023-01-18; used fatigue and depression assessments validated for MS; included brain structural, functional magnetic resonance imaging (fMRI) or diffusion MRI (dMRI). Sixty studies met the criteria: 18 dMRI (15 fatigue, 5 depression) and 22 fMRI (20 fatigue, 5 depression) studies. The literature was heterogeneous; half of studies reported no correlation between brain connectivity measures and fatigue or depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression. Fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, ventral tegmental area, striatum, default mode and attention networks, and supramarginal, precentral, and postcentral gyri. Qualitative analysis suggests structural and functional connectivity changes, possibly due to axonal and/or myelin loss, in the cortico-thalamic-basal-ganglial and cortico-limbic network may underlie fatigue and depression in pwRRMS, respectively, but the overall results were inconclusive, possibly explained by heterogeneity and limited number of studies. This highlights the need for further studies including advanced MRI to detect more subtle brain changes in association with depression and fatigue. Future studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrates underlying these symptoms in pwRRMS.
Collapse
Affiliation(s)
- Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecka Gustafsson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Foley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall J. J. MacDougall
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Preziosa P, Pagani E, Meani A, Storelli L, Margoni M, Yudin Y, Tedone N, Biondi D, Rubin M, Rocca MA, Filippi M. Chronic Active Lesions and Larger Choroid Plexus Explain Cognition and Fatigue in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200205. [PMID: 38350048 DOI: 10.1212/nxi.0000000000200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic inflammation may contribute to cognitive dysfunction and fatigue in patients with multiple sclerosis (MS). Paramagnetic rim lesions (PRLs) and choroid plexus (CP) enlargement have been proposed as markers of chronic inflammation in MS being associated with a more severe disease course. However, their relation with cognitive impairment and fatigue has not been fully explored yet. Here, we investigated the contribution of PRL number and volume and CP enlargement to cognitive impairment and fatigue in patients with MS. METHODS Brain 3T MRI, neurologic evaluation, and neuropsychological assessment, including the Brief Repeatable Battery of Neuropsychological Tests and Modified Fatigue Impact Scale, were obtained from 129 patients with MS and 73 age-matched and sex-matched healthy controls (HC). PRLs were identified on phase images of susceptibility-weighted imaging, whereas CP volume was quantified using a fully automatic method on brain three-dimensional T1-weighted and fluid-attenuated inversion recovery MRI sequences. Predictors of cognitive impairment and fatigue were identified using random forest. RESULTS Thirty-six (27.9%) patients with MS were cognitively impaired, and 31/113 (27.4%) patients had fatigue. Fifty-nine (45.7%) patients with MS had ≥1 PRLs (median = 0, interquartile range = 0;2). Compared with HC, patients with MS showed significantly higher T2-hyperintense white matter lesion (WM) volume; lower normalized brain, thalamic, hippocampal, caudate, cortical, and WM volumes; and higher normalized CP volume (p from <0.001 to 0.040). The predictors of cognitive impairment (relative importance) (out-of-bag area under the curve [OOB-AUC] = 0.707) were normalized brain volume (100%), normalized caudate volume (89.1%), normalized CP volume (80.3%), normalized cortical volume (70.3%), number (67.3%) and volume (66.7%) of PRLs, and T2-hyperintense WM lesion volume (64.0%). Normalized CP volume was the only predictor of the presence of fatigue (OOB-AUC = 0.563). DISCUSSION Chronic inflammation, with higher number and volume of PRLs and enlarged CP, may contribute to cognitive impairment in MS in addition to gray matter atrophy. The contribution of enlarged CP in explaining fatigue supports the relevance of immune-related processes in determining this manifestation independently of disease severity. PRLs and CP enlargement may contribute to the pathophysiology of cognitive impairment and fatigue in MS, and they may represent clinically relevant therapeutic targets to limit the impact of these clinical manifestations in MS.
Collapse
Affiliation(s)
- Paolo Preziosa
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yury Yudin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicolò Tedone
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diana Biondi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Darabi S, Ariaei A, Rustamzadeh A, Afshari D, Charkhat Gorgich EA, Darabi L. Cerebrospinal fluid and blood exosomes as biomarkers for amyotrophic lateral sclerosis; a systematic review. Diagn Pathol 2024; 19:47. [PMID: 38429818 PMCID: PMC10908104 DOI: 10.1186/s13000-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease. Due to the limited knowledge about potential biomarkers that help in early diagnosis and monitoring disease progression, today's diagnoses are based on ruling out other diseases, neurography, and electromyography examination, which takes a time-consuming procedure. METHODS PubMed, ScienceDirect, and Web of Science were explored to extract articles published from January 2015 to June 2023. In the searching strategy following keywords were included; amyotrophic lateral sclerosis, biomarkers, cerebrospinal fluid, serum, and plama. RESULTS A total number of 6 studies describing fluid-based exosomal biomarkers were included in this study. Aggregated proteins including SOD1, TDP-43, pTDP-43, and FUS could be detected in the microvesicles (MVs). Moreover, TDP-43 and NFL extracted from plasma exosomes could be used as prognostic biomarkers. Also, downregulated miR-27a-3p detected through exoEasy Maxi and exoQuick Kit in the plasma could be measured as a diagnostic biomarker. Eventually, the upregulated level of CORO1A could be used to monitor disease progression. CONCLUSION Based on the results, each biomarker alone is insufficient to evaluate ALS. CNS-derived exosomes contain multiple ALS-related biomarkers (SOD1, TDP-43, pTDP-43, FUS, and miRNAs) that are detectable in cerebrospinal fluid and blood is a proper alternation. Exosome detecting kits listed as exoEasy, ExoQuick, Exo-spin, ME kit, ExoQuick Plus, and Exo-Flow, are helpful to reach this purpose.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, next to Milad Tower, Tehran, Iran.
| | - Dariush Afshari
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Leila Darabi
- Department of Neurology, Tehran Medical Science Branch, Amir Al Momenin Hospital, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Akaishi T, Fujimori J, Nakashima I. Basal Ganglia Atrophy and Impaired Cognitive Processing Speed in Multiple Sclerosis. Cureus 2024; 16:e52603. [PMID: 38374834 PMCID: PMC10875397 DOI: 10.7759/cureus.52603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Impaired cognitive processing speed is among the important higher brain dysfunctions in multiple sclerosis (MS). However, the exact structural mechanisms of the dysfunction remain uncertain. This study aimed to identify the brain regions associated with the impaired cognitive processing speed in MS by comparing the cognitive processing speed, measured using the Cognitive Processing Speed Test (CogEval) z-score, and brain regional volumetric data. Altogether, 80 patients with MS (64 with relapsing-remitting MS [RRMS] and 16 with secondary progressive MS [SPMS]) were enrolled. Consequently, CogEval z-scores were worse in patients with SPMS than in those with RRMS (p=0.001). In the univariate correlation analyses, significant correlations with CogEval z-score were suggested in the MS lesion volume (p<0.001; Spearman's rank correlation test) and atrophies in the cerebral cortex (p=0.031), cerebral white matter (p=0.013), corpus callosum (p=0.001), thalamus (p=0.001), and putamen (p<0.001). Multiple linear regression analysis revealed that putamen atrophy was significantly associated with CogEval z-score (p=0.038) independent of volume in other brain regions, while thalamic atrophy was not (p=0.79). Univariate correlation analyses were further performed in each of RRMS and SPMS. None of the evaluated volumetric data indicated a significant correlation with the CogEval z-score in RRMS. Meanwhile, atrophies in the cerebral white matter (p=0.008), corpus callosum (p=0.002), putamen (p=0.011), and pallidum (p=0.017) demonstrated significant correlations with CogEval z-score in SPMS. In summary, the putamen could be an important region of atrophy contributing to the impaired cognitive speed in MS, especially in the later disease stages after a transition to SPMS.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
| | - Juichi Fujimori
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| |
Collapse
|
16
|
Abdelhak A, Antweiler K, Kowarik MC, Senel M, Havla J, Zettl UK, Kleiter I, Hoshi MM, Skripuletz T, Haarmann A, Stahmann A, Huss A, Gingele S, Krumbholz M, Selge C, Friede T, Ludolph AC, Overell J, Koendgen H, Clinch S, Wang Q, Ziemann U, Hauser SL, Kümpfel T, Green AJ, Tumani H. Patient-reported outcome parameters and disability worsening in progressive multiple sclerosis. Mult Scler Relat Disord 2024; 81:105139. [PMID: 38000130 PMCID: PMC10959125 DOI: 10.1016/j.msard.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVES Detection and prediction of disability progression is a significant unmet need in people with progressive multiple sclerosis (PwPMS). Government and health agencies have deemed the use of patient-reported outcomes measurements (PROMs) in clinical practice and clinical trials a major strategic priority. Nevertheless, data documenting the clinical utility of PROMs in neurological diseases is scarce. This study evaluates if assessment of PROMs could track progression in PwPMS. METHODS Emerging blood Biomarkers in Progressive Multiple Sclerosis (EmBioProMS) investigated PROMs (Beck depression inventory-II (BDI-II), multiple sclerosis impact scale-29 (MSIS-29), fatigue scale for motor and cognition (FSMC)) in PwPMS (primary [PPMS] and secondary progressive MS [SPMS]). PROMs were evaluated longitudinally and compared between participants with disability progression (at baseline; retrospective evidence of disability progression (EDP), and during follow up (FU); prospective evidence of confirmed disability progression (CDP)) and those without progression. In an independent cohort of placebo participants of the phase III ORATORIO trial in PPMS, the diagnostic and prognostic value of another PROMs score (36-Item Short Form Survey [SF-36]) regarding CDP was evaluated. RESULTS EmBioProMS participants with EDP in the two years prior to inclusion (n = 136/227), or who suffered from CDP during FU (number of events= 88) had worse BDI-II, MSIS-29, and FSMC scores compared to PwPMS without progression. In addition, baseline MSIS29physical above 70th, 80th, and 90th percentiles predicted future CDP/ progression independent of relapse activity in EmBioProMS PPMS participants (HR of 3.7, 6.9, 6.7, p = 0.002, <0.001, and 0.001, respectively). In the placebo arm of ORATORIO (n = 137), the physical component score (PCS) of SF-36 worsened at week 120 compared to baseline, in cases who experienced progression over the preceding trial period (P = 0.018). Worse PCS at baseline was associated with higher hazard ratios of disability accumulation over the subsequent 120 weeks (HR: 2.01 [30th-], 2.11 [20th-], and 2.8 [10th percentile], P = 0.007, 0.012 and 0.005, respectively). CONCLUSIONS PROMs could provide additional, practical, cost-efficient, and remotely accessible insight about disability progression in PMS through standardized, structured, and quantifiable patient feedback.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA; Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| | - Kai Antweiler
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | - Markus C Kowarik
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Muna-Miriam Hoshi
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | | | - Axel Haarmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Stahmann
- Forschungs- und Projektentwicklungs-gGmbH, MS-Registry by the German MS-Society, Hanover, Germany
| | - Andre Huss
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| | - Stefan Gingele
- Hannover Medical School, Department of Neurology, Hanover, Germany
| | - Markus Krumbholz
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
| | - Charlotte Selge
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| | | | | | | | - Qing Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ulf Ziemann
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephen L Hauser
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Ari J Green
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany.
| |
Collapse
|
17
|
Alshehri A, Koussis N, Al-Iedani O, Arm J, Khormi I, Lea S, Lea R, Ramadan S, Lechner-Scott J. Diffusion tensor imaging changes of the cortico-thalamic-striatal tracts correlate with fatigue and disability in people with relapsing-remitting MS. Eur J Radiol 2024; 170:111207. [PMID: 37988961 DOI: 10.1016/j.ejrad.2023.111207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE To investigate how the microstructural neural integrity of cortico-thalamic-striatal (CTS) tracts correlate with fatigue and disability over time. The primary outcome was diffusion tensor imaging (DTI) metrics change over time, and the secondary outcome was correlations with fatigue and disability in people with RRMS (pw-RRMS). METHODS 76 clinically stable pw-RRMS and 43 matched healthy controls (HCs). The pw-RRMS cohort consisted of three different treatment subgroups. All participants underwent disability, cognitive, fatigue and mental health assessments. Structural and diffusion scans were performed at baseline (BL) and 2-year follow-up (2-YFU) for all participants. Fractional anisotropy (FA), mean, radial and axial diffusivities (MD, RD, AD) of normal-appearing white matter (NAWM) and white matter lesion (WML) in nine tracts-of-interests (TOIs) were estimated using our MRtrix3 in-house pipeline. RESULTS We found significant BL and 2-YFU differences in most diffusion metrics in TOIs in pw-RRMS compared to HCs (pFDR ≤ 0.001; false-detection-rate (FDR)-corrected). There was a significant decrease in WML diffusivities and an increase in FA over the follow-up period in most TOIs (pFDR ≤ 0.001). Additionally, there were no differences in DTI parameters across treatment groups. AD and MD were positively correlated with fatigue scores (r ≤ 0.33, p ≤ 0.01) in NAWM-TOIs, while disability (EDSS) was negatively correlated with FA in most NAWM-TOIs (|r|≤0.31, p ≤ 0.01) at both time points. Disability scores correlated with all diffusivity parameters (r ≤ 0.29, p ≤ 0.01) in most WML-TOIs at both time points. CONCLUSION Statistically significant changes in diffusion metrics in WML might be indicative of integrity improvement over two years in CTS tracts in clinically stable pw-RRMS. This finding represents structural changes within lesioned tracts. Measuring diffusivity in pw-RRMS affected tracts might be a relevant measure for future remyelination clinical trials.
Collapse
Affiliation(s)
- Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia; Department of Radiology, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nikitas Koussis
- Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia; School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jameen Arm
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia
| | - Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia; College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Stasson Lea
- Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia.
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, 1 Kookaburra circuit, New Lambton Heights, NSW 2305, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, Newcastle, 2305, Australia; School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
18
|
Zimek D, Miklusova M, Mares J. Overview of the Current Pathophysiology of Fatigue in Multiple Sclerosis, Its Diagnosis and Treatment Options - Review Article. Neuropsychiatr Dis Treat 2023; 19:2485-2497. [PMID: 38029042 PMCID: PMC10674653 DOI: 10.2147/ndt.s429862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Fatigue is a common, debilitating and often underestimated symptom in patients with multiple sclerosis (MS). The exact pathophysiological mechanism of fatigue in MS is still unknown. However, there are many theories involving different immunological, metabolic and inflammatory mechanisms of fatigue. Owing to the subjective nature of this symptom, its diagnosis is still very limited and is still based only on diagnostic questionnaires. Although several therapeutic agents have been used in the past to try to influence fatigue in MS patients, no single effective approach for the treatment of fatigue has yet been found. This review article aims to provide the reader with information on the current theories on the origin and mechanism of fatigue in MS, as well as diagnostic procedures and, finally, current therapeutic strategies for the management of fatigue in MS patients.
Collapse
Affiliation(s)
- Dalibor Zimek
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| | - Martina Miklusova
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| | - Jan Mares
- Department of Neurology, Palacky University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
19
|
Hechenberger S, Helmlinger B, Penner IK, Pirpamer L, Fruhwirth V, Heschl B, Ropele S, Wurth S, Damulina A, Eppinger S, Demjaha R, Khalil M, Pinter D, Enzinger C. Psychological factors and brain magnetic resonance imaging metrics associated with fatigue in persons with multiple sclerosis. J Neurol Sci 2023; 454:120833. [PMID: 37866195 DOI: 10.1016/j.jns.2023.120833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Besides demographics and clinical factors, psychological variables and brain-tissue changes have been associated with fatigue in persons with multiple sclerosis (pwMS). Identifying predictors of fatigue could help to improve therapeutic approaches for pwMS. Therefore, we investigated predictors of fatigue using a multifactorial approach. METHODS 136 pwMS and 49 normal controls (NC) underwent clinical, neuropsychological, and magnetic resonance imaging examinations. We assessed fatigue using the "Fatigue Scale for Motor and Cognitive Functions", yielding a total, motor, and cognitive fatigue score. We further analyzed global and subcortical brain volumes, white matter lesions and microstructural changes (examining fractional anisotropy; FA) along the cortico striatal thalamo cortical (CSTC) loop. Potential demographic, clinical, psychological, and magnetic resonance imaging predictors of total, motor, and cognitive fatigue were explored using multifactorial linear regression models. RESULTS 53% of pwMS and 20% of NC demonstrated fatigue. Besides demographics and clinical data, total fatigue in pwMS was predicted by higher levels of depression and reduced microstructural tissue integrity in the CSTC loop (adjusted R2 = 0.52, p < 0.001). More specifically, motor fatigue was predicted by lower education, female sex, higher physical disability, higher levels of depression, and self-efficacy (adjusted R2 = 0.54, p < 0.001). Cognitive fatigue was also predicted by higher levels of depression and lower self-efficacy, but in addition by FA reductions in the CSTC loop (adjusted R2 = 0.45, p < 0.001). CONCLUSIONS Our results indicate that depression and self-efficacy strongly predict fatigue in MS. Incremental variance in total and cognitive fatigue was explained by microstructural changes along the CSTC loop, beyond demographics, clinical, and psychological variables.
Collapse
Affiliation(s)
- Stefanie Hechenberger
- Medical University of Graz, Research Unit for Neuronal Plasticity and Repair, Graz, Austria; Medical University of Graz, Department of Neurology, Graz, Austria
| | - Birgit Helmlinger
- Medical University of Graz, Research Unit for Neuronal Plasticity and Repair, Graz, Austria; Medical University of Graz, Department of Neurology, Graz, Austria
| | - Iris-Katharina Penner
- Department of Neurology. Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Lukas Pirpamer
- Medical University of Graz, Department of Neurology, Graz, Austria; Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Viktoria Fruhwirth
- Medical University of Graz, Research Unit for Neuronal Plasticity and Repair, Graz, Austria; Medical University of Graz, Department of Neurology, Graz, Austria
| | - Bettina Heschl
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Stefan Ropele
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Sebastian Wurth
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Anna Damulina
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Sebastian Eppinger
- Medical University of Graz, Department of Neurology, Graz, Austria; Medical University of Graz, Division of Neuroradiology & Interventional Radiology, Department of Radiology, Graz, Austria
| | - Rina Demjaha
- Medical University of Graz, Department of Neurology, Graz, Austria; Medical University of Graz, Neurology Biomarker Research Unit, Graz, Austria
| | - Michael Khalil
- Medical University of Graz, Department of Neurology, Graz, Austria; Medical University of Graz, Neurology Biomarker Research Unit, Graz, Austria
| | - Daniela Pinter
- Medical University of Graz, Research Unit for Neuronal Plasticity and Repair, Graz, Austria; Medical University of Graz, Department of Neurology, Graz, Austria.
| | - Christian Enzinger
- Medical University of Graz, Research Unit for Neuronal Plasticity and Repair, Graz, Austria; Medical University of Graz, Department of Neurology, Graz, Austria
| |
Collapse
|
20
|
Pinarello C, Elmers J, Inojosa H, Beste C, Ziemssen T. Management of multiple sclerosis fatigue in the digital age: from assessment to treatment. Front Neurosci 2023; 17:1231321. [PMID: 37869507 PMCID: PMC10585158 DOI: 10.3389/fnins.2023.1231321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Fatigue is one of the most disabling symptoms of Multiple Sclerosis (MS), affecting more than 80% of patients over the disease course. Nevertheless, it has a multi-faceted and complex nature, making its diagnosis, evaluation, and treatment extremely challenging in clinical practice. In the last years, digital supporting tools have emerged to support the care of people with MS. These include not only smartphone or table-based apps, but also wearable devices or novel techniques such as virtual reality. Furthermore, an additional effective and cost-efficient tool for the therapeutic management of people with fatigue is becoming increasingly available. Virtual reality and e-Health are viable and modern tools to both assess and treat fatigue, with a variety of applications and adaptability to patient needs and disability levels. Most importantly, they can be employed in the patient's home setting and can not only bridge clinic visits but also be complementary to the monitoring and treatment means for those MS patients who live far away from healthcare structures. In this narrative review, we discuss the current knowledge and future perspectives in the digital management of fatigue in MS. These may also serve as sources for research of novel digital biomarkers in the identification of disease activity and progression.
Collapse
Affiliation(s)
- Chiara Pinarello
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Julia Elmers
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Hernán Inojosa
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
21
|
Rocca MA, Valsasina P, Lamanna MT, Colombo B, Martinelli V, Filippi M. Functional connectivity modifications in monoaminergic circuits occur in fatigued MS patients treated with fampridine and amantadine. J Neurol 2023; 270:4697-4706. [PMID: 37462753 DOI: 10.1007/s00415-023-11858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Monoaminergic network dysfunction may have a role in multiple sclerosis (MS) fatigue pathogenesis. OBJECTIVE To investigate modifications of fatigue severity and resting state (RS) functional connectivity (FC) in monoaminergic networks of 45 fatigued MS patients after different symptomatic treatments. METHODS Patients were randomly, blindly assigned to fampridine (n = 15), amantadine (n = 15) or placebo (n = 15) treatment and underwent clinical and 3T-MRI evaluations at baseline (t0) and week 4 (w4), i.e. after four weeks of treatment. Fifteen healthy controls (HC) were enrolled. Dopamine-, noradrenaline- and serotonin-related RS FC was assessed by PET-guided constrained independent component analysis. RESULTS At t0, MS patients showed widespread monoamine-related RS FC abnormalities. At w4, fatigue scores decreased in all groups (p = range < 0.001-0.002). Concomitantly, fampridine and amantadine patients showed increased insular RS FC in dopamine-related and noradrenaline-related networks (p < 0.001, uncorrected). Amantadine patients also showed increased RS FC of anterior cingulate cortex in dopamine-related and noradrenaline-related networks (p < 0.001, uncorrected). Placebo patients showed increased precuneus/middle cingulate RS FC in the noradrenaline-related network (p < 0.001, uncorrected). In fampridine and placebo patients, just tendencies towards correlations between RS FC and fatigue modifications were found. CONCLUSIONS In MS patients, specific RS FC modifications in PET-guided monoaminergic networks were observed, concomitantly with fatigue improvements following treatment. TRIAL REGISTRATION NUMBER EudraCT 2010-023678-38.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Lamanna
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Tabibian F, Azimzadeh K, Shaygannejad V, Ashtari F, Adibi I, Sanayei M. Patterns of attention deficit in relapsing and progressive phenotypes of multiple sclerosis. Sci Rep 2023; 13:13045. [PMID: 37563449 PMCID: PMC10415341 DOI: 10.1038/s41598-023-40327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Behavioral aspects and underlying pathology of attention deficit in multiple sclerosis (MS) remain unknown. This study aimed to clarify impairment of attention and its relationship with MS-related fatigue. Thirty-four relapse-remitting MS (RRMS), 35 secondary-progressive MS (SPMS) and 45 healthy controls (HC) were included. Results of psychophysics tasks (attention network test (ANT) and Posner spatial cueing test) and fatigue assessments (visual analogue scale and modified fatigue impact scale (MFIS)) were compared between groups. In ANT, attentional network effects were not different between MS phenotypes and HC. In Posner task, RRMS or SPMS patients did not benefit from valid cues unlike HC. RRMS and SPMS patients had less gain in exogenous trials with 62.5 ms cue-target interval time (CTIT) and endogenous trials with 250 ms CTIT, respectively. Total MFIS was the predictor of gain in 250 ms endogenous blocks and cognitive MFIS predicted orienting attentional effect. Executive attentional effect in RRMS patients with shorter disease duration and orienting attentional effect in longer diagnosed SPMS were correlated with MFIS scores. The pattern of attention deficit in MS differs between phenotypes. Exogenous attention is impaired in RRMS patients while SPMS patients have deficit in endogenous attention. Fatigue trait predicts impairment of endogenous and orienting attention in MS.
Collapse
Affiliation(s)
- Farinaz Tabibian
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiarash Azimzadeh
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Ashtari
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Adibi
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Sanayei
- Center for Translational Neuroscience, Isfahan University of Medical Sciences, Isfahan, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
23
|
Cipriano L, Troisi Lopez E, Liparoti M, Minino R, Romano A, Polverino A, Ciaramella F, Ambrosanio M, Bonavita S, Jirsa V, Sorrentino G, Sorrentino P. Reduced clinical connectome fingerprinting in multiple sclerosis predicts fatigue severity. Neuroimage Clin 2023; 39:103464. [PMID: 37399676 PMCID: PMC10329093 DOI: 10.1016/j.nicl.2023.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Brain connectome fingerprinting is progressively gaining ground in the field of brain network analysis. It represents a valid approach in assessing the subject-specific connectivity and, according to recent studies, in predicting clinical impairment in some neurodegenerative diseases. Nevertheless, its performance, and clinical utility, in the Multiple Sclerosis (MS) field has not yet been investigated. METHODS We conducted the Clinical Connectome Fingerprint (CCF) analysis on source-reconstructed magnetoencephalography signals in a cohort of 50 subjects: twenty-five MS patients and twenty-five healthy controls. RESULTS All the parameters of identifiability, in the alpha band, were reduced in patients as compared to controls. These results implied a lower similarity between functional connectomes (FCs) of the same patient and a reduced homogeneity among FCs in the MS group. We also demonstrated that in MS patients, reduced identifiability was able to predict, fatigue level (assessed by the Fatigue Severity Scale). CONCLUSION These results confirm the clinical usefulness of the CCF in both identifying MS patients and predicting clinical impairment. We hope that the present study provides future prospects for treatment personalization on the basis of individual brain connectome.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Italy
| | - Marianna Liparoti
- Department of Social and Developmental Psychology, Sapienza University of Rome, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | | | - Francesco Ciaramella
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Michele Ambrosanio
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy; Institute of Applied Sciences and Intelligent Systems, National Research Council, Italy; Institute for Diagnosis and Cure Hermitage Capodimonte, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Italy; Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
24
|
Alizadeh N, Packer T, Chen YT, Alnasery Y. What we know about fatigue self-management programs for people living with chronic conditions: A scoping review. PATIENT EDUCATION AND COUNSELING 2023; 114:107866. [PMID: 37364380 DOI: 10.1016/j.pec.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The significant impact of fatigue on the lives of patients with chronic conditions has demanded a response. One response has been the development and testing of self-management programs. Little is known about what these programs have in common or how they differ. This scoping review compared the key components of fatigue self-management programs. METHODS Scoping review methodology was employed. Databases of CINAHL, Academic Search Premier, PsycINFO, Cochrane and Medline were searched to identify relevant sources. RESULTS Included fatigue programs were compared using a three-component framework: 1) self-management strategies; 2) active patient participation; and 3) self-management support. Although all programs included some aspects of these components, the extent varied with only a few domains of these components found across all programs. CONCLUSION The three self-management components employed in this study showed potential benefits in identifying similarities and differences across fatigue programs with comparable and distinct underlying theories. This three-component framework could facilitate identification of domains associated with positive outcomes. PRACTICE IMPLICATIONS It is essential that authors of programs provide detailed descriptions to enable inter-program comparison. The three-component framework chosen for this review was capable of describing and comparing fatigue self-management programs, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Neda Alizadeh
- School of Occupational Therapy, Dalhousie University, Halifax, Canada
| | - Tanya Packer
- School of Health Administration, Dalhousie University, Halifax, Canada; Department of Nursing, Umea University, Umea, Sweden.
| | - Yu-Ting Chen
- Department of Occupational Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Yaser Alnasery
- School of Occupational Therapy, Dalhousie University, Halifax, Canada; College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Linnhoff S, Haghikia A, Zaehle T. Effects of repetitive twice-weekly transcranial direct current stimulations on fatigue and fatigability in people with multiple sclerosis. Sci Rep 2023; 13:5878. [PMID: 37041183 PMCID: PMC10090173 DOI: 10.1038/s41598-023-32779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Fatigue is associated with a dramatically decreased quality of life in people with multiple sclerosis (pwMS). It refers to a constant subjective feeling of exhaustion and performance decline, known as fatigability. However, inconsistency and heterogeneity in defining and assessing fatigue have led to limited advances in understanding and treating MS-associated fatigue. Transcranial direct current stimulation (tDCS) has emerged as a promising, non-pharmaceutical treatment strategy for subjective fatigue. However, whether repetitive tDCS also have long-term effects on time-on-task performance has not yet been investigated. This pseudorandomized, single-blinded, and sham-controlled study investigated tDCS effects on behavioral and electrophysiological parameters. 18 pwMS received eight twice-weekly 30 min stimulations over the left dorsolateral prefrontal cortex. Fatigability was operationalized as time-on-task-related changes in reaction time variability and P300 amplitude. Additionally, subjective trait and state fatigue ratings were assessed. The results revealed an overall decrease in subjective trait fatigue ratings that lasted at least four weeks after the stimulations. However, the ratings declined after both anodal and sham tDCS. No effects were found on subjective state fatigue and objective fatigability parameters. Linear Mixed Models and Bayesian Regression models likewise favored the absence of a tDCS effect on fatigability parameters. The results confirm the complex relationship between MS-associated fatigue and fatigability. Reliable and clinically relevant parameters need to be established to extend the potential of tDCS for treating fatigability. Furthermore, our results indicate that consecutive stimulations rather than twice-weekly stimulations should be the preferred stimulation scheme in future studies.
Collapse
Affiliation(s)
- Stefanie Linnhoff
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, 39120, Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
26
|
Preziosa P, Rocca MA, Pagani E, Valsasina P, Amato MP, Brichetto G, Bruschi N, Chataway J, Chiaravalloti ND, Cutter G, Dalgas U, DeLuca J, Farrell R, Feys P, Freeman J, Inglese M, Meani A, Meza C, Motl RW, Salter A, Sandroff BM, Feinstein A, Filippi M. Structural and functional magnetic resonance imaging correlates of fatigue and dual-task performance in progressive multiple sclerosis. J Neurol 2023; 270:1543-1563. [PMID: 36436069 DOI: 10.1007/s00415-022-11486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Frontal cortico-subcortical dysfunction may contribute to fatigue and dual-task impairment of walking and cognition in progressive multiple sclerosis (PMS). PURPOSE To explore the associations among fatigue, dual-task performance and structural and functional abnormalities of frontal cortico-subcortical network in PMS. METHODS Brain 3 T structural and functional MRI sequences, Modified Fatigue Impact Scale (MFIS), dual-task motor and cognitive performances were obtained from 57 PMS patients and 10 healthy controls (HC). The associations of thalamic, caudate nucleus and dorsolateral prefrontal cortex (DLPFC) atrophy, microstructural abnormalities of their connections and their resting state effective connectivity (RS-EC) with fatigue and dual-task performance were investigated using random forest. RESULTS Thirty-seven PMS patients were fatigued (F) (MFIS ≥ 38). Compared to HC, non-fatigued (nF) and F-PMS patients had significantly worse dual-task performance (p ≤ 0.002). Predictors of fatigue (out-of-bag [OOB]-accuracy = 0.754) and its severity (OOB-R2 = 0.247) were higher Expanded Disability Status scale (EDSS) score, lower RS-EC from left-caudate nucleus to left-DLPFC, lower fractional anisotropy between left-caudate nucleus and left-thalamus, higher mean diffusivity between right-caudate nucleus and right-thalamus, and longer disease duration. Microstructural abnormalities in connections among thalami, caudate nuclei and DLPFC, mainly left-lateralized in nF-PMS and more bilateral in F-PMS, higher RS-EC from left-DLPFC to right-DLPFC in nF-PMS and lower RS-EC from left-caudate nucleus to left-DLPFC in F-PMS, higher EDSS score, higher WM lesion volume, and lower cortical volume predicted worse dual-task performances (OOB-R2 from 0.426 to 0.530). CONCLUSIONS In PMS, structural and functional frontal cortico-subcortical abnormalities contribute to fatigue and worse dual-task performance, with different patterns according to the presence of fatigue.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy.,AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Genoa, Italy
| | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Nancy D Chiaravalloti
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Rachel Farrell
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Peter Feys
- REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jennifer Freeman
- Faculty of Health, School of Health Professions, University of Plymouth, Plymouth, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Meza
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Amber Salter
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brian M Sandroff
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
27
|
Pokryszko-Dragan A, Penner IK, Comi G. Editorial: Fatigue in multiple sclerosis-A current perspective. Front Neurol 2023; 14:1150717. [PMID: 36824421 PMCID: PMC9942239 DOI: 10.3389/fneur.2023.1150717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anna Pokryszko-Dragan
- Department and Clinic of Neurology, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Anna Pokryszko-Dragan ✉
| | - Iris-Katharina Penner
- Department of Neurology and Neurorehabilitation, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Giancarlo Comi
- MS Centre Casa di Cura Igea, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Stefanov K, Al-Wasity S, Parkinson JT, Waiter GD, Cavanagh J, Basu N. Brain mapping inflammatory-arthritis-related fatigue in the pursuit of novel therapeutics. THE LANCET. RHEUMATOLOGY 2023; 5:e99-e109. [PMID: 38251542 DOI: 10.1016/s2665-9913(23)00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/26/2023]
Abstract
Despite developments in pharmacological treatments, chronic fatigue is an unresolved issue for most people with inflammatory arthritis that severely disrupts their personal and working lives. Fatigue in these patients is not strongly linked with peripheral disease activity but is associated with CNS-derived symptoms such as chronic pain, sleep disturbance, and depression. Therefore, a neurobiological basis should be considered when pursuing novel fatigue-specific therapeutics. In this Review, we focus on clinical imaging biomarkers that map candidate brain regions and are crucial in fatigue pathophysiology. We then evaluate neuromodulation techniques that could affect these candidate brain regions and are potential treatment strategies for fatigue in patients with inflammatory arthritis. We delineate work that is still required for neuroimaging and neuromodulation to eventually become part of a clinical pathway to treat and manage fatigue.
Collapse
Affiliation(s)
- Kristian Stefanov
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Salim Al-Wasity
- School of Infection and Immunity, University of Glasgow, Glasgow, UK; College of Engineering, University of Wasit, Al Kūt, Iraq
| | - Joel T Parkinson
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Gordon D Waiter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Cavanagh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Neil Basu
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
30
|
Correspondence among gray matter atrophy and atlas-based neurotransmitter maps is clinically relevant in multiple sclerosis. Mol Psychiatry 2023; 28:1770-1782. [PMID: 36658334 DOI: 10.1038/s41380-023-01943-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
In multiple sclerosis (MS), gray matter (GM) atrophy progresses in a non-random manner, possibly in regions with a high distribution of specific neurotransmitters involved in several relevant central nervous system functions. We investigated the associations among regional GM atrophy, atlas-based neurotransmitter distributions and clinical manifestations in a large MS patients' group. Brain 3 T MRI scans, neurological examinations and neuropsychological evaluations were obtained from 286 MS patients and 172 healthy controls (HC). Spatial correlations among regional GM volume differences and atlas-based nuclear imaging-derived neurotransmitter maps, and their associations with MS clinical features were investigated using voxel-based morphometry and JuSpace toolbox. Compared to HC, MS patients showed widespread GM atrophy being spatially correlated with the majority of neurotransmitter maps (false discovery rate [FDR]-p ≤ 0.004). Patients with a disease duration ≥ 5 vs < 5 years had significant cortical, subcortical and cerebellar atrophy, being spatially correlated with a higher distribution of serotoninergic and dopaminergic receptors (FDR-p ≤ 0.03). Compared to mildly-disabled patients, those with Expanded Disability Status Scale ≥ 3.0 or ≥ 4.0 had significant cortical, subcortical and cerebellar atrophy being associated with serotonergic, dopaminergic, opioid and cholinergic maps (FDR-p ≤ 0.04). Cognitively impaired vs cognitively preserved patients had widespread GM atrophy being spatially associated with serotonergic, dopaminergic, noradrenergic, cholinergic and glutamatergic maps (FDR-p ≤ 0.04). Fatigued vs non-fatigued MS patients had significant cortical, subcortical and cerebellar atrophy, not associated with neurotransmitter maps. No significant association between GM atrophy and neurotransmitter maps was found for depression. Regional GM atrophy with specific neurotransmitter systems may explain part of MS clinical manifestations, including locomotor disability, cognitive impairment and fatigue.
Collapse
|
31
|
Cagna CJ, Ceceli AO, Sandry J, Bhanji JP, Tricomi E, Dobryakova E. Altered functional connectivity during performance feedback processing in multiple sclerosis. Neuroimage Clin 2023; 37:103287. [PMID: 36516729 PMCID: PMC9755233 DOI: 10.1016/j.nicl.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Effective learning from performance feedback is vital for adaptive behavior regulation necessary for successful cognitive performance. Yet, how this learning operates in clinical groups that experience cognitive dysfunction is not well understood. Multiple sclerosis (MS) is an autoimmune, degenerative disease of the central nervous system characterized by physical and cognitive dysfunction. A highly prevalent impairment in MS is cognitive fatigue (CF). CF is associated with altered functioning within cortico-striatal regions that also facilitate feedback-based learning in neurotypical (NT) individuals. Despite this cortico-striatal overlap, research about feedback-based learning in MS, its associated neural underpinnings, and its sensitivity to CF, are all lacking. The present study investigated feedback-based learning ability in MS, as well as associated cortico-striatal function and connectivity. MS and NT participants completed a functional magnetic resonance imaging (fMRI) paired-word association task during which they received trial-by-trial monetary, non-monetary, and uninformative performance feedback. Despite reporting greater CF throughout the task, MS participants displayed comparable task performance to NTs, suggesting preserved feedback-based learning ability in the MS group. Both groups recruited the ventral striatum (VS), caudate nucleus, and ventromedial prefrontal cortex in response to the receipt of performance feedback, suggesting that people with MS also recruit cortico-striatal regions during feedback-based learning. However, compared to NT participants, MS participants also displayed stronger functional connectivity between the VS and task-relevant regions, including the left angular gyrus and right superior temporal gyrus, in response to feedback receipt. Results indicate that CF may not interfere with feedback-based learning in MS. Nonetheless, people with MS may recruit alternative connections with the striatum to assist with this form of learning. These findings have implications for cognitive rehabilitation treatments that incorporate performance feedback to remediate cognitive dysfunction in clinical populations.
Collapse
Affiliation(s)
- Christopher J Cagna
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Joshua Sandry
- Department of Psychology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States.
| | - Jamil P Bhanji
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Elizabeth Tricomi
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Avenue, East Hanover, NJ 07936, United States.
| |
Collapse
|
32
|
Hou Y, Zhang L, Ou R, Wei Q, Liu K, Lin J, Yang T, Xiao Y, Gong Q, Shang H. Resting-state fMRI study on drug-naïve early-stage patients with Parkinson's disease and with fatigue. Parkinsonism Relat Disord 2022; 105:75-82. [PMID: 36395541 DOI: 10.1016/j.parkreldis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Fatigue is one of the most common and debilitating non-motor symptoms in patients with Parkinson's disease (PD), which could manifest during the early stage of the disease and persist through the disease course. However, the treatment options for fatigue remain limited for patients with PD. METHODS Using seed-based resting-state functional magnetic resonance imaging, we explored the fatigue-related functional deficiencies in the anterior caudate nucleus, anterior putamen, and posterior putamen in a cohort of early-stage drug-naïve patients with PD. Thirty-eight patients with PD, 19 with and 19 without fatigue, and 31 matched healthy controls were selected. The fatigue status was defined based on the score obtained from the fatigue severity scale (FSS). RESULTS Patients with PD with fatigue exhibited a decreased connectivity in the cerebellar-striatal, cortico-striatal, and mesolimbic-striatal loops. No increased functional connectivity was observed. The abnormal connections of the dorsal striatum subdivisions overlapped to extensive brain regions, including the cerebellum, inferior frontal gyrus, inferior temporal gyrus, lingual gyrus, rolandic operculum, insular, and hippocampus. CONCLUSIONS Our findings revealed that the widespread functional deficiency in the striatal-cerebellar-cerebral cortical network may be critical to the pathology underlying fatigue in the early-stage PD. The key feature of fatigue-related connectivity was observed between the caudate nucleus and the cerebellum, which could serve as a potential biomarker or treatment target for fatigue in early-stage patients with PD in future studies.
Collapse
Affiliation(s)
- Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Alterations of Thalamic Nuclei Volumes and the Intrinsic Thalamic Structural Network in Patients with Multiple Sclerosis-Related Fatigue. Brain Sci 2022; 12:brainsci12111538. [PMID: 36421863 PMCID: PMC9688890 DOI: 10.3390/brainsci12111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fatigue is a debilitating and prevalent symptom of multiple sclerosis (MS). The thalamus is atrophied at an earlier stage of MS and although the role of the thalamus in the pathophysiology of MS-related fatigue has been reported, there have been few studies on intra-thalamic changes. We investigated the alterations of thalamic nuclei volumes and the intrinsic thalamic network in people with MS presenting fatigue (F-MS). The network metrics comprised the clustering coefficient (Cp), characteristic path length (Lp), small-world index (σ), local efficiency (Eloc), global efficiency (Eglob), and nodal metrics. Volumetric analysis revealed that the right anteroventral, right central lateral, right lateral geniculate, right pulvinar anterior, left pulvinar medial, and left pulvinar inferior nuclei were atrophied only in the F-MS group. Furthermore, the F-MS group had significantly increased Lp compared to people with MS not presenting fatigue (NF-MS) (2.9674 vs. 2.4411, PAUC = 0.038). The F-MS group had significantly decreased nodal efficiency and betweenness centrality of the right mediodorsal medial magnocellular nucleus than the NF-MS group (false discovery rate corrected p < 0.05). The F-MS patients exhibited more atrophied thalamic nuclei, poorer network global functional integration, and disrupted right mediodorsal medial magnocellular nuclei interconnectivity with other nuclei. These findings might aid the elucidation of the underlying pathogenesis of MS-related fatigue.
Collapse
|
34
|
Angioni D, Cesari M, Raffin J, Virecoulon Giudici K, Mangin JF, Bouyahia A, Chupin M, Fischer C, Gourieux E, Rolland Y, De Breucker S, Vellas B, de Souto Barreto P. Neuroimaging correlates of persistent fatigue in older adults: A secondary analysis from the Multidomain Alzheimer Preventive Trial (MAPT) trial. Aging Ment Health 2022; 26:1654-1660. [PMID: 34082625 DOI: 10.1080/13607863.2021.1932737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Fatigue has been suggested as a marker of biological aging. It seems plausible that this symptom might be associated with changes in brain health. The objective of this study was to examine the associations between persistent fatigue and neuroimaging correlates in a non-disease-specific population of community-dwelling older adults. METHODS We performed a cross-sectional analysis using data from The Multidomain Alzheimer Preventive Trial (MAPT). We included 458 subjects. Persistent fatigue was defined as meeting exhaustion criterion of Fried frailty phenotype in two consecutive clinical visits six months apart between study baseline and one year. Brain imaging correlates, assessed by magnetic resonance imaging (MRI), were the outcomes. The associations between persistent fatigue and brain correlates were explored using mixed model linear regressions with random effect at the center level. RESULTS The mean age of the participants was 74.8 ± 4 years old, and 63% of the subjects were women. Forty-seven participants (10%) exhibited a persistent fatigue profile. People with persistent fatigue were older compared to subjects without persistent fatigue (76.2 years ± 4.3 vs.74.7 ± 3.9 p = 0.009). Persistent fatigue was associated with higher white matter hyperintensity volume in the fully adjusted analysis. We did not find any cross-sectional association between persistent fatigue and sub-cortical volumes and global and regional cortical thickness. CONCLUSION Persistent fatigue was cross-sectionnally associated with higher white matter hyperintensity volume in older adults. Further longitudinal studies, using an assessment tool specifically designed and validated for measuring fatigue, are needed to confirm our findings.
Collapse
Affiliation(s)
- Davide Angioni
- Gerontopole of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | - Matteo Cesari
- IRCCS Istituti Clinici Scientifici Maugeri, Università degli Studi di Milano, Milan, Italy
| | - Jeremy Raffin
- Gerontopole of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| | | | - Jean François Mangin
- CATI Multicenter Neuroimaging Platform, Neurospin, CEA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Ali Bouyahia
- CATI, ICM, CNRS, Sorbonne Université, Paris, France
| | - Marie Chupin
- CATI, ICM, CNRS, Sorbonne Université, Paris, France
| | - Clara Fischer
- CATI Multicenter Neuroimaging Platform, Neurospin, CEA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Emmanuelle Gourieux
- CATI Multicenter Neuroimaging Platform, Neurospin, CEA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Yves Rolland
- Gerontopole of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France.,UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - Sandra De Breucker
- Erasmus Hospital, Geriatric Unit, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bruno Vellas
- Gerontopole of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France.,UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Toulouse University Hospital (CHU Toulouse), Toulouse, France.,UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | | |
Collapse
|
35
|
Román CAF, Wylie GR, DeLuca J, Yao B. Associations of White Matter and Basal Ganglia Microstructure to Cognitive Fatigue Rate in Multiple Sclerosis. Front Neurol 2022; 13:911012. [PMID: 35860487 PMCID: PMC9289668 DOI: 10.3389/fneur.2022.911012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Fatigue, including cognitive fatigue, is one of the most debilitating symptoms reported by persons with multiple sclerosis (pwMS). Cognitive fatigue has been associated with disruptions in striato-thalamo-cortical and frontal networks, but what remains unknown is how the rate at which pwMS become fatigued over time relates to microstructural properties within the brain. The current study aims to fill this gap in knowledge by investigating how cognitive fatigue rate relates to white matter and basal ganglia microstructure in a sample of 62 persons with relapsing-remitting MS. Participants rated their level of cognitive fatigue at baseline and after each block (x7) of a within-scanner cognitive fatigue inducing task. The slope of the regression line of all eight fatigue ratings was designated as “cognitive fatigue rate.” Diffusional kurtosis imaging maps were processed using tract-based spatial statistics and regional analyses (i.e., basal ganglia) and associated with cognitive fatigue rate. Results showed cognitive fatigue rate to be related to several white matter tracts, with many having been associated with basal ganglia connectivity or the previously proposed “fatigue network.” In addition, cognitive fatigue rate was associated with the microstructure within the putamen, though this did not survive multiple comparisons correction. Our approach of using cognitive fatigue rate, rather than trait fatigue, brings us closer to understanding how brain pathology may be impacting the experience of fatigue in the moment, which is crucial for developing interventions. These results hold promise for continuing to unpack the complex construct that is cognitive fatigue.
Collapse
Affiliation(s)
- Cristina A. F. Román
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
| | - Glenn R. Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
- Department of Veterans Affairs, The War Related Illness and Injury Center, New Jersey Healthcare System, East Orange, NJ, United States
| | - John DeLuca
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, United States
- *Correspondence: John DeLuca
| | - Bing Yao
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Jersey, NJ, United States
| |
Collapse
|
36
|
Ayache SS, Serratrice N, Abi Lahoud GN, Chalah MA. Fatigue in Multiple Sclerosis: A Review of the Exploratory and Therapeutic Potential of Non-Invasive Brain Stimulation. Front Neurol 2022; 13:813965. [PMID: 35572947 PMCID: PMC9101483 DOI: 10.3389/fneur.2022.813965] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fatigue is the most commonly reported symptom in patients with multiple sclerosis (MS). It is a worrisome, frequent, and debilitating manifestation that could occur at any time during the course of MS and in all its subtypes. It could engender professional, familial, and socioeconomic consequences and could severely compromise the patients' quality of life. Clinically, the symptom exhibits motor, cognitive, and psychosocial facets. It is also important to differentiate between perceived or subjective self-reported fatigue and fatigability which is an objective measure of decrement in the performance of cognitive or motor tasks. The pathophysiology of MS fatigue is complex, and its management remains a challenge, despite the existing body of literature on this matter. Hence, unraveling its neural mechanisms and developing treatment options that target the latter might constitute a promising field to explore. A PubMed/Medline/Scopus search was conducted to perform this review which aims (a) to reappraise the available electrophysiological studies that explored fatigue in patients with MS with a particular focus on corticospinal excitability measures obtained using transcranial magnetic stimulation and (b) to assess the potential utility of employing neuromodulation (i.e., non-invasive brain stimulation techniques) in this context. A special focus will be put on the role of transcranial direct current stimulation and transcranial magnetic stimulation. We have provided some suggestions that will help overcome the current limitations in upcoming research.
Collapse
Affiliation(s)
- Samar S. Ayache
- EA4391 Excitabilité Nerveuse and Thérapeutique, Université Paris Est Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- *Correspondence: Samar S. Ayache
| | - Nicolas Serratrice
- Department of Spine Surgery, Centre Médico Chirurgical Bizet, Paris, France
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico Chirurgical Bizet, Paris, France
| | - Georges N. Abi Lahoud
- Department of Spine Surgery, Centre Médico Chirurgical Bizet, Paris, France
- Institut de la Colonne Vertébrale et des Neurosciences (ICVNS), Centre Médico Chirurgical Bizet, Paris, France
| | - Moussa A. Chalah
- EA4391 Excitabilité Nerveuse and Thérapeutique, Université Paris Est Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- Moussa A. Chalah
| |
Collapse
|
37
|
Adibi I, Sanayei M, Tabibian F, Ramezani N, Pourmohammadi A, Azimzadeh K. Multiple sclerosis-related fatigue lacks a unified definition: A narrative review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:24. [PMID: 35419061 PMCID: PMC8995308 DOI: 10.4103/jrms.jrms_1401_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/19/2021] [Accepted: 11/01/2021] [Indexed: 11/05/2022]
Abstract
Fatigue is the most common symptom in multiple sclerosis (MS). Although MS-related fatigue (MS-F) strongly affects quality of life and social performance of patients, there is currently a lack of knowledge about its pathophysiology, which in turns leads to poor objective diagnosis and management. Recent studies have attempted to explain potential etiologies as well as treatments for MS-F. However, it seems that without a consensus on its nature, these data could not provide a route to a successful approach. In this Article, we review definitions, epidemiology, risk factors and correlated comorbidities, pathophysiology, assessment methods, neuroimaging findings, and pharmacological and nonpharmacological treatments of MS-F. Further studies are warranted to define fatigue in MS patients more accurately, which could result in precise diagnosis and management.
Collapse
Affiliation(s)
- Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Sanayei
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Farinaz Tabibian
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Ramezani
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Pourmohammadi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiarash Azimzadeh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Yamashita M, Suzuki M, Kawagoe T, Asano K, Futada M, Nakai R, Abe N, Sekiyama K. Impact of Early-Commenced and Continued Sports Training on the Precuneus in Older Athletes. Front Hum Neurosci 2021; 15:766935. [PMID: 34955788 PMCID: PMC8692267 DOI: 10.3389/fnhum.2021.766935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Intervention studies on sedentary older adults have demonstrated that commencing physical exercise at an older age has a positive effect on brain structure. Although this suggests that older athletes with lifelong sports training have larger gray matter volume (GMV) in some brain regions compared to age-matched non-athletes, evidence in the literature is scarce. Moreover, it remains unclear whether a larger GMV is associated with training intensity or period of training in life. To address these gaps in the literature, we compared regional brain GMV between 24 older athletes (mean age, 71.4 years; age at the commencement of sports training, 31.2 years, continuous sports training, 40.0 years; current training time, 7.9 h/week) and 24 age-matched non-athletes (mean age, 71.0 years). The period of sports training and the current training time of the athletes were assessed. Both groups were evaluated for physical activity intensity as well as cognitive and motor performance. Although no group differences were noted in cognitive and motor performance, athletes reported higher physical activity intensity than non-athletes. Whole-brain structural analysis revealed a significantly larger GMV in several brain regions in athletes. Notably, the GMV of the precuneus in athletes was positively correlated with earlier commencement of sports training and training duration but was negatively correlated with current training time. Our findings demonstrate that early-commenced and continued sports training predicts structural maintenance of the precuneus in old age. Our results also suggest that excessive training time in old age may have a negative impact on the GMV of the precuneus; thereby delineating how the precuneus is associated with lifelong sports training in older athletes.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan.,Faculty of Letters, Kumamoto University, Kumamoto, Japan
| | - Toshikazu Kawagoe
- Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Liberal Arts Education Center, Kyushu Campuses, Tokai University, Kumamoto, Japan
| | - Kohei Asano
- Faculty of Child Care and Education, Osaka University of Comprehensive Children Education, Osaka, Japan.,Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Ryusuke Nakai
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan.,Faculty of Letters, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging. Sci Rep 2021; 11:11060. [PMID: 34040141 PMCID: PMC8155133 DOI: 10.1038/s41598-021-90597-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.
Collapse
|
40
|
Western E, Nordenmark TH, Sorteberg W, Karic T, Sorteberg A. Fatigue After Aneurysmal Subarachnoid Hemorrhage: Clinical Characteristics and Associated Factors in Patients With Good Outcome. Front Behav Neurosci 2021; 15:633616. [PMID: 34054441 PMCID: PMC8149596 DOI: 10.3389/fnbeh.2021.633616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Fatigue after aneurysmal subarachnoid hemorrhage (post-aSAH fatigue) is a frequent, often long-lasting, but still poorly studied sequel. The aim of the present study was to characterize the nature of post-aSAH fatigue with an itemized analysis of the Fatigue Severity Scale (FSS) and Mental Fatigue Scale (MFS). We further wanted to assess the association of fatigue with other commonly observed problems after aSAH: mood disorders, cognitive problems, health-related quality of life (HRQoL), weight gain, and return to work (RTW). Ninety-six good outcome aSAH patients with fatigue completed questionnaires measuring fatigue, depression, anxiety, and HRQoL. All patients underwent a physical and neurological examination. Cognitive functioning was assessed with a neuropsychological test battery. We also registered prior history of fatigue and mood disorders as well as occupational status and RTW. The patients experienced fatigue as being among their three most disabling symptoms and when characterizing their fatigue they emphasized the questionnaire items “low motivation,” “mental fatigue,” and “sensitivity to stress.” Fatigue due to exercise was their least bothersome aspect of fatigue and weight gain was associated with depressive symptoms rather than the severity of fatigue. Although there was a strong association between fatigue and mood disorders, especially for depression, the overlap was incomplete. Post-aSAH fatigue related to reduced HRQoL. RTW was remarkably low with only 10.3% of patients returning to their previous workload. Fatigue was not related to cognitive functioning or neurological status. Although there was a strong association between fatigue and depression, the incomplete overlap supports the notion of these two being distinct constructs. Moreover, post-aSAH fatigue can exist without significant neurological or cognitive impairments, but is related to reduced HRQoL and contributes to the low rate of RTW.
Collapse
Affiliation(s)
- Elin Western
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Tonje Haug Nordenmark
- Department of Physical Medicine and Rehabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Wilhelm Sorteberg
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Tanja Karic
- Department of Physical Medicine and Rehabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Angelika Sorteberg
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Rocca MA, Valsasina P, Colombo B, Martinelli V, Filippi M. Cortico-subcortical functional connectivity modifications in fatigued multiple sclerosis patients treated with fampridine and amantadine. Eur J Neurol 2021; 28:2249-2258. [PMID: 33852752 DOI: 10.1111/ene.14867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Fatigue in multiple sclerosis (MS) is common and disabling; medication efficacy is still not fully proven. The aim of this study was to investigate 4-week modifications of fatigue severity in 45 relapsing-remitting MS patients after different symptomatic treatments, and changes in concomitant resting state (RS) functional connectivity (FC). METHODS Patients were randomly, blindly assigned to treatment with fampridine (n = 15), amantadine (n = 15) or placebo (n = 15), and underwent clinical assessment and 3-Tesla RS functional magnetic resonance imaging at baseline (t0) and after 4 weeks (w4) of treatment. Fifteen healthy controls (HCs) were also studied. Changes in modified fatigue impact scale (MFIS) score and network RS FC were assessed. RESULTS In MS, abnormalities of network RS FC at t0 did not differ between treatment groups and correlated with fatigue severity. At w4, global scores and subscores on the MFIS decreased in all groups, with no time-by-treatment interaction. At w4, all patient groups had changes in RS FC in several networks, with significant time-by-treatment interactions in basal ganglia, sensorimotor and default-mode networks in fampridine-treated patients versus the other groups, and in frontoparietal network in amantadine-treated patients. In the fampridine group, RS FC changes correlated with concurrently decreased MFIS score (r range = -0.75 to 0.74, p range = 0.003-0.05). CONCLUSIONS Fatigue improved in all MS groups, independently of treatment. Concomitant RS FC modifications were located in sensorimotor, inferior frontal and subcortical regions for fampridine- and amantadine-treated patients, and in associative sensory cortices for placebo-treated patients.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
42
|
Groen K, Lechner-Scott J, Pohl D, Levy M, Giovannoni G, Hawkes C. Can serum glial fibrillary acidic protein (GFAP) solve the longstanding problem of diagnosis and monitoring progressive multiple sclerosis. Mult Scler Relat Disord 2021; 50:102931. [PMID: 33926692 DOI: 10.1016/j.msard.2021.102931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kira Groen
- Hunter Medical Researc Institute, University of Newcastle, Australia; Hunter New England Area Health.
| | - Jeannette Lechner-Scott
- Hunter Medical Researc Institute, University of Newcastle, Australia; Hunter New England Area Health.
| | | | | | - Gavin Giovannoni
- Department of Neurology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London.
| | - Chris Hawkes
- Department of Neurology, Queen Mary University London, Neuroscience Centre.
| |
Collapse
|
43
|
Zackowski KM, Freeman J, Brichetto G, Centonze D, Dalgas U, DeLuca J, Ehde D, Elgott S, Fanning V, Feys P, Finlayson M, Gold SM, Inglese M, Marrie RA, Ploughman M, Sang CN, Sastre-Garriga J, Sincock C, Strum J, van Beek J, Feinstein A. Prioritizing progressive MS rehabilitation research: A call from the International Progressive MS Alliance. Mult Scler 2021; 27:989-1001. [PMID: 33720795 PMCID: PMC8151585 DOI: 10.1177/1352458521999970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: People with multiple sclerosis (MS) experience myriad symptoms that negatively affect their quality of life. Despite significant progress in rehabilitation strategies for people living with relapsing-remitting MS (RRMS), the development of similar strategies for people with progressive MS has received little attention. Objective: To highlight key symptoms of importance to people with progressive MS and stimulate the design and implementation of high-quality studies focused on symptom management and rehabilitation. Methods: A group of international research experts, representatives from industry, and people affected by progressive MS was convened by the International Progressive MS Alliance to devise research priorities for addressing symptoms in progressive MS. Results: Based on information from the MS community, we outline a rationale for highlighting four symptoms of particular interest: fatigue, mobility and upper extremity impairment, pain, and cognitive impairment. Factors such as depression, resilience, comorbidities, and psychosocial support are described, as they affect treatment efficacy. Conclusions: This coordinated call to action—to the research community to prioritize investigation of effective symptom management strategies, and to funders to support them—is an important step in addressing gaps in rehabilitation research for people affected by progressive MS.
Collapse
Affiliation(s)
- Kathleen M Zackowski
- KM Zackowski Patient Management Care and Rehabilitation Research, National Multiple Sclerosis Society, 733 3rd Avenue, 3rd floor, New York, NY 10017, USA.
| | - Jennifer Freeman
- School of Health Professions, University of Plymouth, Plymouth UK
| | | | - Diego Centonze
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ulrik Dalgas
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - John DeLuca
- Department of Research, Kessler Foundation, West Orange, NJ, USA
| | - Dawn Ehde
- Department of Rehabilitation Medicine, University of Washington Medicine, Seattle, WA, USA
| | - Sara Elgott
- Global Director of Patient Affairs, MedDay Pharmaceuticals, Maidenhead, UK
| | - Vanessa Fanning
- People Affected by MS Committee, International Progressive MS Alliance, Canberra, ACT, Australia
| | - Peter Feys
- Department of Rehabilitation Sciences and Physiotherapy, Universiteit Hasselt, Hasselt, Belgium
| | - Marcia Finlayson
- School of Rehabilitation Therapy, Queen’s University, Kingston, ON, Canada
| | - Stefan M Gold
- Department of Neuropsychiatry, Charitè—University of Medicine Berlin, Berlin, Germany
| | - Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michelle Ploughman
- Department of Physical Medicine and Rehabilitation, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Christine N Sang
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Caroline Sincock
- Scientific Steering Committee, International Progressive MS Alliance, Glasgow, UK
| | - Jonathan Strum
- Scientific Steering Committee, International Progressive MS Alliance, Long Beach, CA, USA
| | - Johan van Beek
- Global International Scientific Director, Neuroimmunology, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
44
|
Altered in vivo brain GABA and glutamate levels are associated with multiple sclerosis central fatigue. Eur J Radiol 2021; 137:109610. [PMID: 33657474 DOI: 10.1016/j.ejrad.2021.109610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Fatigue is a common symptom in patients with multiple sclerosis (MS) with unknown pathophysiology. Dysfunction of the GABAergic/glutamatergic pathways involving inhibitory and excitatory neurotransmitters such as γ-aminobutyric acid (GABA) and glutamine + glutamate pool (Glx) have been implicated in several neurological disorders. This study is aimed to evaluate the potential role of GABA and Glx in the origin of central fatigue in relapse remitting MS (RRMS) patients. METHODS 24 RRMS patients and 16 age- and sex-matched healthy controls (HC) were scanned using Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) with a 3 T system to quantify GABA+ and Glx from prefrontal (PFC) and sensorimotor (SMC) cortices. Self-reported fatigue status was measured on all participants using the Modified Fatigue Impact Scale (MFIS). RESULTS RRMS patients had higher fatigue scores relative to HC (p ≤ 0.05). Compared to HC, Glx levels in RRMS patients were significantly decreased in SMC (p = 0.04). Significant correlations were found between fatigue scores and GABA+ (r = -0.531, p = 0.008) and Glx (r = 0.511, p = 0.018) in PFC. Physical fatigue was negatively correlated with GABA+ in SMC and PFC (r = -0.428 and -0.472 respectively, p ≤ 0.04) and positively with PFC Glx (r = 0.480, p = 0.028). CONCLUSION The associations between fatigue and GABA + and Glx suggest that there might be dysregulation of GABAergic/glutamatergic neurotransmission in the pathophysiological mechanism of central fatigue in MS.
Collapse
|
45
|
Arm J, Al-Iedani O, Ribbons K, Lea R, Lechner-Scott J, Ramadan S. Biochemical Correlations with Fatigue in Multiple Sclerosis Detected by MR 2D Localized Correlated Spectroscopy. J Neuroimaging 2021; 31:508-516. [PMID: 33615583 DOI: 10.1111/jon.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Fatigue is the common symptom in patients with multiple sclerosis (MS), yet its pathophysiological mechanism is poorly understood. We investigated the metabolic changes in fatigue in a group of relapsing-remitting MS (RRMS) patients using MR two-dimensional localized correlated spectroscopy (2D L-COSY). METHODS Sixteen RRMS and 16 healthy controls were included in the study. Fatigue impact was assessed with the Modified Fatigue Impact Scale (MFIS). MR 2D L-COSY data were collected from the posterior cingulate cortex. Nonparametric statistical analysis was used to calculate the changes in creatine scaled metabolic ratios and their correlations with fatigue scores. RESULTS Compared to healthy controls, the RRMS group showed significantly higher fatigue and lower metabolic ratios for tyrosine, glutathione, homocarnosine (GSH+Hca), fucose-3, glutamine+glutamate (Glx), glycerophosphocholine (GPC), total choline, and N-acetylaspartate (NAA-2), while increased levels for isoleucine and glucose (P ≤ .05). Only GPC showed positive correlation with all fatigue domains (r = .537, P ≤ .05). On the other hand, Glx-upper, NAA-2, GSH+Hca, and fucose-3 showed negative correlations with all fatigue domains (r = -.345 to -.580, P ≤ .05). While tyrosine showed positive correlation with MFIS (r = .499, P ≤ .05), cognitive fatigue was negatively correlated with total GSH (r = -.530, P ≤ .05). No correlations were found between lesion load or brain volumes with fatigue score. CONCLUSIONS Our results suggest that fatigue in MS is strongly correlated with an imbalance in neurometabolites but not structural brain measurements.
Collapse
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia
| | - Rod Lea
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Newcastle, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia
| |
Collapse
|
46
|
Carandini T, Mancini M, Bogdan I, Rae CL, Barritt AW, Sethi A, Harrison N, Rashid W, Scarpini E, Galimberti D, Bozzali M, Cercignani M. Disruption of brainstem monoaminergic fibre tracts in multiple sclerosis as a putative mechanism for cognitive fatigue: a fixel-based analysis. NEUROIMAGE-CLINICAL 2021; 30:102587. [PMID: 33610097 PMCID: PMC7903010 DOI: 10.1016/j.nicl.2021.102587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
In multiple sclerosis (MS), monoaminergic systems are altered as a result of both inflammation-dependent reduced synthesis and direct structural damage. Aberrant monoaminergic neurotransmission is increasingly considered a major contributor to fatigue pathophysiology. In this study, we aimed to compare the integrity of the monoaminergic white matter fibre tracts projecting from brainstem nuclei in a group of patients with MS (n = 68) and healthy controls (n = 34), and to investigate its association with fatigue. Fibre tracts integrity was assessed with the novel fixel-based analysis that simultaneously estimates axonal density, by means of 'fibre density', and white matter atrophy, by means of fibre 'cross section'. We focused on ventral tegmental area, locus coeruleus, and raphe nuclei as the main source of dopaminergic, noradrenergic, and serotoninergic fibres within the brainstem, respectively. Fourteen tracts of interest projecting from these brainstem nuclei were reconstructed using diffusion tractography, and compared by means of the product of fibre-density and cross-section (FDC). Finally, correlations of monoaminergic axonal damage with the modified fatigue impact scale scores were evaluated in MS. Fixel-based analysis revealed significant axonal damage - as measured by FDC reduction - within selective monoaminergic fibre-tracts projecting from brainstem nuclei in MS patients, in comparison to healthy controls; particularly within the dopaminergic-mesolimbic pathway, the noradrenergic-projections to prefrontal cortex, and serotoninergic-projections to cerebellum. Moreover, we observed significant correlations between severity of cognitive fatigue and axonal damage within the mesocorticolimbic tracts projecting from ventral tegmental area, as well as within the locus coeruleus projections to prefrontal cortex, suggesting a potential contribution of dopaminergic and noradrenergic pathways to central fatigue in MS. Our findings support the hypothesis that axonal damage along monoaminergic pathways contributes to the reduction/dysfunction of monoamines in MS and add new information on the mechanisms by which monoaminergic systems contribute to MS pathogenesis and fatigue. This supports the need for further research into monoamines as therapeutic targets aiming to combat and alleviate fatigue in MS.
Collapse
Affiliation(s)
- Tiziana Carandini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK; NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada; CUBRIC, Cardiff University, Cardiff, UK
| | - Iulia Bogdan
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK
| | | | - Andrew W Barritt
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK
| | - Arjun Sethi
- Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Neil Harrison
- Department of Psychology and Department of Medicine, Cardiff, UK
| | - Waqar Rashid
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy
| | - Marco Bozzali
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK; Rita Levi Montalcini Department of Neuroscience, University of Torino, Turin, Italy
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, UK; Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
47
|
Cognitive Fatigue Is Associated with Altered Functional Connectivity in Interoceptive and Reward Pathways in Multiple Sclerosis. Diagnostics (Basel) 2020; 10:diagnostics10110930. [PMID: 33182742 PMCID: PMC7696273 DOI: 10.3390/diagnostics10110930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cognitive fatigue is common and debilitating among persons with multiple sclerosis (pwMS). Neural mechanisms underlying fatigue are not well understood, which results in lack of adequate treatment. The current study examined cognitive fatigue-related functional connectivity among 26 pwMS and 14 demographically matched healthy controls (HCs). Participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a working memory task (n-back), with two conditions: one with higher cognitive load (2-back) to induce fatigue and one with lower cognitive load (0-back) as a control condition. Task-independent residual functional connectivity was assessed, with seeds in brain regions previously implicated in cognitive fatigue (dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), insula, and striatum). Cognitive fatigue was measured using the Visual Analogue Scale of Fatigue (VAS-F). Results indicated that as VAS-F scores increased, HCs showed increased residual functional connectivity between the striatum and the vmPFC (crucial in reward processing) during the 2-back condition compared to the 0-back condition. In contrast, pwMS displayed increased residual functional connectivity from interoceptive hubs—the insula and the dACC—to the striatum. In conclusion, pwMS showed a hyperconnectivity within the interoceptive network and disconnection within the reward circuitry when experiencing cognitive fatigue.
Collapse
|
48
|
Abstract
Multiple sclerosis (MS) is a complex and debilitating neurodegenerative disease, with unknown cause(s), unpredictable prognosis, and rather limited treatment options. MS is often accompanied by various metabolic disturbances, with impaired creatine metabolism may play a role in its pathogenesis and the clinical course of the disease. This review summarizes human trials describing alterations in creatine levels in the nervous system and other tissues during MS, affects how certain medications for MS affect brain creatine concentrations, and discusses a possible demand for exogenous creatine as an adjunct therapeutic agent in the management of MS. Creatine metabolism seems to be dysfunctional in MS, indicating a low metabolic state of the brain and other relevant organs in this unpredictable demyelinating disease. A disease-driven brain creatine deficit could be seen as a distinctive pathological facet of severe MS that might be approached with targeted therapies in aim to restore creatine homeostasis.
Collapse
Affiliation(s)
- Sergej M Ostojic
- FSPE Applied Bioenergetics Lab, University of Novi Sad, Novi Sad, Serbia.,Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| |
Collapse
|
49
|
Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study. J Neurol 2020; 267:2372-2382. [PMID: 32350648 DOI: 10.1007/s00415-020-09853-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Neuroimaging underpinnings of state (in the moment, transient) mental fatigue in multiple sclerosis (MS) are not well understood. The current pilot study examined the effect of state mental fatigue on brain activation (measured using functional magnetic resonance imaging [fMRI]) during conditions of varying cognitive loads of rapid information processing in persons with MS relative to healthy controls. Nineteen persons with MS and 17 healthy controls underwent fMRI scanning while performing a modified version of the Symbol Digit Modalities Test, which consisted of high and low cognitive load conditions with comparable visual stimulation. State mental fatigue was assessed using the Visual Analog Scale of Fatigue before and after each run of the behavioral task. Results indicated that the healthy control group recruited significantly more anterior brain regions (superior and middle frontal gyri, insula, and superior temporal gyrus) to meet increased task demands during the high cognitive load condition as fatigue level increased (p < 0.05), which was accompanied by shorter response time. In contrast, the MS group did not recruit anterior areas to the same extent as the healthy control group as task demands and fatigue increased. Indeed, the MS group continued to activate more posterior brain regions (precuneus, lingual gyrus, and middle occipital gyrus) for the high cognitive load condition (p < 0.05) with no improvement in speed. In conclusion, persons with MS may allocate neural resources less efficiently than healthy controls when faced with increased task demands, which may result in increased mental fatigue. Results of the current pilot investigation warrant replication with a larger sample size.
Collapse
|
50
|
Bertoli M, Tecchio F. Fatigue in multiple sclerosis: Does the functional or structural damage prevail? Mult Scler 2020; 26:1809-1815. [DOI: 10.1177/1352458520912175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fatigue in multiple sclerosis (MS) is a highly invalidating symptom, lacking efficacious drugs. This topical review aims at assessing the signs in the literature of functional versus structural damage prevalence at the origin of MS fatigue by focusing on papers that assessed the two counterparts in the same patients, paying attention that the fatigue levels do not correlate with clinical severity. We summarize and discuss evidence of increased levels of fatigue occurring together with the alterations of functional connectivity at multiple levels, in the absence of any relationship with lesion load and local atrophy of the involved structures. Specifically, neuronal communication mainly altered in the corticomuscular synchronizations, between hemispheric homologs and in the resting-state networks involved in emotion (cingulate cortex) and effort-reward balance (striatum and inferior parietal lobule). Finally, given the functional prevalence in neuronal network alterations at the origin of fatigue in MS, we highlight the relevance of developing treatments aiming at compensating the neuronal electric communication dysfunctions.
Collapse
Affiliation(s)
- Massimo Bertoli
- LET’S – ISTC – CNR, Catholic University of the Sacred Heart, Rome, Italy
| | - Franca Tecchio
- LET’S – ISTC – CNR, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|