1
|
de Oliveira-Silva J, Lisboa PC, Lotufo-Denucci B, Fraga M, de Moura EG, Nunes FC, Ribeiro-Carvalho A, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Maternal protein restriction during the lactation period disrupts the ontogenetic development of behavioral traits in male Wistar rat offspring. J Dev Orig Health Dis 2023:1-12. [PMID: 37185045 DOI: 10.1017/s2040174423000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Neonatal undernutrition in rats results in short- and long-term behavioral and hormonal alterations in the offspring. It is not clear, however, whether these effects are present since the original insult or if they develop at some specific age later in life. Here, we assessed the ontogenetic profile of behavioral parameters associated with anxiety, exploration and memory/learning of Wistar rat offspring that were subjected to protein malnutrition during lactation. Dams and respective litters were separated into two groups: (1) protein-restricted (PR), which received a hypoproteic chow (8% protein) from birth to weaning [postnatal day (PN) 21]; (2) control (C), which received normoproteic chow. Offspring's behaviors, corticosterone, catecholamines, T3 and T4 levels were assessed at PN21 (weaning), PN45 (adolescence), PN90 (young adulthood) or PN180 (adulthood). PR offspring showed an age-independent reduction in the levels of anxiety-like behaviors in the Elevated Plus Maze and better memory performance in the Radial Arm Water Maze. PR offspring showed peak exploratory activity in the Open Field earlier in life, at PN45, than C, which showed theirs at PN90. Corticosterone was reduced in PR offspring, particularly at young adulthood, while catecholamines were increased at weaning and adulthood. The current study shows that considerable age-dependent variations in the expression of the observed behaviors and hormonal levels exist from weaning to adulthood in rats, and that protein restriction during lactation has complex variable-dependent effects on the ontogenesis of the assessed parameters.
Collapse
Affiliation(s)
- Juliana de Oliveira-Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Patrícia C Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Bruna Lotufo-Denucci
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Mabel Fraga
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Egberto G de Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Fernanda C Nunes
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470 - Patronato, São Gonçalo, RJ, 24435-005, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| |
Collapse
|
2
|
Oelkrug R, Herrmann B, Geissler C, Harder L, Koch C, Lehnert H, Oster H, Kirchner H, Mittag J. Dwarfism and insulin resistance in male offspring caused by α1-adrenergic antagonism during pregnancy. Mol Metab 2017; 6:1126-1136. [PMID: 29031714 PMCID: PMC5641602 DOI: 10.1016/j.molmet.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Maternal and environmental factors control the epigenetic fetal programming of the embryo, thereby defining the susceptibility for metabolic or endocrine disorders in the offspring. Pharmacological interventions required as a consequence of gestational problems, e.g. hypertension, can potentially interfere with correct fetal programming. As epigenetic alterations are usually only revealed later in life and not detected in studies focusing on early perinatal outcomes, little is known about the long-term epigenetic effects of gestational drug treatments. We sought to test the consequences of maternal α1-adrenergic antagonism during pregnancy, which can occur e.g. during hypertension treatment, for the endocrine and metabolic phenotype of the offspring. METHODS We treated C57BL/6NCrl female mice with the α1-adrenergic antagonist prazosin during pregnancy and analyzed the male and female offspring for endocrine and metabolic abnormalities. RESULTS Our data revealed that maternal α1-adrenergic blockade caused dwarfism, elevated body temperature, and insulin resistance in male offspring, accompanied by reduced IGF-1 serum concentrations as the result of reduced hepatic growth hormone receptor (Ghr) expression. We subsequently identified increased CpG DNA methylation at the transcriptional start site of the alternative Ghr promotor caused by the maternal treatment, which showed a strong inverse correlation to hepatic Ghr expression. CONCLUSIONS Our results demonstrate that maternal α1-adrenergic blockade can constitute an epigenetic cause for dwarfism and insulin resistance. The findings are of immediate clinical relevance as combined α/β-adrenergic blockers are first-line treatment of maternal hypertension.
Collapse
Affiliation(s)
- Rebecca Oelkrug
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Beate Herrmann
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Cathleen Geissler
- Department of Epigenetics & Metabolism/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Lisbeth Harder
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christiane Koch
- Department of Chronophysiology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- Department of Experimental Neuroendocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henrik Oster
- Department of Chronophysiology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henriette Kirchner
- Department of Epigenetics & Metabolism/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
3
|
Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet. Br J Nutr 2017; 117:796-803. [PMID: 28412994 DOI: 10.1017/s0007114517000708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.
Collapse
|
4
|
Dutra-Tavares AC, Manhães AC, Silva JO, Nunes-Freitas AL, Conceição EPS, Moura EG, Lisboa PC, Filgueiras CC, Abreu-Villaça Y, Ribeiro-Carvalho A. Locomotor response to acute nicotine in adolescent mice is altered by maternal undernutrition during lactation. Int J Dev Neurosci 2015; 47:278-85. [PMID: 26482122 DOI: 10.1016/j.ijdevneu.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
Undernutrition during brain development causes long lasting alterations in different neurotransmitter systems that may alter responses to psychoactive drugs. Despite the recognized effects of early undernutrition on the cholinergic system, no evidence that demonstrates the influence of this insult on nicotine susceptibility has been reported. We investigated the effects of protein/calorie restriction during lactation on the susceptibility to nicotine in adolescent mice. Dams were randomly assigned to one of the following groups: Control (C, 20 litters)--free access to standard laboratory diet (23% protein); Protein Restricted (PR, 12 litters)--free access to a isoenergetic, 8% protein diet; Calorie Restricted (CR, 12 litters)--access to standard laboratory diet in restricted quantities (mean ingestion of PR: pair-fed group). Undernutrition extended from postnatal day 2 (PN2) to weaning (PN21). At PN30, animals either received an i.p. injection of nicotine (0.5mg/Kg) or saline and were immediately placed in open field (OF). After the OF, adrenal glands and serum were collected for the analyses of stress-related endocrine parameters and leptin concentration. PR and CR offspring showed less body mass gain and visceral fat mass. PR offspring presented reduced serum leptin concentration. In the OF, nicotine increased locomotor activity of C and PR, but not of CR. CR and PR offspring showed decreased adrenal catecholamine content, which was not dependent on nicotine exposure. Our results indicate that early undernutrition interferes with nicotine-elicited locomotor effects in adolescent mice and suggest that endocrine parameters alterations in malnourished animals do not influence the behavioral response to nicotine.
Collapse
Affiliation(s)
- Ana C Dutra-Tavares
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Juliana O Silva
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - André L Nunes-Freitas
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Ellen P S Conceição
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Egberto G Moura
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Patrícia C Lisboa
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil; Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005, Brazil.
| |
Collapse
|
5
|
Malta A, de Moura EG, Ribeiro TA, Tófolo LP, Abdennebi-Najar L, Vieau D, Barella LF, de Freitas Mathias PC, Lisboa PC, de Oliveira JC. Protein-energy malnutrition at mid-adulthood does not imprint long-term metabolic consequences in male rats. Eur J Nutr 2015; 55:1423-33. [PMID: 26133298 DOI: 10.1007/s00394-015-0960-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/10/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE The long-term effects of the development of chronic metabolic diseases such as type 2 diabetes and obesity have been associated with nutritional insults in critical life stages. In this study, we evaluated the effect of a low-protein diet on metabolism in mid-adulthood male rats. METHODS At 90 days of age, Wistar male rats were fed a low-protein diet (4.0 %, LP group) for 30 days, whereas control rats were fed a normal-protein diet (20.5 %, NP group) throughout their lifetimes. To allow for dietary rehabilitation, from 120 to 180 days of age, the LP rats were fed a normal-protein diet. Then, we measured body composition, fat stores, glucose-insulin homeostasis and pancreatic islet function. RESULTS At 120 days of age, just after low-protein diet treatment, the LP rats displayed a strong lean phenotype, hypoinsulinemia, as assessed under fasting and glucose tolerance test conditions, as well as weak pancreatic islet insulinotropic response to glucose and acetylcholine (p < 0.01). At 180 days of age, after poor-protein diet rehabilitation, the LP rats displayed a slight lean phenotype (p < 0.05), which was associated with a high body weight gain (p < 0.001). Additionally, fat pad accumulation, glycemia and insulinemia, as well as the pancreatic islet insulinotropic response, were not significantly different between the LP and NP rats (p > 0.05). CONCLUSIONS Taken together, the present data suggest that the effects of dietary restriction as a stressor in adulthood are reversible with dietary rehabilitation, indicating that adulthood is not a sensitive or critical time window for metabolic programming.
Collapse
Affiliation(s)
- Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | | | - Didier Vieau
- Maternal Perinatal Undernutrition Team, Perinatal Environment and Growth Laboratory, Lille-North of France University, University of Sciences and Technologies of Lille, Villeneuve d'Ascq Cedex, France
| | - Luiz Felipe Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Júlio Cezar de Oliveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetic and Cell Biology, State University of Maringa/UEM, Block H67, Room 19, Colombo Avenue 5790, Maringá, PR, 87020-900, Brazil.
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
- Health Sciences Institute, Federal University of Mato Grosso, Sinop, MT, Brazil.
| |
Collapse
|
6
|
Torrens JM, Konieczna J, Palou M, Sánchez J, Picó C, Palou A. Early biomarkers identified in a rat model of a healthier phenotype based on early postnatal dietary intervention may predict the response to an obesogenic environment in adulthood. J Nutr Biochem 2014; 25:208-18. [DOI: 10.1016/j.jnutbio.2013.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/13/2022]
|
7
|
Goosse K, Bouckenooghe T, Sisino G, Aurientis S, Remacle C, Reusens B. Increased susceptibility to streptozotocin and impeded regeneration capacity of beta-cells in adult offspring of malnourished rats. Acta Physiol (Oxf) 2014; 210:99-109. [PMID: 23701924 DOI: 10.1111/apha.12121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Epidemiological studies related poor maternal nutrition and subsequent growth retardation in the progeny to the development of diabetes later in life. Low-protein diet during gestation altered the beta-cell development of the rat progeny by decreasing beta-cell proliferation and increasing their sensitivity to nitric oxide and cytokines in the foetus. This disturbed maternal environment had long-lasting consequences because the higher beta-cell vulnerability was maintained at adulthood. AIM The aim of this study was to determine whether early malnutrition influences the vulnerability and the regeneration capacity of beta-cells after streptozotocin (STZ) damage at adulthood. METHODS Gestating rats were fed either a control or a low-protein diet until weaning. Adult female offspring received injections of Freund's adjuvant weekly for 5 weeks followed 24 h later by STZ. Half of the cohort was killed at d34, whereas the other half was maintained until d48 to analyse the regeneration capacity of the beta-cells. RESULTS Although control and low-protein rats had equivalent pancreatic insulin content and beta-cell volume density at d34, hyperglycaemia appeared earlier and was more dramatic in low-protein rats than in control rats. STZ treatment increased beta-cell proliferation similarly in both groups. At d48, apoptotic rate was higher in the low-protein group. Regeneration appeared in control, but not in the low-protein rats, where beta-cell aggregates/surface area and Reg1-positive area were decreased compared to control. CONCLUSION Maternal malnutrition programmes a more vulnerable endocrine pancreas in the progeny which is unable to regenerate after injury, therefore predisposing it to develop glucose intolerance and diabetes later in life.
Collapse
Affiliation(s)
- K. Goosse
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - T. Bouckenooghe
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - G. Sisino
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - S. Aurientis
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - C. Remacle
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - B. Reusens
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
8
|
Fraga MC, de Moura EG, da Silva Lima N, Lisboa PC, de Oliveira E, Silva JO, Claudio-Neto S, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Anxiety-like, novelty-seeking and memory/learning behavioral traits in male Wistar rats submitted to early weaning. Physiol Behav 2014; 124:100-6. [DOI: 10.1016/j.physbeh.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
9
|
Unlimited access to low-energy diet causes acute malnutrition in dams and alters biometric and biochemical parameters in offspring. J Dev Orig Health Dis 2013; 5:45-55. [DOI: 10.1017/s2040174413000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we analyze the outcomes of unlimited access to a low-energy (LE) diet in dams and their offspring. At 3 weeks’ gestation, pregnant Wistar rats were divided into two groups: (1) the control group received a normoenergetic diet; and (2) the experimental group received the LE diet. In dams, lactation outcomes, food intake, body weight, plasma IGF-1, prealbumin, transferrin and retinol-binding protein levels were evaluated; in offspring, biometric and biochemical parameters and food intake were evaluated. No differences were observed during pregnancy. However, after lactation, dams that received the LE diet demonstrated significant reductions in body weight (P<0.05), plasma IGF-1 (P=0.01), prealbumin and visceral fat (P<0.001). Pups born to dams that received the LE diet demonstrated reduced body length and weight at weaning (P<0.001) and were lighter than the control animals at the end of the experimental period. Pups also demonstrated reduced plasma, low-density lipoprotein (P=0.04), triglycerides (P=0.002) and glucose levels (P<0.05), and differences were noted in visceral fat. These results indicate that feeding dams with LE diet during the reproductive period induces acute malnutrition and impairs the growth and development of offspring, as well as certain metabolic parameters.
Collapse
|
10
|
Barella LF, de Oliveira JC, Mathias PCDF. Pancreatic islets and their roles in metabolic programming. Nutrition 2013; 30:373-9. [PMID: 24206821 DOI: 10.1016/j.nut.2013.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022]
Abstract
Experimental and epidemiologic data have confirmed that undernutrition or overnutrition during critical periods of life can result in metabolic dysfunction, leading to the development of obesity, hypertension, and type 2 diabetes, later in life. These studies have contributed to the concept of the developmental origins of health and disease (DOHaD), which involves metabolic programming patterns. Beyond the earlier phases of development, puberty can be an additional period of plasticity, during which any insult can lead to changes in metabolism. Impaired brain development, associated with imbalanced autonomous nervous system activity due to metabolic programming, is pivotal to the creation of pathophysiology. Excess glucocorticoid exposure, due to hypothalamic-pituitary-adrenal axis deregulation, is also involved in malprogramming in early life. Additionally, the pancreatic islets appear to play a decisive role in the setup and maintenance of these metabolic dysfunctions as key targets of metabolic programming, and epigenetic mechanisms may underlie these changes. Moreover, studies have indicated the possibility that deprogramming renders the islets able to recover their functioning after malprogramming. In this review, we discuss the key roles of the pancreatic islets as targets of malprogramming; however, we also discuss their roles as important targets for the treatment and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Luiz Felipe Barella
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil.
| | - Júlio Cezar de Oliveira
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
11
|
Ferraz-Pereira KN, Toscano AE, Manhães-de-Castro R. Effect of early undernutrition on masticatory morphophysiology: review of the literature. Arch Oral Biol 2013; 58:1735-43. [PMID: 23849324 DOI: 10.1016/j.archoralbio.2013.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Certain periods of development of the nervous system are critically vulnerable to environmental insults because of the processes involved that cycle very quickly. Morphologic and functional development of mastication occurs coincidently during these stages. Early environmental insults during critical periods can cause permanent effects on both structures and functions of organic systems that can have lasting repercussions in adulthood. OBJECTIVE In this study, we investigated, through a literature review, the possible effects of perinatal calorie and/or protein low diet on structural and physiological development of mastication. DESIGN A systematic literature search was conducted from in the PUBMED electronic database. In collecting literature we used the keywords: "undernutrition" and "stomatognathic system". Criteria used in the selection of articles for inclusion were: studies evaluating the effects of perinatal calorie and/or protein low diet on masticatory morphology and function. Exclusion criteria included, short communications and nonavailability in full text format. CONCLUSION Undernutrition during critical periods of life causes changes in the key structures of masticatory function. This fact can affect the selection of essential nutrients, thereby interfering with the process of satiation.
Collapse
Affiliation(s)
- K N Ferraz-Pereira
- Federal University of Pernambuco, Department of Nutrition, Av. Moraes Rego, 1235, Cidade Universitária, CEP: 50670-901 Recife, Brazil.
| | | | | |
Collapse
|
12
|
Renal parenchyma developmental plasticity in mice infected with Schistosoma mansoni, whose mothers were malnourished during lactation. Exp Parasitol 2013; 134:368-73. [PMID: 23567250 DOI: 10.1016/j.exppara.2013.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
Abstract
Effects of maternal malnutrition during lactation on the kidneys in mice infected with Schistosoma mansoni. Kidneys from programmed infected mice and their respective controls fed a normal diet (23% protein), a protein-restricted group (PR) (8% protein) and a caloric-restricted group (CR) (according to the PR group intake) evaluated by biometry, morphometry and histopathology. Both PR and CR groups showed a reduction in the number of glomeruli when compared with the control group (CR: -29% vs C; PR: -41% vs C; p<0.05) as well as infected mice (ICR: -32% vs IC; IPR: -47% vs IC; p<0.05). Among infected mice, ICR group showed higher kidney weights (+18% vs IC and +12% vs IPR; p<0.01). The ICR and IPR groups showed largest perimeter and area when compared to the corresponding uninfected group (ICR vs CR: +26%; IPR vs PR: +21%, p<0.05) and area (ICR vs CR: +95%; IPR vs PR: +50%, p<0.05). The ICR group showed an increase of within Bowman (CR vs ICR: +56%, p<0.05), whereas Bowman's space was reduced (PR vs IPR, -61%; p<0.05). Conclude that malnutrition during lactation programmed the metabolic state of the host, resulting in the evolution of the histology of the renal parenchyma.
Collapse
|
13
|
Carvalho MF, Costa MKMED, Muniz GDS, Castro RMD, Nascimento ED. Experimental diet based on the foods listed in the Family Budget Survey is more detrimental to growth than to the reflex development of rats. REV NUTR 2013. [DOI: 10.1590/s1415-52732013000200006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: The present study assessed the pregnancy and lactation performances of rats fed an experimental diet based on the foods listed in the Family Budget Survey (Pesquisa de Orçamento Familiar) 2002/2003 and the impact of said diet on the growth and development of the pups until weaning. METHODS: Wistar (n=12) rats were randomly divided into two groups: a control group (control group, n=6) fed a commercial chow (Labina®, Brazil) and an experimental group (n=6) fed the Family Budget Survey diet during the entire pregnancy and lactation period. All animals had free access to food and water during the entire study period. RESULTS: The Family Budget Survey diet increased the duration of pregnancy (control group=21.00±0.00; POFG=21.57±0.55, p=0.025) and made the dams lose weight during the lactation period (control group=27.92±18.47g; POFG=-15.66±16.90g). The Family Budget Survey group presented low food, energy and nutrient intakes during pregnancy, which became even lower during lactation. Pups from Family Budget Survey dams presented lower body weight at weaning (control group=52.38±4.49g; POFG=39.88±2.78g, p=0.001) and lower nose-to-anus length (control group= 117.37±0.64mm; POFG=125.62±0.96mm, p=0.001). However, some physical milestones and reflexes occurred earlier, such as the placing response reflex [control group= 12.00 (9.00-15.00) days; POFG=9.50 (9.00-14.00) days] aerial righting reflex [control group=18.00 (17.00-20.00) days; POFG=16.00 (13.00-18.00) days] and unfolding of the external ear [control group=3.00 (3.00-3.00) days; POFG=2.00 (2.00-3.00) days]. CONCLUSION: The Family Budget Survey diet seems to be more detrimental to the physical growth of the pups than to their brain growth, according to the assessed reflexes and physical milestones and measures. This may be due to the low protein content of the diet for rat reproduction and growth combined with adequate fat and essential fatty acid contents. Providing an adequate amount of protein to the Family Budget Survey diet may normalize pup growth.
Collapse
|
14
|
Picó C, Palou M, Priego T, Sánchez J, Palou A. Metabolic programming of obesity by energy restriction during the perinatal period: different outcomes depending on gender and period, type and severity of restriction. Front Physiol 2012. [PMID: 23189059 PMCID: PMC3504314 DOI: 10.3389/fphys.2012.00436] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epidemiological studies in humans and controlled intervention studies in animals have shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. The phenotypes of health or disease are hence the result of the interaction between genetic and environmental factors, starting right from conception. In this sense, gestation and lactation are disclosed as critical periods. Continuous food restriction during these stages may lead to permanent adaptations with lasting effects on the metabolism of the offspring and may influence the propensity to develop different chronic diseases associated with obesity. However, the different outcomes of these adaptations on later health may depend on factors such as the type, duration, period, and severity of the exposure to energy restriction conditions, and they are, in part, gender specific. A better understanding of the factors and mechanisms involved in metabolic programming, and their effects, may contribute significantly to the prevention of obesity, which is considered to be one of the major health concerns of our time. Here, the different outcomes of maternal food restriction during gestation and lactation in the metabolic health of offspring, as well as potential mechanisms underlying these effects are reviewed.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands, and CIBER de Fisiopatología de la Obesidad y Nutrición Spain
| | | | | | | | | |
Collapse
|
15
|
Calcium supplementation prevents obesity, hyperleptinaemia and hyperglycaemia in adult rats programmed by early weaning. Br J Nutr 2011; 107:979-88. [PMID: 22070983 DOI: 10.1017/s0007114511003928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is known that Ca therapy may have anti-obesity effects. Since early weaning leads to obesity, hyperleptinaemia and insulin resistance, we studied the effect of dietary Ca supplementation in a rat model. Lactating rats were separated into two groups: early weaning (EW) - dams were wrapped with a bandage to interrupt lactation in the last 3 d of lactation and control (C) - dams whose pups had free access to milk during the entire lactation period (21 d). At 120 d, EW and C offspring were subdivided into four groups: (1) C, received standard diet; (2) CCa, received Ca supplementation (10 g of calcium carbonate/kg of rat chow); (3) EW, received standard diet; (4) EWCa, received Ca supplementation similar to CCa. The rats were killed at 180 d. The significance level was at P < 0·05. Adult EW offspring displayed hyperphagia (28 %), higher body weight (9 %) and adiposity (77 %), hyperleptinaemia (twofold increase), hypertriacylglycerolaemia (64 %), hyperglycaemia (16 %), higher insulin resistance index (38 %) and higher serum 25-hydroxyvitamin D₃ (fourfold increase), but lower adiponectinaemia:adipose tissue ratio (44 %). In addition, they showed Janus tyrosine kinase 2 and phosphorylated signal transducer and activator of transcription 3 underexpression in hypothalamus (36 and 34 %, respectively), suggesting leptin resistance. Supplementation of Ca for 2 months normalised these disorders. The EW group had no change in serum insulin, thyroxine or triiodothyronine, and Ca treatment did not alter these hormones. In conclusion, we reinforced that early weaning leads to late development of some components of the metabolic syndrome and leptin resistance. Dietary Ca supplementation seems to protect against the development of endocrine and metabolic disorders in EW offspring, maybe through vitamin D inhibition.
Collapse
|
16
|
Corrêa CL, Lisboa PC, Oliveira ED, Moura EGD, Oliveira RMFD, Gomes AC, Machado-Silva JR. The outcome of acute schistosomiasis infection in adult mice with postnatal exposure to maternal malnutrition. Mem Inst Oswaldo Cruz 2011; 106:584-93. [DOI: 10.1590/s0074-02762011000500011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022] Open
|
17
|
Palou M, Torrens JM, Priego T, Sánchez J, Palou A, Picó C. Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner. J Nutr Biochem 2011; 22:574-84. [DOI: 10.1016/j.jnutbio.2010.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/23/2010] [Accepted: 05/03/2010] [Indexed: 01/08/2023]
|
18
|
Gao P, Ishige A, Murakami Y, Nakata H, Oka JI, Munakata K, Yamamoto M, Nishimura K, Watanabe K. Maternal stress affects postnatal growth and the pituitary expression of prolactin in mouse offspring. J Neurosci Res 2011; 89:329-40. [PMID: 21259320 DOI: 10.1002/jnr.22550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 01/12/2023]
Abstract
Maternal stress exerts long-lasting psychiatric and somatic on offspring, which persist into adulthood. However, the effect of maternal stress on the postnatal growth of pups has not been widely reported. In this study, we found that maternal immobilization stress (IS) during lactation resulted in low body weight of male mouse offspring, which persisted after weaning. Despite free access to chow, IS induced maternal malnutrition and decreased the serum insulin-like growth factor-1 (IGF-1) levels in the mothers and in the pups. mRNA expression analysis of anterior pituitary hormones in the pups revealed that growth hormone (GH) and prolactin (PRL), but no other hormones, were decreased by IS. Expression of the pituitary transcription factor PIT1 and isoforms of PITX2, which are essential for the development and function of GH-producing somatotropes and PRL-producing lactotropes, was decreased, whereas that of PROP1, which is critical for the earlier stages of pituitary development, was unchanged. Immunohistochemistry also showed a decrease in pituitary PRL protein expression. These results suggest that stress in a postpartum mother has persistent effects on the body weight of the offspring. Reduced PRL expression in the offspring's pituitary gland may play a role in these effects.
Collapse
Affiliation(s)
- Pengfei Gao
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Souza AS, Fernandes FS, do Carmo MDGT. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev 2011; 69:132-44. [PMID: 21348877 DOI: 10.1111/j.1753-4887.2011.00374.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Undernutrition still affects mothers and children in developing countries and thus remains the major focus of nutritional intervention efforts. Neuronal development, which classically includes neurogenesis, migration, maturation, and synapse refinement, begins in utero and continues into the early postnatal period. These processes are not only genetically regulated but also clearly susceptible to environmental manipulation. Dietary deprivation during early life is known to have adverse effects on brain anatomy, physiology, and biochemistry, and may even lead to permanent brain damage. Although all nutrients are important for the structural development of the central nervous system, lipids such as long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6 n-3) and arachidonic acid (20:4 n-6), are important for normal brain development. The purpose of this literature review is to examine how early undernutrition involving a deficiency in long-chain polyunsaturated fatty acids can affect brain development and function and produce deficits in spatial cognitive learning ability.
Collapse
Affiliation(s)
- Amanda Santos de Souza
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
20
|
Early weaning causes undernutrition for a short period and programmes some metabolic syndrome components and leptin resistance in adult rat offspring. Br J Nutr 2011; 105:1405-13. [DOI: 10.1017/s0007114510005064] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maternal malnutrition during lactation programmes for overweight and central leptin resistance in adulthood. The inhibition of lactation by maternal treatment with bromocriptine (a prolactin inhibitor) programmes for obesity, hyperleptinaemia and leptin resistance. Here, we evaluated the short- and long-term effects of early weaning (EW) on body-weight regulation, leptin signalling, and hormone and lipid profiles in rats offspring. Lactating rats were separated into two groups: EW – dams were wrapped with a bandage to interrupt the lactation in the last 3 d of lactation; control – dams whose pups had free access to milk during all lactation (21 d). Data were significant at P < 0·05. At weaning, EW pups presented lower body weight ( − 10 %), length ( − 4 %), visceral fat ( − 40 %), total fat ( − 30 %), serum leptin ( − 73 %), glycaemia ( − 10 %), serum insulin ( − 20 %) and insulin resistance index (IRI; − 30 %), but higher total body protein content (+40 %). At 180 d, EW offspring showed hyperphagia, higher length (+3 %), body weight (+8 %), visceral and total fat (+36 and 84 %), serum TAG (+96 %), glycaemia (+15 %), leptinaemia (+185 %) and IRI (+29 %); however, they showed lower total protein content ( − 23 %), leptin:body fat ratio (41 %), prolactinaemia ( − 38 %) and adiponectinaemia ( − 59 %). Despite unchanged leptin receptor (OB-R) and signal transducer and activator of transcription 3 (STAT3), they displayed lower hypothalamic janus tyrosine kinase 2, phosphorylated STAT3 and a higher suppressor of cytokine signalling 3 levels, suggesting a central leptin resistance. Adult rats that were early weaned displayed higher adiposity, insulin resistance and dyslipidaemia, which are related to metabolic syndrome development. Our model reinforces the idea that neonatal malnutrition caused by shortening of the lactation period is important for metabolic programming of future diseases.
Collapse
|
21
|
Berleze KJ, Müller AP, Schweigert ID, Longoni A, Sordi F, de Assis AM, Rotta LN, de Souza DOG, Perry MLS. Gestational and postnatal low protein diet alters insulin sensitivity in female rats. Exp Biol Med (Maywood) 2009; 234:1437-44. [PMID: 19934364 DOI: 10.3181/0903-rm-111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nutrition during pregnancy and lactation can program an offspring's metabolism with regard to glucose and lipid homeostasis. A suboptimal environment during fetal, neonatal and infant development is associated with impaired glucose tolerance, type 2 diabetes and insulin resistance in later adult life. However, studies on the effects of a low protein diet imposed from the beginning of gestation until adulthood are scarce. This study's objective was to investigate the effects of a low protein diet imposed from the gestational period until 4 months of age on the parameters of glucose tolerance and insulin responsiveness in Wistar rats. The rats were divided into a low protein diet group and a control group and received a diet with either 7% or 25% protein, respectively. After birth, the rats received the same diet as their mothers, until 4 months of age. In the low protein diet group it was observed that: (i) the hepatic glycogen concentration and hepatic glycogen synthesis from glycerol were significantly greater than in the control group; (ii) the disposal of 2-deoxyglucose in soleum skeletal muscle slices was 29.8% higher than in the control group; (iii) there was both a higher glucose tolerance in the glucose tolerance test; and (iv) a higher insulin responsiveness in than in the control group. The results suggest that the low protein diet animals show higher glucose tolerance and insulin responsiveness relative to normally nourished rats. These findings were supported by the higher hepatic glycogen synthesis and the higher disposal of 2-deoxyglucose in soleum skeletal muscle found in the low protein diet rats.
Collapse
Affiliation(s)
- Kally J Berleze
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo, Porto Alegre, RS 90035-003, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Amorim MF, Dos Santos JA, Hirabara SM, Nascimento E, De Souza SL, De Castro RM, Curi R, Leandro CG. Can physical exercise during gestation attenuate the effects of a maternal perinatal low-protein diet on oxygen consumption in rats? Exp Physiol 2009; 94:906-13. [DOI: 10.1113/expphysiol.2009.047621] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Short- and long-term effects of a neonatal low-protein diet in rats on the morphology of the larynx. Nutrition 2009; 25:855-60. [DOI: 10.1016/j.nut.2008.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/03/2008] [Accepted: 12/19/2008] [Indexed: 11/24/2022]
|
24
|
Effects of low-protein diet onSchistosoma mansonimorphology visualized by morphometry and confocal laser scanning microscopy. J Helminthol 2009; 83:13-21. [DOI: 10.1017/s0022149x08067217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPrevious studies have shown that protein deficiencies can hamper both the course of experimental schistosomiasis and normal development of adult worms. To further investigate this relationship, we compared adult male and femaleSchistosoma mansonifrom malnourished and well-fed mice through morphometric and confocal laser scanning microscopy analysis. Swiss mice were fed protein-deficient diets (8%) and infected subcutaneously with approximately 80S.mansonicercariae (BH strain, Brazil). Control mice were fed a standard rodent diet (23% protein). The nutritional status was evaluated by body weight gain and albumin values. Mice were sacrificed 63 days post-infection. Recovered worms were stained with hydrochloric carmine and preserved as whole-mounts for bright-field examination and confocal microscopy. The body weight gain and serum albumin concentrations were significantly lower (P< 0.05) in malnourished mice than in controls. In general, all morphometric values of specimens grown in malnourished mice were lower than those of control mice. Schistosome worms grown in malnourished mice had statistically significant differences (P< 0.05) in the reproductive system and tegument than those grown in mice fed standard diets. In female worms, vitelline glands showed few remaining follicles and ovaries lacked mature oocytes. In male parasites, tubercles were fewer in number on the dorsal surface and testicular lobes presented fewer differentiated germinal cells. In summary, we describe novel data supporting the view that low-protein diets may influence the development of adult worms.
Collapse
|
25
|
Fraga-Marques MC, Moura EG, Claudio-Neto S, Trevenzoli IH, Toste FP, Passos MCF, Lisboa PC, Manhães AC. Neonatal hyperleptinaemia programmes anxiety-like and novelty seeking behaviours but not memory/learning in adult rats. Horm Behav 2009; 55:272-9. [PMID: 19118558 DOI: 10.1016/j.yhbeh.2008.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/28/2008] [Accepted: 11/30/2008] [Indexed: 12/31/2022]
Abstract
Leptin treatment during lactation programmes for leptin resistance at adulthood, evidenced by hyperleptinaemia, hyperphagia and overweight. Since leptin is known to affect stress response, emotional behaviour and memory/learning performance, the objective of the present study was to evaluate whether neonatal hyperleptinaemia programmes anxiety-like and novelty-seeking behaviours as well as memory/learning in adult male rats. During the first 10 days of lactation (from PN1 to PN10), pups were s.c. injected once per day with either 50 microL of saline (SAL) or murine leptin (LEP - 8 microg/100 g of body mass, saline diluted). Serum leptin was assessed at PN10 and at PN150. Two separate experiments were carried out: 1) experiment one: at PN137, 29 SAL and 30 LEP rats were tested in the elevated plus-maze (EPM) and, at PN142, their behaviour was assessed in the hole board (HB) arena; 2) experiment two: at PN140, a different group of rats consisting of 53 SAL and 56 LEP animals were tested in the radial arm water maze (RAWM). Serum leptin concentration was higher in the LEP group at PN10 and at PN150. LEP animals spent significantly less time in the open arms of the EPM. Furthermore, the number of nose-pokes in the HB arena was higher in LEP rats. There were no differences between groups regarding latency to find the hidden platform in the RAWM. Our results suggests that a central mechanism of leptin resistance at adulthood, caused by neonatal hyperleptinaemia, is associated with an increased level of anxiety and also that it intensifies novelty seeking-behaviour.
Collapse
Affiliation(s)
- Mabel C Fraga-Marques
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Evaluation of body development, fat mass and lipid profile in rats fed with high-PUFA and -MUFA diets, after neonatal malnutrition. Br J Nutr 2008; 101:1639-44. [DOI: 10.1017/s0007114508123406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal malnutrition is associated with several features of the metabolic syndrome, later in life. Although the recovery of malnutrition was studied with different high-fat diets, few studies compare the effects of enriched vegetable oil diets, containing PUFA and MUFA, after weaning. Our aim was to evaluate the recovery with soya oil- or rapeseed oil-enriched diet, after malnutrition in rats whose mothers were food restricted (FR) during lactation. Dams were 50 % FR and compared to standard diet-fed dams (control, C). At 21 d, FR offspring had a lower body mass and length. After weaning C and FR offspring were fed a diet containing 7 % soya oil (7 %sC and 7 %sFR), or supplemented with 19 % soya oil (19 %sC or 19 %sFR) or 19 % rapeseed oil (19 %cC or 19 %cFR). The normal animals fed enriched vegetable oil diets had more visceral fat mass, but lower serum TAG and higher HDL-cholesterol. The 19 %FR groups showed significantly less food intake and body development compared to the 7 %sFR, and the same pattern was observed when this group was compared to the C groups. Absolute and relative mass of vital organs and body were lower in the FR groups. Visceral fat depot was lower in 19 %FR than 7 %FR and C groups. Serum glucose, albumin, TAG, cholesterol, leptin and triiodothyronine did not show significant changes. However, 19 %FR groups showed higher HDL-cholesterol and the 19 %sFR group showed lower serum thyroxine. The data suggest that a higher vegetable oil diet in the recovery of neonatal malnutrition ameliorates some features of the metabolic syndrome later in life.
Collapse
|
27
|
García-Peláez B, Vilà R, Remesar X. Maternal treatment with oleoyl-estrone induces resistance to lipid accrual in their descendants. Obesity (Silver Spring) 2008; 16:2223-31. [PMID: 18719652 DOI: 10.1038/oby.2008.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether treatment of rat dams with oleoyl-estrone (OE) has an effect on the offspring's long-term response to diet restriction during lactation. METHODS AND PROCEDURES Control, OE-treated, and diet-restricted dams were treated up to day 15 of lactation. Changes in food intake and body weight were recorded for dams and their pups. After weaning, pups received a 4-week standard diet followed by a 4-week period of high-fat diet. Lipid, protein, and energy content of pups plus energy intake and efficiency. Serum metabolites (glucose, urea, and cholesterol) and serum hormones (adiponectin, leptin, insulin, and sexual hormones). RESULTS Neither pups from dams in the OE-treated nor in the diet-restricted group showed significant changes in weight, though these two groups ingested 79% of food ingested by controls. At weaning, the pups from OE-treated rats were smaller than those of the control or diet-restricted groups. These pups maintained the differences in size and lipid content during the 4-week standard-diet period, whereas pups from diet-restricted dams showed a sharp decrease in their lipid content. During the 4 weeks of high-fat diet, the male offspring from OE-treated dams increased the difference in lipid content in relation to the pups from control dams whereas in females the differences decreased. Female offspring from diet-restricted dams showed the most marked changes in metabolite and hormone levels in relation to controls. DISCUSSION Treatment of lactating dams with OE programs the metabolic response of their offspring to resist the challenge of a high-fat diet that would lead to obesity in adulthood.
Collapse
Affiliation(s)
- Beatriz García-Peláez
- Departament de Nutrició i Bromatologia, Universitat de Barcelona, Instituto de Salud Carlos III, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Neonatal Low-Protein Diet Changes Deiodinase Activities and Pituitary TSH Response to TRH in Adult Rats. Exp Biol Med (Maywood) 2008; 233:57-63. [DOI: 10.3181/0705-rm-146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein malnutrition during neonatal programs for a lower body weight and hyperthyroidism in the adult offspring were analyzed. Liver deiodinase is increased in such animals, contributing to the high serum triiodothyronine (T3) levels. The level of deiodinase activities in other tissues is unknown. We analyzed the effect of maternal protein restriction during lactation on thyroid, skeletal muscle, and pituitary deiodinase activities in the adult offspring. For pituitary evaluation, we studied the in vitro, thyrotropin-releasing hormone (TRH)–stimulated thyroid-stimulating hormone (TSH) secretion. Lactating Wistar rats and their pups were divided into a control (C) group, fed a normal diet (23% protein), and a protein-restricted (PR) group, fed a diet containing 8% protein. At weaning, pups in both groups were fed a normal diet until 180 days old. The pituitary gland was incubated before and after TRH stimulation, and released TSH was measured by radioimmunoassay. Deiodinase activities (D1 and D2) were determined by release of 125I from [125I]reverse triiodothyronine (rT3). Maternal protein malnutrition during lactation programs the adult offspring for lower muscle D2 (− 43%, P <0.05) and higher muscle D1 (+83%, P <0.05) activities without changes in thyroidal deiodinase activities, higher pituitary D2 activity (1.5 times, P <0.05), and lower TSH response to in vitro TRH (− 56%, P <0.05). The evaluations showed that the lower in vivo TSH detected in adult PR hyperthyroid offspring, programmed by neonatal undernutrition, may be caused by an increment of pituitary deiodination. As described for liver, higher skeletal muscle D1 activity suggests a hyperthyroid status. Our data broaden the knowledge about the adaptive changes to malnutrition during lactation and reinforce the concept of neonatal programming of the thyroid function.
Collapse
|
29
|
Fagundes ATS, Moura EG, Passos MCF, Oliveira E, Toste FP, Bonomo IT, Trevenzoli IH, Garcia RMG, Lisboa PC. Maternal low-protein diet during lactation programmes body composition and glucose homeostasis in the adult rat offspring. Br J Nutr 2007; 98:922-8. [PMID: 17524178 DOI: 10.1017/s0007114507750924] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously we have reported that maternal malnutrition during lactation programmes body weight and thyroid function in the adult offspring. In the present study we evaluated the effect of maternal protein restriction during lactation upon body composition and hormones related to glucose homeostasis in adult rats. During lactation, Wistar lactating rats and their pups were divided into two experimental groups: control (fed a normal diet; 23 % protein) and protein-restricted (PR; fed a diet containing 8 % protein). At weaning, offspring received a normal diet until they were 180 d old. Body weight (BW) and food intake were monitored. Serum, adrenal glands, visceral fat mass (VFM) and carcasses were collected. PR rats showed lower BW ( − 13 %;P < 0·05), VFM ( − 33 %;P < 0·05), total body fat ( − 33 %;P < 0·05), serum glucose ( − 7 %;P < 0·05), serum insulin ( − 26 %,P < 0·05), homeostasis model assessment index ( − 20 %), but higher total adrenal catecholamine content (+90 %;P < 0·05) and serum corticosterone concentration (+51 %;P < 0·05). No change was observed in food intake, protein mass or total body water. The lower BW of PR rats is due to a reduction of white fat tissue, probably caused by an increase in lipolysis or impairment of lipogenesis; both effects could be related to higher catecholaminergic status, as well as to hypoinsulinaemia. To conclude, changes in key hormones which control intermediary metabolism are programmed by maternal protein restriction during lactation, resulting in BW alterations in adult rats.
Collapse
Affiliation(s)
- A T S Fagundes
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Rio de Janeiro, RJ, 20551-030, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|