1
|
Huang X, Hou MJ, Zhu BT. Protection of HT22 neuronal cells against chemically-induced ferroptosis by catechol estrogens: protein disulfide isomerase as a mechanistic target. Sci Rep 2024; 14:23988. [PMID: 39402104 PMCID: PMC11473836 DOI: 10.1038/s41598-024-74742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Ferroptosis is a form of regulated cell death, characterized by excessive iron-dependent lipid peroxidation. Biochemically, ferroptosis can be selectively induced by erastin through glutathione depletion or through inhibition of glutathione peroxidase 4 by RSL3, which leads to accumulation of cytotoxic lipid reactive oxygen species (ROS). Protein disulfide isomerase (PDI) was recently shown to mediate erastin/RSL3-induced ferroptosis and thus also become a new target for protection against chemically-induced ferroptosis. The present study aims to identify endogenous compounds that can protect against erastin/RSL3-induced ferroptotic cell death. We find that 2-hydroxyestrone, 2-hydroxyestradiol, 4-hydroxyestrone and 4-hydroxyestradiol, four major endogenous catechol estrogens, are effective inhibitors of PDI, and can strongly protect against chemically-induced ferroptotic cell death in cultured HT22 mouse hippocampal neuronal cells. The CETSA assay showed that these catechol estrogens can bind to PDI in live cells. PDI knockdown attenuates the protective effect of these catechol estrogens against chemically-induced ferroptosis. Mechanistically, inhibition of PDI's catalytic activity by catechol estrogens abrogates erastin/RSL3-induced dimerization of nitric oxide synthase, thereby preventing the subsequent accumulation of cellular nitric oxide, ROS and lipid-ROS, and ultimately ferroptotic cell death. In addition, joint treatment of cells with catechol estrogens also abrogates erastin/RSL3-induced upregulation of nitric oxide synthase protein levels, which also contributes to the cytoprotective effect of the catechol estrogens. In conclusion, the present study demonstrates that the catechol estrogens are protectors of HT22 neuronal cells against chemically-induced ferroptosis, and inhibition of PDI's catalytic activity by these estrogens contributes to a novel, estrogen receptor-independent mechanism of cytoprotection.
Collapse
Affiliation(s)
- Xuanqi Huang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, 518172, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Castañón-Apilánez M, García-Cabo C, Martin-Martin C, Prieto B, Cernuda-Morollón E, Rodríguez-González P, Pineda-Cevallos D, Benavente L, Calleja S, López-Cancio E. Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients 2024; 16:3218. [PMID: 39339817 PMCID: PMC11435288 DOI: 10.3390/nu16183218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives. A Mediterranean diet (MD) has been associated with neuroprotective effects. We aimed to assess the MD's association with stroke prognosis and the potential mediators involved. Methods. Seventy patients with acute anterior circulation ischemic stroke were included. Dietary patterns were evaluated using the MEDAS scale, a food-frequency questionnaire, and a 24 h recall. Circulating biomarkers including insulin resistance (HOMA index), adipokines (resistin, adiponectin, leptin), choline pathway metabolites (TMAO, betaine, choline), and endothelial progenitor cells (EPCs) were measured. Early neurological improvement (ENI) at 24 h, final infarct volume, and functional outcome at 3 months were assessed. Results. Adherence to MD and olive oil consumption were associated with a lower prevalence of diabetes and atherothrombotic stroke, and with lower levels of fasting glycemia, hemoglobinA1C, insulin resistance, and TMAO levels. Monounsaturated fatty acids and oleic acid consumption correlated with lower resistin levels, while olive oil consumption was significantly associated with EPC mobilization. Multivariate analysis showed that higher MD adherence was independently associated with ENI and good functional prognosis at 3 months. EPC mobilization, lower HOMA levels, and lower resistin levels were associated with ENI, a smaller infarct volume, and good functional outcome. Conclusions. MD was associated with better prognosis after ischemic stroke, potentially mediated by lower insulin resistance, increased EPC mobilization, and lower resistin levels, among other factors.
Collapse
Affiliation(s)
- María Castañón-Apilánez
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen García-Cabo
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Belén Prieto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Clinical Biochemistry Service, Laboratory of Medicine, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Eva Cernuda-Morollón
- Clinical Biochemistry Service, Laboratory of Medicine, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | | | | | - Lorena Benavente
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sergio Calleja
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Elena López-Cancio
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Funcional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
3
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
4
|
Naranjo Á, Álvarez-Soria MJ, Aranda-Villalobos P, Martínez-Rodríguez AM, Martínez-Lara E, Siles E. Hydroxytyrosol, a Promising Supplement in the Management of Human Stroke: An Exploratory Study. Int J Mol Sci 2024; 25:4799. [PMID: 38732018 PMCID: PMC11084205 DOI: 10.3390/ijms25094799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hydroxytyrosol (HT) is a bioactive olive oil phenol with beneficial effects in a number of pathological situations. We have previously demonstrated that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic-stroke-associated damage in mice. Our exploratory pilot study examined this effect in humans. Particularly, a nutritional supplement containing 15 mg of HT/day was administered to patients 24 h after the onset of stroke, for 45 days. Biochemical and oxidative-stress-related parameters, blood pressure levels, serum proteome, and neurological and functional outcomes were evaluated at 45 and 90 days and compared to a control group. The main findings were that the daily administration of HT after stroke could: (i) favor the decrease in the percentage of glycated hemoglobin and diastolic blood pressure, (ii) control the increase in nitric oxide and exert a plausible protective effect in oxidative stress, (iii) modulate the evolution of the serum proteome and, particularly, the expression of apolipoproteins, and (iv) be beneficial for certain neurological and functional outcomes. Although a larger trial is necessary, this study suggests that HT could be a beneficial nutritional complement in the management of human stroke.
Collapse
Affiliation(s)
- Ángela Naranjo
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain;
| | | | | | | | | | - Eva Siles
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain;
| |
Collapse
|
5
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
6
|
Romaus-Sanjurjo D, Castañón-Apilánez M, López-Arias E, Custodia A, Martin-Martín C, Ouro A, López-Cancio E, Sobrino T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxidants (Basel) 2024; 13:138. [PMID: 38397735 PMCID: PMC10885962 DOI: 10.3390/antiox13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is an important cause of mortality and disability worldwide. Given that current treatments do not allow a remarkably better outcome in patients after stroke, it is mandatory to seek new approaches to preventing stroke and/or complementing the current treatments or ameliorating the ischemic insult. Multiple preclinical and clinical studies highlighted the potential beneficial roles of exercise and a Mediterranean diet following a stroke. Here, we investigated the effects of a pre-stroke Mediterranean-like diet supplemented with hydroxytyrosol and with/without physical exercise on male rats undergoing transient middle cerebral artery occlusion (tMCAO). We also assessed a potential synergistic effect with physical exercise. Our findings indicated that the diet reduced infarct and edema volumes, modulated acute immune response by altering cytokine and chemokine levels, decreased oxidative stress, and improved acute functional recovery post-ischemic injury. Interestingly, while physical exercise alone improved certain outcomes compared to control animals, it did not enhance, and in some aspects even impaired, the positive effects of the Mediterranean-like diet in the short term. Overall, these data provide the first preclinical evidence that a preemptive enriched Mediterranean diet modulates cytokines/chemokines levels downwards which eventually has an important role during the acute phase following ischemic damage, likely mediating neuroprotection.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Castañón-Apilánez
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Esteban López-Arias
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Martin-Martín
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena López-Cancio
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
On JY, Kim SH, Kim JM, Park S, Kim KH, Lee CH, Kim SK. Effects of Fermented Artemisia annua L. and Salicornia herbacea L. on Inhibition of Obesity In Vitro and In Mice. Nutrients 2023; 15:2022. [PMID: 37432154 DOI: 10.3390/nu15092022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jeong-Yeon On
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Mee Kim
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
9
|
Villa-Ruano N, Becerra-Martínez E, Cunill-Flores JM, Torres-Castillo JA, Horta-Valerdi GM, Pacheco-Hernández Y. 1H NMR Profiling of the Venom from Hylesia continua: Implications of Small Molecules for Lepidopterism. Toxins (Basel) 2023; 15:toxins15020101. [PMID: 36828416 PMCID: PMC9962855 DOI: 10.3390/toxins15020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Lepidopterism caused by caterpillar contact is considered a public health problem around the world. The local and systemic responses of this pathology include short- and long-term inflammatory events. Although the proteolytic activity of the venoms from caterpillars is strongly associated with an inflammatory response in humans and murine models, fast and acute symptoms such as a burning sensation, itching, and pain should be related to the presence of low-weight hydrophilic molecules which easily influence cell metabolism. This investigation reports on the 1H-Nuclear Magnetic Resonance (NMR) profiling of the venom from the larva of Hylesia continua, a caterpillar linked to frequent cases of lepidopterism in the northern highlands of Puebla, Mexico. According to one-dimensional (1D) and two-dimensional (2D) NMR data, the venom of H. continua contained 19 compounds with proven pain-inducing activity (i.e., acetic acid, lactic acid, formic acid, succinic acid, 2-hydroxyglutaric acid, ethanol, and glutamate), inflammatory activity (i.e., cadaverine, putrescine, and acetoin), as well as natural immunosuppressive activity (i.e., O-phosphocholine and urocanic acid). The levels of the 19 compounds were calculated using quantitative-NMR (qNMR) and extensively discussed on the basis of their toxic properties which partially explain typical symptoms of lepidopterism caused by the larvae of H. continua. To the best of our knowledge, this is the first investigation reporting a complex mixture of small molecules with inflammatory properties dissolved in the venom of a lepidopteran larva.
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
| | - José María Cunill-Flores
- Ingeniería en Biotecnología, Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Reserva Territorial Atlixcáyotl, Tres Cerritos, Puebla 72480, Mexico
| | - Jorge Ariel Torres-Castillo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ave. División del Golfo 356, Colonia Libertad, Ciudad Victoria 87019, Mexico
| | - Guillermo M. Horta-Valerdi
- Ingeniería en Biotecnología, Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Reserva Territorial Atlixcáyotl, Tres Cerritos, Puebla 72480, Mexico
| | - Yesenia Pacheco-Hernández
- Ingeniería en Biotecnología, Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Reserva Territorial Atlixcáyotl, Tres Cerritos, Puebla 72480, Mexico
- Correspondence:
| |
Collapse
|
10
|
Pyrocatechol Alleviates Cisplatin-Induced Acute Kidney Injury by Inhibiting ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2158644. [PMID: 36193072 PMCID: PMC9526614 DOI: 10.1155/2022/2158644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
As one of the most common cancer chemotherapy drugs, cisplatin is widely used in cancer management. However, cisplatin-induced nephrotoxicity occurs in patients who receive this drug. This study is aimed at developing therapeutic agents that effectively alleviate the nephrotoxic effects during cisplatin treatment. We identified a compound named pyrocatechol (PCL) from a natural product library that significantly alleviated cisplatin-induced cytotoxicity in vitro. Pyrocatechol treatment substantially ameliorated cisplatin (20 mg · kg−1) treatment-induced neuropathological indexes, including inflammatory cell infiltration and apoptosis, in vivo. Mechanistically, pyrocatechol significantly prevented oxidative stress-induced apoptosis by activating glutathione peroxidase 4 (GPX4) to reduce reactive oxygen species (ROS) accumulation in cisplatin-treated cells. In addition, pyrocatechol significantly inhibited ROS-induced JNK/P38 activation. Thus, we found that pyrocatechol prevents ROS-mediated JNK/P38 MAPK activation, apoptosis, and cytotoxicity through GPX4. Our study demonstrated that pyrocatechol is a novel therapeutic agent against cisplatin-induced kidney injury.
Collapse
|
11
|
Oyeyinka SA, Gbashi S, A. Onarinde B, Adebo OA, Njobeh PB. Metabolite profile of raw and cooked pasta from whole wheat grain enriched with Bambara groundnut. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samson A. Oyeyinka
- Centre of Excellence in Agr‐food Technologies, National Centre for Food Manufacturing University of Lincoln Holbeach, PE12 7PT UK
- Department of Biotechnology and Food Technology, Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| | - Bukola A. Onarinde
- Centre of Excellence in Agr‐food Technologies, National Centre for Food Manufacturing University of Lincoln Holbeach, PE12 7PT UK
| | - Oluwafemi A. Adebo
- Department of Biotechnology and Food Technology, Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| |
Collapse
|
12
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
AL-Johani NS, Al-Zharani M, Aljarba NH, Alhoshani NM, Alkeraishan N, Alkahtani S. Antioxidant and Anti-Inflammatory Activities of Coenzyme-Q10 and Piperine against Cyclophosphamide-Induced Cytotoxicity in HuH-7 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8495159. [PMID: 35872848 PMCID: PMC9300329 DOI: 10.1155/2022/8495159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Cyclophosphamide (CP) alkylates DNA and RNA produce crosslinks that cause gene expression and protein synthesis inhibition to exert its anticancer effect. However, adverse effects of CP have restricted the CP application in cancer treatment. We investigate coenzyme-Q10 (Q10) and piperine (P) protective role on CP oxidant and inflammatory effect. HuH-7 cells were exposed to varying concentrations and combinations of Q10, P, and CP and evaluated intracellular ROS generation as well as inflammatory responses upon exposure. Our results showed Q10 and/or P suppressed both basal and CP-induced ROS generation without upsetting the balance in activities of SOD, catalase, and GSH levels. Analysis of proinflammatory cytokine gene expression showed that CP treatment alone only induced expression of IL-6β. However, coexposure of the cells to both Q10 and CP caused significant suppression of basal Cox-2 and TNF-α gene expression, while coexposure of the cells to CP and P with Co-Q10 suppressed basal IL-1β gene expression. Q10 also suppressed CP-induced expression of Cox-1. P and CP suppressed basal expression of IL-6β and IL-12β, while P and Q10 suppressed CP-induced IL1-α gene expression. Taken together, both Q10 and P seem to be inhibiting NFκβ pathway to suppress CP-mediated inflammation. In conclusion, Q10 and/or P induced suppression of ROS generation mediated by CP and also suppressed CP-induced inflammation by inhibiting expression of specific inflammatory cytokine.
Collapse
Affiliation(s)
- Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-Zharani
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh 11623, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Norah M. Alhoshani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora Alkeraishan
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Hrubša M, Alva R, Parvin MS, Macáková K, Karlíčková J, Fadraersada J, Konečný L, Moravcová M, Carazo A, Mladěnka P. Comparison of Antiplatelet Effects of Phenol Derivatives in Humans. Biomolecules 2022; 12:117. [PMID: 35053265 PMCID: PMC8774223 DOI: 10.3390/biom12010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Abstract
Flavonoids are associated with positive cardiovascular effects. However, due to their low bioavailability, metabolites are likely responsible for these properties. Recently, one of these metabolites, 4-methylcatechol, was described to be a very potent antiplatelet compound. This study aimed to compare its activity with its 22 close derivatives both of natural or synthetic origin in order to elucidate a potential structure-antiplatelet activity relationship. Blood from human volunteers was induced to aggregate by arachidonic acid (AA), collagen or thrombin, and plasma coagulation was also studied. Potential toxicity was tested on human erythrocytes as well as on a cancer cell line. Our results indicated that 17 out of the 22 compounds were very active at a concentration of 40 μM and, importantly, seven of them had an IC50 on AA-triggered aggregation below 3 μM. The effects of the most active compounds were confirmed on collagen-triggered aggregation too. None of the tested compounds was toxic toward erythrocytes at 50 μM and four compounds partly inhibited proliferation of breast cancer cell line at 100 μM but not at 10 μM. Additionally, none of the compounds had a significant effect on blood coagulation or thrombin-triggered aggregation. This study hence reports four phenol derivatives (4-ethylcatechol, 4-fluorocatechol, 2-methoxy-4-ethylphenol and 3-methylcatechol) suitable for future in vivo testing.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Raúl Alva
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Mst Shamima Parvin
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.S.P.); (K.M.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.S.P.); (K.M.)
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Jaka Fadraersada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Lukáš Konečný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.H.); (R.A.); (J.F.); (L.K.); (M.M.); (P.M.)
| |
Collapse
|
15
|
Oliveira KRHM, Torres MLM, Kauffmann N, de Azevedo Ataíde BJ, de Souza Franco Mendes N, dos Anjos LM, dos Santos Borges R, Bahia CP, Leão LKR, da Conceição Fonseca Passos A, Herculano AM, de Jesus Oliveira Batista E. Euterpe oleracea fruit (Açai)-enriched diet suppresses the development of experimental cerebral malaria induced by Plasmodium berghei (ANKA) infection. BMC Complement Med Ther 2022; 22:11. [PMID: 35016657 PMCID: PMC8751313 DOI: 10.1186/s12906-021-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral malaria is one of the most severe complications attributed to protozoal infection by Plasmodium falciparum, gaining prominence in children mortality rates in endemic areas. This condition has a complex pathogenesis associated with behavioral, cognitive and motor sequels in humans and current antimalarial therapies have shown little effect in those aspects. Natural products with antioxidant and anti-inflammatory properties have become a valuable alternative therapeutic option in the treatment of distinct conditions. In this context, this study investigated the neuroprotective effect of Euterpe oleracea (açai) enriched diet during the development of experimental cerebral malaria induced by the inoculation of Swiss albino mice with Plasmodium berghei ANKA strain. Methods After Plasmodium infection, animals were maintained on a feeding with Euterpe oleracea enriched ration and parameters such as survival curve, parasitemia and body weight were routinely monitored. The present study has also evaluated the effect of açai-enriched diet on the blood-brain barrier leakage, histological alterations and neurocognitive impairments in mice developing cerebral malaria. Results Our results demonstrate that between 7th–19th day post infection the survival rate of the group treated with açai enriched ration was higher when compared with Plasmodium-infected mice in which 100% of mice died until the 11th days post-infection, demonstrating that açai diet has a protective effect on the survival of infected treated animals. The same was observed in the brain vascular extravasation, where Evans blue dye assays showed significantly less dye extravasation in the brains of Plasmodium-infected mice treated with açai enriched ration, demonstrating more preserved blood-brain barrier integrity. Açai-enriched diet also attenuate the histopathological alterations elicited by Plasmodium berghei infection. We also showed a decrease of the neurological impairments arising from the exposure of cerebral parenchyma in the group treated with açai diet, ameliorating motor and neuropsychiatric changes, analyzed through the SHIRPA protocol. Conclusion With these results, we conclude that the treatment with açai enriched ration decreased the mortality of infected animals, as well as protected the blood-brain barrier and the neurocognitive deficits in Plasmodium-infected animals.
Collapse
|
16
|
De La Cruz Cortés JP, Pérez de Algaba I, Martín-Aurioles E, Arrebola MM, Ortega-Hombrados L, Rodríguez-Pérez MD, Fernández-Prior MÁ, Bermúdez-Oria A, Verdugo C, González-Correa JA. Extra Virgin Oil Polyphenols Improve the Protective Effects of Hydroxytyrosol in an In Vitro Model of Hypoxia-Reoxygenation of Rat Brain. Brain Sci 2021; 11:brainsci11091133. [PMID: 34573155 PMCID: PMC8471209 DOI: 10.3390/brainsci11091133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is the component primarily responsible for the neuroprotective effect of extra virgin olive oil (EVOO). However, it is less effective on its own than the demonstrated neuroprotective effect of EVOO, and for this reason, it can be postulated that there is an interaction between several of the polyphenols of EVOO. The objective of the study was to assess the possible interaction of four EVOO polyphenols (HT, tyrosol, dihydroxyphenylglycol, and oleocanthal) in an experimental model of hypoxia-reoxygenation in rat brain slices. The lactate dehydrogenase (LDH) efflux, lipid peroxidation, and peroxynitrite production were determined as measures of cell death, oxidative stress, and nitrosative stress, respectively. First, the polyphenols were incubated with the brain slices in the same proportions that exist in EVOO, comparing their effects with those of HT. In all cases, the cytoprotective and antioxidant effects of the combination were greater than those of HT alone. Second, we calculated the concentration-effect curves for HT in the absence or presence of each polyphenol. Tyrosol did not significantly modify any of the variables inhibited by HT. Dihydroxyphenylglycol only increased the cytoprotective effect of HT at 10 µM, while it increased its antioxidant effect at 50 and 100 µM and its inhibitory effect on peroxynitrite formation at all the concentrations tested. Oleocanthal increased the cytoprotective and antioxidant effects of HT but did not modify its inhibitory effect on nitrosative stress. The results of this study show that the EVOO polyphenols DHPG and OLC increase the cytoprotective effect of HT in an experimental model of hypoxia-reoxygenation in rat brain slices, mainly due to a possibly synergistic effect on HT's antioxidant action. These results could explain the greater neuroprotective effect of EVOO than of the polyphenols alone.
Collapse
Affiliation(s)
- José Pedro De La Cruz Cortés
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
- Correspondence: ; Tel.: +34-952-131-567
| | | | | | | | - Laura Ortega-Hombrados
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María Dolores Rodríguez-Pérez
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Cristina Verdugo
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - José Antonio González-Correa
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| |
Collapse
|
17
|
|
18
|
Pathania A, Kumar R, Sandhir R. Hydroxytyrosol as anti-parkinsonian molecule: Assessment using in-silico and MPTP-induced Parkinson's disease model. Biomed Pharmacother 2021; 139:111525. [PMID: 33882412 DOI: 10.1016/j.biopha.2021.111525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
3-Hydroxytyrosol (HXT) is a natural polyphenol present in extra virgin olive oil. It is a key component of Mediterranean diet and is known for its strong antioxidant activity. The present study evaluated the potential of HXT as an anti-parkinsonian molecule in terms of its ability to inhibit MAO-B and thereby maintaining dopamine (DA) levels in Parkinson's disease (PD). In-silico molecular docking study followed by MMGBSA binding free energy calculation revealed that HXT has a strong binding affinity for MAO-B in comparison to MAO-A. Moreover, rasagiline and HXT interacted with the similar binding sites and modes of interactions. Additionally, molecular dynamics simulation studies revealed stable nature of HXT-MAO-B interaction and also provided information about the amino acid residues involved in binding. Moreover, in vitro studies revealed that HXT inhibited MAO-B in human platelets with IC50 value of 7.78 μM. In vivo studies using MPTP-induced mouse model of PD revealed increase in DA levels with concomitant decrease in DA metabolites (DOPAC and HVA) on HXT treatment. Furthermore, MAO-B activity was also inhibited on HXT administration to PD mice. In addition, HXT treatment prevented MPTP-induced loss of DA neurons in substantia nigra and their nerve terminals in the striatum. HXT also attenuated motor impairments in PD mice assessed by catalepsy bar, narrow beam walk and open field tests. Thus, the present findings reveal HXT as a potential inhibitor of MAO-B, which may be used as a lead molecule for the development of therapeutics for PD.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
Lima Júnior JPD, Franco RR, Saraiva AL, Moraes IB, Espindola FS. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113667. [PMID: 33301920 DOI: 10.1016/j.jep.2020.113667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The substantial increase in diabetes cases worldwide has been a major public health problem, and the use of medicinal plants can be considered an interesting alternative to control the disease and its complications. Anacardium humile St. Hill. (Anacardiaceae) is a typical plant from the Brazilian savanna, popularly known for its antidiarrheal, expectorant, antidiabetic and anti-inflammatory properties, however, few studies have fully described its biological properties. This study aimed to investigate in vitro and ex vivo the antioxidant and antiglycation potential of A. humile ethanolic extract, its organic fractions and three isolated molecules (quercetin, catechin and gallic acid), their capacity to inhibit the glycolytic enzyme α-amylase, as well as their cytotoxic effects against RAW264.7 macrophages. MATERIAL AND METHODS The ethanolic extract of A. humile, its organic fractions and three isolated molecules (catechin, quercetin and gallic acid) were tested for their antioxidant (ORAC, FRAP and DPPH) and antiglycation (BSA/Fructose, BSA/Methylglyoxal, Arginine/Methylglyoxal and Lysine/Methylglyoxal) capacities, and also for its potential to inhibit the enzyme α-amylase. Additionally, bioactive compounds present in the A. humile leaves fractions were elucidated by an HPLC-ESIMS/MS analysis. RESULTS The analysis showed relevant antioxidant activity of DCM (1264.85 ± 76.90 μM Trolox eq/g ORAC; 216.71 ± 1.04 μM Trolox eq/g FRAP and 3.03 ± 0.08 IC50 μg/mL IC50 DPPH) and EtOAc (1300.11 ± 33.04 ORAC, 236.21 ± 23.86 FRAP and 3.03 ± 0.14 μg/mL IC50 DPPH) fractions and also of the isolated molecules, mainly gallic acid (1291.19 ± 8.41 μM Trolox eq/g ORAC, 1103.52 ± 31.48 μM Trolox eq/g FRAP and 0.78 ± 0.11 μg/mL IC50 DPPH). Concerning the antiglycation activity, all samples inhibited over 88% in the BSA-FRU method. In the BSA-MGO and ARG-MGO methods, the Hex, DCM, EtOAc fractions and the isolated molecule catechin stood out. However, in the LYS-MGO model, only the isolated molecules showed significant results. In α-amylase assay, all fractions, for exception Hex, presented notable inhibition capacity with low IC50 values, especially DCM, EtOAc, ButOH and H2O (IC50 0.56 ± 0.10, 0.84 ± 0.01, 0.74 ± 0.03 and 0.79 ± 0.06 μg/mL, respectively). Tests using hepatic tissue showed a notorious capacity of the DCM, AcOEt and ButOH fractions, as well as of the isolated molecules to inhibit lipid peroxidation and ROS production, and also to preserve thiol groups. Molecules of great antioxidant potential were found in our samples, such as kaempferol, quercetin, catechin, gallic acid and luteolin. CONCLUSION A. humile extract and its organic fractions showed promising antioxidant and antiglycation potential and a prominent capacity to inhibit the α-amylase enzyme. Hence, this study presents new results and stimulates further research to elucidate the biological properties of A. humile and its capacity to manage DM and its complications.
Collapse
Affiliation(s)
- Joed Pires de Lima Júnior
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - André Lopes Saraiva
- Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Izabela Barbosa Moraes
- Center of Biological Sciences and Health (CCBS), Federal University of Oeste da Bahia (UFOB), Barreiras, BA, Brazil
| | - Foued Salmen Espindola
- Graduate Program in Cell Biology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biotechnology (IBTEC), Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
20
|
García-Cabo C, Castañón-Apilánez M, Benavente-Fernández L, Jimenez JM, Arenillas J, Castellanos M, Rodrigo-Stevens G, Tejada-Meza H, Pérez C, Martínez-Zabaleta M, Rodriguez-Castro E, Sánchez J, Julian-Villaverde F, Pinedo A, Palacio E, López-Cancio E. Impact of Mediterranean Diet prior to Stroke on the Prognosis of Patients Undergoing Endovascular Treatment. Cerebrovasc Dis 2021; 50:303-309. [PMID: 33730721 DOI: 10.1159/000514136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/13/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Mediterranean diet (MeDiet) has been associated with lower risk of stroke. Additionally, animal models suggested that some components of MeDiet are associated with better outcomes after ischemic stroke (IS). We aimed to evaluate the association between global adherence to the MeDiet and the consumption of particular components of the MeDiet with stroke outcomes. MATERIAL AND METHODS Multicenter observational study of consecutive IS patients treated with endovascular therapy. Inclusion criteria were large anterior circulation vessel occlusion and pre-stroke modified Rankin scale (mRS) <2. Adherence to MeDiet prior to stroke was evaluated using MEDAS 14-item scale. We evaluated the total score and also individual components of the scale. Clinical, radiological, and prognostic variables were collected. Good functional prognosis was considered as mRS ≤2 and complete recanalization as thrombolysis in cerebral infarction 3. RESULTS From January 1 to October 30, 2018, 239 patients were included (mean age 71 years, 48% women, median baseline NIHSS 16). Median MEDAS scale was 8 points (7-10). Patients with a higher adherence to MeDiet had significantly lower total and LDL-cholesterol levels. Total adherence score was not associated with stroke outcomes. In multivariate analyses, consumption of olive oil as the principal source of fat was independently associated with good functional outcome at 3 months, OR 3.2 (1.1-10.1) and daily consumption of wine was independently associated with complete recanalization, OR 2.0 (1.1-3.8). CONCLUSIONS Our study suggests that some components of MeDiet, such as olive oil and wine consumption, are related to better prognosis after stroke. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Carmen García-Cabo
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Jose Maria Jimenez
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Arenillas
- Neurology Department, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Mar Castellanos
- Neurology Department, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario, A Coruña, Spain
| | | | | | - Cristina Pérez
- Neurology Department, Hospital Clínico de Zaragoza, Zaragoza, Spain
| | | | - Emilio Rodriguez-Castro
- Neurology Department, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Joaquín Sánchez
- Neurology Department, Complejo Hospitalario de Vigo, Vigo, Spain
| | | | - Ana Pinedo
- Neurology Department, Hospital de Galdakao, Bilbao, Spain
| | - Enrique Palacio
- Neurology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Elena López-Cancio
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain,
| | | |
Collapse
|
21
|
Silva AFR, Resende D, Monteiro M, Coimbra MA, Silva AMS, Cardoso SM. Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants (Basel) 2020; 9:antiox9121246. [PMID: 33302474 PMCID: PMC7763879 DOI: 10.3390/antiox9121246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. The European Food Safety Authority recommends regular consumption of HT due to its several beneficial effects on human health, which are closely associated to its antioxidant activity. These reasons make HT an excellent candidate for application as a functional ingredient in the design of novel food products. Patents already exist for methodologies of extraction, purification, and application of HT in supplements and food products. The present review discusses the impact of HT incorporation on food properties and its effects on consumers, based on relevant data related to the use of HT as a functional ingredient, both as a pure compound or in the form of HT-rich extracts, in various food products, namely in edible oils, beverages, bakery products, as well animal-based foods such as meat, fishery and dairy products.
Collapse
|
22
|
Nam G, Hong M, Lee J, Lee HJ, Ji Y, Kang J, Baik MH, Lim MH. Multiple reactivities of flavonoids towards pathological elements in Alzheimer's disease: structure-activity relationship. Chem Sci 2020; 11:10243-10254. [PMID: 34094290 PMCID: PMC8162271 DOI: 10.1039/d0sc02046j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Amyloid-β (Aβ) accumulation, metal ion dyshomeostasis, oxidative stress, and cholinergic deficit are four major characteristics of Alzheimer's disease (AD). Herein, we report the reactivities of 12 flavonoids against four pathogenic elements of AD: metal-free and metal-bound Aβ, free radicals, and acetylcholinesterase. A series of 12 flavonoids was selected based on the molecular structures that are responsible for multiple reactivities including hydroxyl substitution and transfer of the B ring from C2 to C3. Our experimental and computational studies reveal that the catechol moiety, the hydroxyl groups at C3 and C7, and the position of the B ring are important for instilling multiple functions in flavonoids. We establish a structure-activity relationship of flavonoids that should be useful for designing chemical reagents with multiple reactivities against the pathological factors of AD.
Collapse
Affiliation(s)
- Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Juri Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University Gongju 32588 Republic of Korea
| | - Yonghwan Ji
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
23
|
Calahorra J, Shenk J, Wielenga VH, Verweij V, Geenen B, Dederen PJ, Peinado MÁ, Siles E, Wiesmann M, Kiliaan AJ. Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke. Nutrients 2019; 11:E2430. [PMID: 31614692 PMCID: PMC6836045 DOI: 10.3390/nu11102430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the leading causes of adult disability worldwide. After ischemic stroke, damaged tissue surrounding the irreversibly damaged core of the infarct, the penumbra, is still salvageable and is therefore a target for acute therapeutic strategies. The Mediterranean diet (MD) has been shown to lower stroke risk. MD is characterized by increased intake of extra-virgin olive oil, of which hydroxytyrosol (HT) is the foremost phenolic component. This study investigates the effect of an HT-enriched diet directly after stroke on regaining motor and cognitive functioning, MRI parameters, neuroinflammation, and neurogenesis. Stroke mice on an HT diet showed increased strength in the forepaws, as well as improved short-term recognition memory probably due to improvement in functional connectivity (FC). Moreover, mice on an HT diet showed increased cerebral blood flow (CBF) and also heightened expression of brain derived neurotrophic factor (Bdnf), indicating a novel neurogenic potential of HT. This result was additionally accompanied by an enhanced transcription of the postsynaptic marker postsynaptic density protein 95 (Psd-95) and by a decreased ionized calcium-binding adapter molecule 1 (IBA-1) level indicative of lower neuroinflammation. These results suggest that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic stroke-associated damage.
Collapse
Affiliation(s)
- Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Justin Shenk
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vera H Wielenga
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Vivienne Verweij
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Bram Geenen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Pieter J Dederen
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - M Ángeles Peinado
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Maximilian Wiesmann
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| | - Amanda J Kiliaan
- Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Radboud Alzheimer Center, Department of Anatomy, Preclinical Imaging Centre PRIME, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Carranza-Torres IE, Viveros-Valdez E, Guzmán-Delgado NE, García-Davis S, Morán-Martínez J, Betancourt-Martínez ND, Balderas-Rentería I, Carranza-Rosales P. Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:367-375. [PMID: 31168340 PMCID: PMC6535197 DOI: 10.22038/ijbms.2019.30056.7242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective(s): Precision-cut tissue slices are considered an organotypic 3D model widely used in biomedical research. The comet assay is an important screening test for early genotoxicity risk assessment that is mainly applied on in vitro models. The aim of the present study was to provide a 3D organ system for determination of genotoxicity using a modified method of the comet assay since the stromal components from the original tissue make this technique complicated. Materials and Methods: A modified comet assay technique was validated using precision-cut hamster kidney slices to analyze the antigenotoxic effect of the phenolic compounds caffeic acid, chlorogenic acid, and rosmarinic acid in tissue slices incubated with 15 µM HgCl2. Cytotoxicity of the phenolic compounds was studied in Vero cells, and by morphologic analysis in tissue slices co-incubated with HgCl2 and phenolic compounds. Results: A modification of the comet assay allows obtaining better and clear comet profiles for analysis. Non-cytotoxic concentrations of phenolic acids protected kidney tissue slices against mercury-induced DNA damage, and at the same time, were not nephrotoxic. The highest protection was provided by 3 µg/ml caffeic acid, although 6 µg/ml rosmarinic and 9 µg/ml chlorogenic acids also exhibited protective effects. Conclusion: This is the first time that a modification of the comet assay technique is reported as a tool to visualize the comets from kidney tissue slices in a clear and simple way. The phenolic compounds tested in this study provided protection against mercury-induced genotoxic damage in precision-cut kidney slices.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México.,Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Nancy Elena Guzmán-Delgado
- División de Investigación, Unidad Médica de Alta Especialidad # 34, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Sara García-Davis
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Isaías Balderas-Rentería
- Laboratorio de Ingeniería Genética y Genómica, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| |
Collapse
|
25
|
Li X. Comparative Study of 1,1‐Diphenyl‐2‐picryl‐hydrazyl Radical (DPPH•) Scavenging Capacity of the Antioxidant Xanthones Family. ChemistrySelect 2018. [DOI: 10.1002/slct.201803362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xican Li
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineGuangzhou Higher Education Mega Centre, Guangzhou China
| |
Collapse
|
26
|
Li X, Jiang Q, Chen B, Luo X, Chen D. Structure-Activity Relationship and Prediction of the Electron-Transfer Potential of the Xanthones Series. ChemistryOpen 2018; 7:730-736. [PMID: 30258745 PMCID: PMC6148407 DOI: 10.1002/open.201800108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 01/19/2023] Open
Abstract
The structure-activity relationships of 31 xanthones were analyzed by using the ferric reducing antioxidant power (FRAP) assay to determine their electron-transfer (ET) potential. It was proven that the ET potential of xanthones was dominated by four moieties (i.e. hydroquinone moiety, 5,6-catechol moiety, 6,7-catechol moiety, and 7,8-catechol moiety) and was only slightly affected by other structural features, including a single phenolic OH group, the resorcinol moiety, the transannular dihydroxy moiety, a methoxy group, a sugar residue, an isoprenyl group, a cyclized isoprenyl group, and an isopentanol group. The results could be used to predict the ET potentials of other antioxidant xanthones.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega CenterGuangzhou510006China
- Innovative Research & Development Laboratory of TCMGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Qian Jiang
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega CenterGuangzhou510006China
- Innovative Research & Development Laboratory of TCMGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Ban Chen
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega CenterGuangzhou510006China
- Innovative Research & Development Laboratory of TCMGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Xiaoling Luo
- School of Chinese Herbal MedicineGuangzhou University of Chinese MedicineWaihuan East Road No. 232, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Dongfeng Chen
- School of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhou510006China
- The Research Center of Basic Integrative MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
27
|
Li X, Chen B, Zhao X, Chen D. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide Radical (PTIO•) Trapping Activity and Mechanisms of 16 Phenolic Xanthones. Molecules 2018; 23:molecules23071692. [PMID: 29997352 PMCID: PMC6100357 DOI: 10.3390/molecules23071692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
This study used the 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) trapping model to study the antioxidant activities of 16 natural xanthones in aqueous solution, including garcinone C, γ-mangostin, subelliptenone G, mangiferin, 1,6,7-trihydroxy-xanthone, 1,2,5-trihydroxyxanthone, 1,5,6-trihydroxyxanthone, norathyriol, 1,3,5,6-tetrahydroxy-xanthone, isojacareubin, 1,3,5,8-tetrahydroxyxanthone, isomangiferin, 2-hydroxyxanthone, 7-O-methylmangiferin, neomangiferin, and lancerin. It was observed that most of the 16 xanthones could scavenge the PTIO• radical in a dose-dependent manner at pH 4.5 and 7.4. Among them, 12 xanthones of the para-di-OHs (or ortho-di-OHs) type always exhibited lower half maximal inhibitory concentration (IC50) values than those not of the para-di-OHs (or ortho-di-OHs) type. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis revealed that most of these xanthones gave xanthone-xanthone dimers after incubation with PTIO•, except for neomangiferin. Based on these data, we concluded that the antioxidant activity of phenolic xanthone may be mediated by electron-transfer (ET) plus H⁺-transfer mechanisms. Through these mechanisms, some xanthones can further dimerize unless they bear huge substituents with steric hindrance. Four substituent types (i.e., para-di-OHs, 5,6-di-OHs, 6,7-di-OHs, and 7,8-di-OHs) dominate the antioxidant activity of phenolic xanthones, while other substituents (including isoprenyl and 3-hydroxy-3-methylbutyl substituents) play a minor role as long as they do not break the above four types.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Xiaojun Zhao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
28
|
Bonifácio D, Martins C, David B, Lemos C, Neves M, Almeida A, Pinto D, Faustino M, Cunha Â. Photodynamic inactivation of Listeria innocua
biofilms with food-grade photosensitizers: a curcumin-rich extract of Curcuma longa vs
commercial curcumin. J Appl Microbiol 2018; 125:282-294. [DOI: 10.1111/jam.13767] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- D. Bonifácio
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| | - C. Martins
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| | - B. David
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| | - C. Lemos
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| | - M.G.P.M.S. Neves
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
| | - A. Almeida
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| | - D.C.G.A. Pinto
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
| | - M.A.F. Faustino
- Chemistry Department and QOPNA; University of Aveiro; Aveiro Portugal
| | - Â. Cunha
- Biology Department and CESAM; University of Aveiro; Aveiro Portugal
| |
Collapse
|
29
|
Deiana M, Serra G, Corona G. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food Funct 2018; 9:4085-4099. [DOI: 10.1039/c8fo00354h] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extra virgin olive oil polyphenols concentrate at the intestinal level and, by modulating the microbiota, oxidative status and inflammation, contribute to prevent the onset or delay the progression of inflammatory/degenerative diseases.
Collapse
Affiliation(s)
- Monica Deiana
- Department of Biomedical Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Gessica Serra
- Department of Food and Nutritional Sciences
- University of Reading
- Reading
- UK
| | - Giulia Corona
- Health Sciences Research Centre
- University of Roehampton
- SW15 4JD London
- UK
| |
Collapse
|
30
|
Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. Int J Mol Sci 2017; 18:ijms18050930. [PMID: 28452954 PMCID: PMC5454843 DOI: 10.3390/ijms18050930] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Hydroxytyrosol (HT) ((3,4-Dihydroxyphenyl)ethanol) is a polyphenol mainly present in extra virgin olive oil (EVOO) but also in red wine. It has a potent antioxidant effect related to hydrogen donation, and the ability to improve radical stability. The phenolic content of olive oil varies between 100 and 600 mg/kg, due to multiple factors (place of cultivation, climate, variety of the olive and level of ripening at the time of harvest), with HT and its derivatives providing half of that content. When consumed, EVOO’s phenolic compounds are hydrolyzed in the stomach and intestine, increasing levels of free HT which is then absorbed in the small intestine, forming phase II metabolites. It has been demonstrated that HT consumption is safe even at high doses, and that is not genotoxic or mutagenic in vitro. The beneficial effects of HT have been studied in humans, as well as cellular and animal models, mostly in relation to consumption of EVOO. Many properties, besides its antioxidant capacity, have been attributed to this polyphenol. The aim of this review was to assess the main properties of HT for human health with emphasis on those related to the possible prevention and/or treatment of non-communicable diseases.
Collapse
|
31
|
Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 2016; 95:1360-1372. [PMID: 27862176 DOI: 10.1002/jnr.23986] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro,", Catania, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Martínez-Lara E, Peña A, Calahorra J, Cañuelo A, Siles E. Hydroxytyrosol decreases the oxidative and nitrosative stress levels and promotes angiogenesis through HIF-1 independent mechanisms in renal hypoxic cells. Food Funct 2016; 7:540-8. [PMID: 26608793 DOI: 10.1039/c5fo00928f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the kidney, tissue oxygen tension is comparatively low and this renders this organ more prone to hypoxic injury. In fact, hypoxia has a central role in the development and progression of renal disease. The recovery from this situation is dependent on the degree to which sublethally damaged cells restore normal function. The master regulator of the hypoxic response is hypoxia-inducible factor-1 (HIF-1). HIF-1 activity depends on the HIF-1α subunit level which is regulated by oxygen, nitric oxide (NO), reactive oxygen species and mTOR. Given the antioxidant and antinitrosative properties ascribed to hydroxytyrosol (HT), this study evaluates the impact of this olive oil polyphenol on the response to hypoxia in kidney cells. For this purpose, the human embryonic kidney HEK293T cell line was treated with HT and cultured under sublethal hypoxic conditions. Our results demonstrate that HT treatment decreases both, post-hypoxic reactive oxygen species and NO levels and, consequently, HIF-1α accumulation. However, HT does not affect mTOR activation or the factor inhibiting HIF level but promotes the expression of angiogenic proteins, suggesting that HT activates an adaptive response to hypoxia in a HIF-1α-independent pathway. In fact, this effect could be ascribed to the up-regulation of estrogen-related receptor α. In conclusion, our results suggest that in renal hypoxia, HT treatment might act as an effective preventive therapeutic approach to decrease stress and to improve the adaptive response to this pathological situation.
Collapse
Affiliation(s)
- Esther Martínez-Lara
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Peña
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Cañuelo
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| |
Collapse
|
33
|
Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 2016; 94:1488-1498. [DOI: 10.1002/jnr.23893] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- V. Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - J. Giordano
- Department of Clinical and Experimental Medicine, School of Medicine; University of Catania; Catania Italy
| | - M. Ruggieri
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
| | - D. Berritta
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - A. Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - M.L. Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - R. Bianchini
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
- Service of Child Neuropsychiatry, ASP Siracusa, Italy
| | - E.J. Calabrese
- Environmental Health Sciences Division, School of Public Health; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
34
|
López-Villodres JA, Abdel-Karim M, De La Cruz JP, Rodríguez-Pérez MD, Reyes JJ, Guzmán-Moscoso R, Rodriguez-Gutierrez G, Fernández-Bolaños J, González-Correa JA. Effects of hydroxytyrosol on cardiovascular biomarkers in experimental diabetes mellitus. J Nutr Biochem 2016; 37:94-100. [PMID: 27648880 DOI: 10.1016/j.jnutbio.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess the influence of hydroxytyrosol (HT) on cardiovascular biomarkers and morphometric parameters of the arterial wall in streptozotocin-diabetic rats. Seven groups of rats (N=10 per group) were studied for 2 months: nondiabetic rats (NDR), diabetic rats treated with saline (DR) and DR treated with HT (0.5, 1, 2.5, 5 and 10 mg kg-1 day-1 p.o.). DR had higher platelet aggregation values, higher thromboxane B2, plasma lipid peroxidation, 3-nitrotyrosine, oxidized LDL (oxLDL), myeloperoxidase, vascular cell adhesion molecule 1 (VCAM-1) and interleukin-1β (IL-1β) concentrations, and lower aortic 6-keto-prostaglandin F1α and nitric oxide production than NDR. Aortic wall area and smooth muscle cell count were also higher in DR than in NDR. HT significantly reduced both oxidative and nitrosative stress, oxLDL concentration, VCAM-1 and inflammatory mediators, platelet aggregation and thromboxane B2 production. Morphometric values in the aortic wall were reduced to values near those in NDR. In conclusion, HT influenced the major biochemical processes leading to diabetic vasculopathy, and reduced cell proliferation in the vascular wall in this experimental model.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - Miriam Abdel-Karim
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - José Pedro De La Cruz
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - María Dolores Rodríguez-Pérez
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - José Julio Reyes
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - Rocío Guzmán-Moscoso
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga
| | - Guillermo Rodriguez-Gutierrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra Utrera km 1, Campus Universitario Pablo de Olavide, Edificio 46, Seville, Spain
| | - Juan Fernández-Bolaños
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra Utrera km 1, Campus Universitario Pablo de Olavide, Edificio 46, Seville, Spain
| | - José Antonio González-Correa
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga.
| |
Collapse
|