1
|
Wang X, Zhang J, Zhong R, Chen G, Qi H, Cao Y, Lan Y. Consumption of oleogel alleviates lipid metabolism disorders in high-fat diet-fed rats by inhibiting LPS-induced gut microbiota-mediated inflammation. Food Funct 2025. [PMID: 39831811 DOI: 10.1039/d4fo02974g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel). Results showed that compared to regular fat, pure sunflower oil and un-gelled sunflower oil consumption, oleogel consumption significantly suppressed weight gain and adipose tissue accumulation as well as serum and liver lipid accumulation. Microscopic observations further confirmed that oleogel intake alleviated white adipose tissue and liver steatosis caused by high-fat diet. Ex vivo biodistribution studies indicated an increased movement of TAGs toward the large intestine in the oleogel group. In the meantime, the dysregulation of gut microbiota was restored by reducing the Firmicutes/Bacteroidetes ratio and the relative abundance of Desulfobacterota and Proteobacteria. The oleogel group also exhibited reduced LPS levels in faeces, serum and liver. Furthermore, oleogel consumption alleviated inflammation, including decreased gene expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as suppressed protein expression of TLR4 and NF-κB in the liver. These results provide theoretical guidance for the regulation of oleogel properties and the potential application of oleogels as healthy fat replacers in high-fat diets.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, Guangdong, P.R. China
| | - Gangchao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Hongjin Qi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
2
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, Ciftci ON, Liu L. Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis. Int J Biol Macromol 2024; 283:137463. [PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
Collapse
Affiliation(s)
- Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ruyan Hou
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Guijie Chen
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
4
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Qiu J, Ye B, Feng L. Improvement of intestinal microbial structure in patients with cerebral infarction through in vitro fermentation of anthocyanins from Lycium ruthenicum Murray. Food Sci Nutr 2024; 12:7481-7491. [PMID: 39479706 PMCID: PMC11521701 DOI: 10.1002/fsn3.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 11/02/2024] Open
Abstract
Anthocyanins in Lycium ruthenicum Murray can be degraded into metabolites by intestinal microorganisms and have a wide range of biological functions. However, there are limited studies on the effect of anthocyanins on the intestinal flora structure in patients with cerebral infarction. To explore the new probiotic effects of ACN, the gut microbiota present in fecal samples obtained from healthy volunteers and patients with acute cerebral infarction underwent in vitro fermentation analysis. The in vitro fermentation product of ACN with L. ruthenicum Murray can significantly increase the diversity of the gut flora in patients with cerebral infarction. It can also promote beneficial bacteria (e.g., Bifidobacterium) in the guts of patients with acute cerebral infarction (e.g. Bifidobacterium, Allisonella, and Prevotell), reduce the growth of potentially harmful bacteria (Dialister, Megamonas, and Clostridium), and increase the levels of SCFAs. This investigation demonstrated the capability of ACN in vitro fermentation to improve the gut microbiota structure in patients with cerebral infarction. This, in turn, furnishes new theoretical underpinnings for its potential development as a functional food component.
Collapse
Affiliation(s)
- Jun Qiu
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Bin Ye
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Lei Feng
- Department of NeurosurgeryThe First People's Hospital of JiningJiningShandongChina
- Jining Key Laboratory of Stroke and Nerve RepairJiningShandongChina
| |
Collapse
|
6
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Dharmawansa KVS, Stadnyk AW, Rupasinghe HPV. Dietary Supplementation of Haskap Berry ( Lonicera caerulea L.) Anthocyanins and Probiotics Attenuate Dextran Sulfate Sodium-Induced Colitis: Evidence from an Experimental Animal Model. Foods 2024; 13:1987. [PMID: 38998493 PMCID: PMC11241346 DOI: 10.3390/foods13131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Haskap berry (Lonicera caerulea L.) is a rich dietary source of anthocyanins with potent anti-inflammatory properties. In this study, isolated haskap berry anthocyanins were encapsulated in maltodextrin and inulin (3:1) by freeze-drying to improve stability and bioavailability. The structural properties of microcapsules, encapsulation yield, efficiency, recovery, and powder retention were evaluated. The microcapsules that exhibited the highest encapsulation efficiency (60%) and anthocyanin recovery (89%) were used in the dextran sulfate sodium (DSS)-induced acute colitis in mice. Thirty-five BALB/c male mice of seven weeks old were divided into seven dietary supplementation groups (n = 5) to receive either free anthocyanins, encapsulated anthocyanins (6.2 mg/day), or probiotics (1 × 109 CFU/day) alone or as combinations of anthocyanin and probiotics. As observed by clinical data, free anthocyanin and probiotic supplementation significantly reduced the severity of colitis. The supplementary diets suppressed the DSS-induced elevation of serum inflammatory (interleukin (IL)-6 and tumor necrosis factor) and apoptosis markers (B-cell lymphoma 2 and Bcl-2-associated X protein) in mice colon tissues. The free anthocyanins and probiotics significantly reduced the serum IL-6 levels. In conclusion, the dietary supplementation of haskap berry anthocyanins and probiotics protects against DSS-induced colitis possibly by attenuating mucosal inflammation, and this combination has the potential as a health-promoting dietary supplement and nutraceutical.
Collapse
Affiliation(s)
- K V Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Andrew W Stadnyk
- Departments of Microbiology & Immunology and Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Suresh S, Vellapandian C. Assessment of oral toxicity and safety profile of cyanidin: acute and subacute studies on anthocyanin. Future Sci OA 2024; 10:FSO982. [PMID: 38827809 PMCID: PMC11140675 DOI: 10.2144/fsoa-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 06/05/2024] Open
Abstract
Aim: Purified anthocyanins lack a detailed safety profile, prompting the need for comprehensive oral toxicity research. Materials & methods: Sprague-Dawley rats aged 8 weeks received 300 mg/kg cyanidin orally for 14 days in acute toxicity (OECD 423). In the subacute study (OECD 407), adult SD rats were administered 7.5, 15 and 30 mg/kg/day cyanidin orally for 28 days. Results: Acute toxicity indicated an LD50 exceeding 300 mg/kg/day without adverse effects. Subacute toxicity at 7.5-30 mg/kg/day showed well-tolerated responses in both genders. No significant alterations in organ weights, hematological parameters, liver/kidney functions or adverse histopathological findings were observed. Conclusion: Oral cyanidin administration demonstrated high safety and tolerance in rats, establishing a NOAEL at 30 mg/kg/day, affirming cyanidin's safety for oral use.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Chitra Vellapandian
- Dean, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu,Tamil Nadu, 603203, India
| |
Collapse
|
9
|
Yoo S, Jung SC, Kwak K, Kim JS. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024; 25:4834. [PMID: 38732060 PMCID: PMC11084426 DOI: 10.3390/ijms25094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.
Collapse
Affiliation(s)
- Suyeon Yoo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
10
|
Cosier D, Lambert K, Batterham M, Sanderson-Smith M, Mansfield KJ, Charlton K. The INHABIT (synergIstic effect of aNtHocyAnin and proBIoTics in) Inflammatory Bowel Disease trial: a study protocol for a double-blind, randomised, controlled, multi-arm trial. J Nutr Sci 2024; 13:e1. [PMID: 38282655 PMCID: PMC10808876 DOI: 10.1017/jns.2023.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024] Open
Abstract
Ulcerative Colitis (UC), a type of Inflammatory Bowel Disease (IBD), is a chronic, relapsing gastrointestinal condition with increasing global prevalence. The gut microbiome profile of people living with UC differs from healthy controls and this may play a role in the pathogenesis and clinical management of UC. Probiotics have been shown to induce remission in UC; however, their impact on the gut microbiome and inflammation is less clear. Anthocyanins, a flavonoid subclass, have shown anti-inflammatory and microbiota-modulating properties; however, this evidence is largely preclinical. To explore the combined effect and clinical significance of anthocyanins and a multi-strain probiotic, a 3-month randomised controlled trial will be conducted in 100 adults with UC. Participants will be randomly assigned to one of four groups: anthocyanins (blackcurrant powder) + placebo probiotic, probiotic + placebo fruit powder, anthocyanin + probiotic, or double placebo. The primary outcome is a clinically significant change in the health-related quality-of-life measured with the Inflammatory Bowel Disease Questionnaire-32. Secondary outcomes include shotgun metagenomic sequencing of the faecal microbiota, faecal calprotectin, symptom severity, and mood and cognitive tests. This research will identify the role of adjuvant anti-inflammatory dietary treatments in adults with UC and elucidate the relationship between the gut microbiome and inflammatory biomarkers in this disease, to help identify targeted individualised microbial therapies. ANZCTR registration ACTRN12623000630617.
Collapse
Affiliation(s)
- Denelle Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Marijka Batterham
- Statistical Consulting Centre, National Institute for Applied Statistical Research Australia, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
11
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
12
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
13
|
Wang S, Tian ZB, Chen JW, Cong PS, Ding XL, Zhang CP, Yin XY, Yang L, Jing X, Mao T, Li XY, Sun ZY, Jiang JJ, Yu YN. Effect of fucoidan on gut microbiota and its clinical efficacy in Helicobacter pylori eradication: A randomized controlled trial. J Dig Dis 2023; 24:461-471. [PMID: 37548312 DOI: 10.1111/1751-2980.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE To assess the clinical efficacy of fucoidan-assisted standard quadruple therapy (SQT) in Helicobacter pylori (H. pylori) eradication and the improvement of gut microbiota. METHODS An open-label randomized controlled trial was conducted at the Affiliated Hospital of Qingdao University in Shandong Province, China. Ninety patients who tested positive for H. pylori were randomized to the standard quadruple therapy (SQT) group (SQ), SQT + fucoidan combination group (SF), and fucoidan + sequential SQT group (FS), respectively. Stool samples were collected for gut microbiota composition at baseline and after treatment. RESULTS After H. pylori eradication, the relative abundances of most conditional pathogens in the SQ decreased, while those of several beneficial bacteria increased or decreased (P < 0.05). In FS, the abundances of most beneficial bacteria increased gradually from baseline to week 12, while those of the conditional pathogens decreased (P < 0.05). The abundance of Bifidobacterium had a decreasing trend in SQ, but remained unchanged in SF and increased in FS (P < 0.05). The abundances of most beneficial bacteria were significantly higher in FS than in SQ and SF (P < 0.05). Addition of fucoidan enhanced symptom improvement during H. pylori eradication compared with SQT alone. CONCLUSIONS Fucoidan considerably improved gut dysbiosis during SQT for H. pylori eradication. Gut microbiota can be maintained by the addition of fucoidan before eradication therapy with SQT rather than by concomitant addition with therapy. Fucoidan-assisted SQT could relieve gastrointestinal symptoms during H. pylori eradication.
Collapse
Affiliation(s)
- Shu Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Zi Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jian Wei Chen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pei Shan Cong
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Li Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao Yan Yin
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhan Yi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, Shandong Province, China
| | - Jin Ju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, Shandong Province, China
| | - Ya Nan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
14
|
Zhou S, Yang L, Hu L, Qin W, Cao Y, Tang Z, Li H, Hu X, Fang Z, Li S, Huang Z, Chen H. Blueberry extract alleviated lipopolysaccharide-induced inflammation responses in mice through activating the FXR/TGR5 signaling pathway and regulating gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4638-4648. [PMID: 36935348 DOI: 10.1002/jsfa.12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Blueberry extract (BE) is rich in phenols, especially anthocyanins. Anthocyanins regulate the inflammatory response in mice and may be related to gut microbiota and bile acid receptors. The aim of the present study was to explore the effects of BE on the inflammatory response by regulating gut microbiota and bile acid receptors in mice administered Escherichia coli lipopolysaccharide (LPS). METHOD Thirty male KM mice were randomly divided into three groups: CON (control diet) group; LPS (LPS stimulation) group; and LPS + BE (LPS stimulation, 5% BE intervention) group. RESULTS our results showed that, compared with the LPS group, the addition of BE decreased the level of inflammatory factors in serum and tissues, inhibited the TLR4/MyD88 signaling pathway, protected the intestinal barrier and activated FXR/TGR5, which was related to gut microbiota (especially Akkermansia). The active component (e.g., cyanidin 3-O-glucoside, C3G) in BE may be an important factor in regulating gut microbiota. CONCLUSION BE alleviated the inflammatory response mainly by activating bile acid receptor expression and regulating the gut microbiota; this effect may be related to the composition of bioactive substances in BE. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yang Cao
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zizhong Tang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
15
|
Frountzas M, Karanikki E, Toutouza O, Sotirakis D, Schizas D, Theofilis P, Tousoulis D, Toutouzas KG. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. Int J Mol Sci 2023; 24:ijms24119399. [PMID: 37298350 DOI: 10.3390/ijms24119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G), the most widely distributed anthocyanin (ACN) in edible fruits, has been proposed for several bioactivities, including anti-inflammatory, neuro-protective, antimicrobial, anti-viral, anti-thrombotic and epigenetic actions. However, habitual intake of ACNs and C3G may vary widely among populations, regions, and seasons, among individuals with different education and financial status. The main point of C3G absorption occurs in the small and large bowel. Therefore, it has been supposed that the treating properties of C3G might affect inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). IBDs develop through complex inflammatory pathways and sometimes may be resistant to conventional treatment strategies. C3G presents antioxidative, anti-inflammatory, cytoprotective, and antimicrobial effects useful for IBD management. In particular, different studies have demonstrated that C3G inhibits NF-κB pathway activation. In addition, C3G activates the Nrf2 pathway. On the other hand, it modulates the expression of antioxidant enzymes and cytoprotective proteins, such as NAD(P)H, superoxide dismutase, heme-oxygenase (HO-1), thioredoxin, quinone reductase-oxide 1 (NQO1), catalase, glutathione S-transferase and glutathione peroxidase. Interferon I and II pathways are downregulated by C3G inhibiting interferon-mediating inflammatory cascades. Moreover, C3G reduces reactive species and pro-inflammatory cytokines, such as C reactive protein, interferon-γ, tumor necrosis factor-α, interleukin (IL)-5, IL-9, IL-10, IL-12p70, and IL-17A in UC and CD patients. Finally, C3G modulates gut microbiota by inducing an increase in beneficial gut bacteria and increasing microbial abundances, thus mitigating dysbiosis. Thus, C3G presents activities that may have potential therapeutic and protective actions against IBD. Still, in the future, clinical trials should be designed to investigate the bioavailability of C3G in IBD patients and the proper therapeutic doses through different sources, aiming to the standardization of the exact clinical outcome and efficacy of C3G.
Collapse
Affiliation(s)
- Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Karanikki
- Department of Clinical Nutrition, Hippocration General Hospital, 11527 Athens, Greece
| | - Orsalia Toutouza
- School of Medicine, Imperial College of London, London SW7 2AZ, UK
| | - Demosthenis Sotirakis
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- First Cardiology Department, "Hippocration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Department, "Hippocration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos G Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Karim MR, Iqbal S, Mohammad S, Lee JH, Jung D, Mathiyalagan R, Yang DC, Yang DU, Kang SC. A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiol Res 2023; 271:127346. [PMID: 36921399 DOI: 10.1016/j.micres.2023.127346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
The gut microbiome is the community of healthy, and infectious organisms in the gut and its interaction in the host gut intestine (GI) environment. The balance of microbial richness with beneficial microbes is very important to perform healthy body functions like digesting food, controlling metabolism, and precise immune function. Alternately, this microbial dysbiosis occurs due to changes in the physiochemical condition, substrate avidity, and drugs. Moreover, various categories of diet such as "plant-based", "animal-based", "western", "mediterranean", and various drugs (antibiotic and common drugs) also contribute to maintaining microbial flora inside the gut. The imbalance (dysbiosis) in the microbiota of the GI tract can cause several disorders (such as diabetes, obesity, cancer, inflammation, and so on). Recently, the major interest is to use prebiotic, probiotic, postbiotic, and herbal supplements to balance such microbial community in the GI tract. But, there has still a large gap in understanding the microbiome function, and its relation to the host diet, drugs, and herbal supplements to maintain the healthy life of the host. So, the present review is about the updates on the microbiome concerns related to diet, drug, and herbal supplements, and also gives research evidence to improve our daily habits regarding diet, drugs, and herbal supplements. Because our regular dietary plan and traditional herbal supplements can improve our health by balancing the bacteria in our gut.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Daehyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
17
|
Zhang Y, Balasooriya H, Sirisena S, Ng K. The effectiveness of dietary polyphenols in obesity management: A systematic review and meta-analysis of human clinical trials. Food Chem 2023; 404:134668. [DOI: 10.1016/j.foodchem.2022.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
18
|
Zhou J, Wang M, Bäuerl C, Cortés-Macías E, Calvo-Lerma J, Carmen Collado M, Barba FJ. The impact of liquid-pressurized extracts of Spirulina, Chlorella and Phaedactylum tricornutum on in vitro antioxidant, antiinflammatory and bacterial growth effects and gut microbiota modulation. Food Chem 2023; 401:134083. [DOI: 10.1016/j.foodchem.2022.134083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
19
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
20
|
Martini D, Marino M, Venturi S, Tucci M, Klimis-Zacas D, Riso P, Porrini M, Del Bo' C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: a systematic review of human intervention studies. J Nutr Biochem 2023; 111:109154. [PMID: 36150681 DOI: 10.1016/j.jnutbio.2022.109154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Blueberries represent a rich source of (poly)phenols and other bioactive compounds. Numerous in vitro and animal model studies documented the potential health-promoting properties of blueberries and blueberry-bioactives, while little is still known about their effects in humans. The objective of the present systematic review is to provide main evidence and the potential mechanisms of action of blueberry and its (poly)phenols in the regulation of markers related to oxidative stress, inflammation, vascular and cardiometabolic function in health and disease states. A total of 45 human intervention studies were included in this review. Overall, the evidence suggests that blueberries may play a role in the improvement of markers of vascular function. Their effects were observed following both post-prandial and long-term consumption, particularly in subjects with risk factors and/or disease conditions. Conversely, the conflicting results on inflammation, oxidative stress and cardiometabolic risk markers were most likely due to differences among studies in terms of study design, subject characteristics, duration of intervention, dosage, and type of biomarkers analyzed. For these reasons, high-quality, well-designed, human intervention studies are warranted to strengthen the current findings on vascular function and provide more evidence about the impact of blueberries on the different markers considered. In addition, studies focusing on the relationship between the structure and the function of (poly)phenols will be fundamental for a better comprehension of the mechanisms behind the health effects observed.
Collapse
Affiliation(s)
- Daniela Martini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Samuele Venturi
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Massimiliano Tucci
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | | | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| |
Collapse
|
21
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
da Silva Moura M, da Silva Gomes da Costa B, Giaconia MA, de Andrade RR, Braga ARC, Braga MB. Jaboticaba powders production by freeze‐drying: Influence of octenyl succinic anhydride‐modified starch concentrations over anthocyanins and physical properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Milena da Silva Moura
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | | | | | - Rafael Ramos de Andrade
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
- Department of Biosciences Universidade Federal de São Paulo (UNIFESP) Santos SP Brazil
| | - Matheus Boeira Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| |
Collapse
|
23
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
24
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
25
|
Speciani MC, Cintolo M, Marino M, Oren M, Fiori F, Gargari G, Riso P, Ciafardini C, Mascaretti F, Parpinel M, Airoldi A, Vangeli M, Leone P, Cantù P, Lagiou P, Del Bo’ C, Vecchi M, Carnevali P, Oreggia B, Guglielmetti S, Bonzi R, Bonato G, Ferraroni M, La Vecchia C, Penagini R, Mutignani M, Rossi M. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022; 14:4516. [PMID: 36364779 PMCID: PMC9653960 DOI: 10.3390/nu14214516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have been inversely associated to colorectal cancer (CRC) and are plausible intermediaries for the relation among gut microbiome, intestinal permeability and CRC. We analyzed the relation of flavonoid intake with CRC and blood bacterial DNA. We conducted a case-control study in Italy involving 100 incident CRC cases and 200 controls. A valid and reproducible food-frequency questionnaire was used to assess dietary habits and to estimate six flavonoid subclass intakes. We applied qPCR and 16S rRNA gene profiling to assess blood bacterial DNA. We used multiple logistic regression to derive odds ratios (ORs) of CRC and Mann-Whitney and chi--square tests to evaluate abundance and prevalence of operational taxonomic units (OTUs) according to flavonoid intakes. Inverse associations with CRC were found for anthocyanidins (OR for the highest versus the lowest tertile = 0.24, 95% confidence interval, CI = 0.11-0.52) and flavanones (OR = 0.18, 95% CI = 0.08-0.42). We found different abundance and prevalence according to anthocyanidin and flavanone intake for OTUs referring to Oligoflexales order, Diplorickettsiaceae family, Staphylococcus, Brevundimonas, Pelomonas and Escherischia-Shigella genera, and Flavobacterium and Legionella species. The study provides evidence to a protective effect of dietary anthocyanidins and flavanones on CRC and suggests an influence of flavonoids on blood bacterial DNA, possibly through intestinal permeability changes.
Collapse
Affiliation(s)
- Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maya Oren
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Pierfrancesco Leone
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Cantù
- Gastroenterology and Digestive Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-115 27 Athens, Greece
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Pietro Carnevali
- Division of Minimally–Invasive Surgical Oncology, Niguarda Cancer Center, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20133 Milan, Italy
| | - Barbara Oreggia
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Bonato
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Penagini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
26
|
Liu S, Fang Z, Ng K. Incorporating inulin and chitosan in alginate-based microspheres for targeted delivery and release of quercetin to colon. Food Res Int 2022; 160:111749. [DOI: 10.1016/j.foodres.2022.111749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023]
|
27
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
28
|
Sanjay, Shin JH, Park M, Lee HJ. Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARγ and Aβ42 Phagocytosis Through TREM2 in an Alzheimer's Disease Model. Mol Neurobiol 2022; 59:5135-5148. [PMID: 35670898 PMCID: PMC9363298 DOI: 10.1007/s12035-022-02873-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
Microglial polarization plays an essential role in the progression and regression of neurodegenerative disorders. Cyanidin-3-O-glucoside (C3G), a dietary anthocyanin found in many fruits and vegetables, has been reported as an antioxidant, anti-inflammatory, and antitumor agent. However, there have been no reports on whether C3G can regulate the M1/M2 shift in an Alzheimer's disease model. We attempted to investigate the effects of C3G on M1/M2 polarization and the mechanism to regulate anti-inflammation and phagocytosis, both in vitro and in vivo. HMC3 cells were treated with β-amyloid (Aβ42) in the presence or absence of 50 μM C3G for different time intervals, and APPswe/PS1ΔE9 mice were orally administered 30 mg/kg/day of C3G for 38 weeks. The in vitro data revealed that C3G could shift the M1 phenotype of microglia to M2 by reducing the expression of M1-specific markers (CD86 and CD80), inflammatory cytokines (IL-Iβ, IL-6, TNF-α), reactive oxygen species, and enhancing the expression of M2-specific markers (CD206 and CD163). The APPswe/PS1ΔE9 mice results were consistent with the in vitro data, indicating a significant reduction in inflammatory cytokines and higher expression of M2-specific markers such as CD206 and Arg1 in C3G-treated Alzheimer's disease model mice. Additionally, C3G was found to upregulate PPARγ expression levels both in vitro and in vivo, whereas a PPARγ antagonist (GW9662) was found to block C3G-mediated effects in vitro. In this study, we confirmed that C3G could regulate microglial polarization by activating PPARγ and eliminating accumulated β-amyloid by enhancing Aβ42 phagocytosis through the upregulation of TREM2.
Collapse
Affiliation(s)
- Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 461-713, Seongnam-si, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| |
Collapse
|
29
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
30
|
Xiao L, Sun Y, Tsao R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8551-8568. [PMID: 35793510 DOI: 10.1021/acs.jafc.2c02326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food bioactive components, particularly phytochemicals with antioxidant capacity, have been extensively studied over the past two decades. However, as new analytical and molecular biological tools advance, antioxidants related research has undergone significant paradigm shifts. This review is a high-level overview of the evolution of phytochemical antioxidants research. Early research used chemical models to assess the antioxidant capacity of different phytochemicals, which provided important information about the health potential, but the results were overused and misinterpreted despite the lack of biological relevance (Antioxidants v1.0). This led to findings in the anti-inflammatory properties and modulatory effects of cell signaling of phytochemicals (Antioxidants v2.0). Recent advances in the role of diet in modulating gut microbiota have suggested a new phase of food bioactives research along the phytochemicals-gut microbiota-intestinal metabolites-low-grade inflammation-metabolic syndrome axis (Antioxidants v3.0). Polyphenols and carotenoids were discussed in-depth, and future research directions were also provided.
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
31
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Dong Y, Wu X, Han L, Bian J, He C, El-Omar E, Gong L, Wang M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022; 14:nu14142836. [PMID: 35889793 PMCID: PMC9316990 DOI: 10.3390/nu14142836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases affecting the heart and blood vessels and is the leading cause of morbidity and mortality worldwide. Increasingly more evidence has shown that the senescence of vascular endothelial cells is the key to endothelial dysfunction and cardiovascular diseases. Anthocyanin is a type of water-soluble polyphenol pigment and secondary metabolite of plant-based food widely existing in fruits and vegetables. The gut microbiome is involved in the metabolism of anthocyanins and mediates the biological activities of anthocyanins and their metabolites, while anthocyanins also regulate the growth of specific bacteria in the microbiota and promote the proliferation of healthy anaerobic flora. Accumulating studies have shown that anthocyanins have antioxidant, anti-inflammatory, and anti-aging effects. Many animal and in vitro experiments have also proven that anthocyanins have protective effects on cardiovascular-disease-related dysfunction. However, the molecular mechanism of anthocyanin in eliminating aging endothelial cells and preventing cardiovascular diseases is very complex and is not fully understood. In this systematic review, we summarize the metabolism and activities of anthocyanins, as well as their effects on scavenging senescent cells and cardioprotection.
Collapse
Affiliation(s)
- Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia;
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
33
|
Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci Biotechnol 2022; 31:985-997. [PMID: 35873378 PMCID: PMC9300781 DOI: 10.1007/s10068-022-01058-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. Food-derived polyphenols with such antibacterial activity are natural preservatives and can be used as an alternative to synthetic preservatives that can cause side effects, such as allergies, asthma, skin irritation, and cancer. Studies have reported that polyphenols have positive effects, such as decreasing harmful bacteria and increasing beneficial bacteria in the human gut microbiota. Polyphenols can also be used as natural antibacterial agents in food packaging system in the form of emitting sachets, absorbent pads, and edible coatings. We summarized the antibacterial activities, mechanisms and applications of polyphenols as antibacterial agents against foodborne bacteria.
Collapse
|
34
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
35
|
The Effects of Berry Polyphenols on the Gut Microbiota and Blood Pressure: A Systematic Review of Randomized Clinical Trials in Humans. Nutrients 2022; 14:nu14112263. [PMID: 35684063 PMCID: PMC9182664 DOI: 10.3390/nu14112263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022] Open
Abstract
Berry consumption has beneficial effects on blood pressure. Intestinal microbiota transform berry phytochemicals into more bioactive forms. Thus, we performed a systematic review of randomized clinical trials to determine whether berry polyphenols in foods, extracts or supplements have effects on both the profile of gut microbiota and systolic and diastolic blood pressure in humans. PubMed, Cochrane Library, Scopus, and CAB Abstracts (EBSCOhost) were searched for randomized clinical trials in humans published from 1 January 2011 to 29 October 2021. Search results were imported into Covidence for screening and data extraction by two blinded reviewers, who also performed bias assessment independently. The literature search identified 216 publications; after duplicates were removed, 168 publications were screened with 12 full-text publications assessed for eligibility. Ultimately three randomized clinical trials in humans met the eligibility criteria. One randomized clinical trial showed a low risk of bias while the other two randomized clinical trials included low, high or unclear risk of bias. Together the randomized clinical trials showed that berry consumption (Aronia berry, strawberries, raspberries, cloudberries and bilberries) for 8–12 weeks had no significant effect on both blood pressure and the gut microbiota. More randomized clinical trials are needed to determine the effects of berry consumption on the profile of gut microbiota and blood pressure in humans.
Collapse
|
36
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
37
|
Wang C, Deng H, Liu F, Yin Q, Xia L. The Role of Gut Microbiota in the Immunopathology of Atherosclerosis: focus on immune cells. Scand J Immunol 2022; 96:e13174. [PMID: 35474231 DOI: 10.1111/sji.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Gut microbiota (GM) play important roles in multiple organ function, homeostasis and several diseases. More recently, increasing evidences have suggested that the compositional and functional alterations of GM play a crucial role in the accumulation of foam cells and the formation of atherosclerotic plaque in atherosclerosis. In particular, the effects of bacterial components and metabolites on innate and adaptive immune cells have been explored as the underlying mechanisms. Understanding the effects of GM and metabolites on immunoregulation are important for clinical therapy for atherosclerosis. Herein, we summarize the potential role of the GM (such as bacterial components lipopolysaccharide and peptidoglycan) and GM-derived metabolites (such as short-chain fatty acids, trimethylamine N-oxide and bile acids) in the immunopathology of atherosclerosis. Based on that, we further discuss the anti-atherosclerotic effects of GM-directed dietary bioactive factors such as dietary fibers, dietary polyphenols and probiotics. Because of drug-induced adverse events in anti-inflammatory therapies, personalized dietary interventions would be potential therapies for atherosclerosis, and the interactions between GM-derived products and immune cells should be studied further.
Collapse
Affiliation(s)
- Chong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Hualing Deng
- Operating room, Weihai Municipal Hospital, Weihai, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Qing Yin
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Silva F, de Souza E, Queiroga R, Voss GB, Pintado M, Vasconcelos M. A fiber and phenolic‐rich flour from Isabel grape by‐products with stimulatory effects on distinct probiotics and beneficial impacts on human colonic microbiota
in vitro. Lett Appl Microbiol 2022; 75:249-260. [DOI: 10.1111/lam.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- F.A. Silva
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| | - E.L. de Souza
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - R.C.R.E. Queiroga
- Department of Nutrition Health Sciences Center Federal University of Paraíba PB João Pessoa Brazil
| | - G. B. Voss
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.M.E. Pintado
- Universidade Católica Portuguesa CBQF ‐ Centro de Biotecnologia e Química Fina – Laboratório Associado Escola Superior de Biotecnologia Porto Portugal
| | - M.A.S. Vasconcelos
- Department of Nutrition Federal University of Pernambuco Recife PE Brazil
| |
Collapse
|
39
|
Li N, Liu X, Zhang J, Lang YZ, Lu L, Mi J, Cao YL, Yan YM, Ran LW. Preventive Effects of Anthocyanins from Lyciumruthenicum Murray in High-Fat Diet-Induced Obese Mice Are Related to the Regulation of Intestinal Microbiota and Inhibition of Pancreatic Lipase Activity. Molecules 2022; 27:molecules27072141. [PMID: 35408540 PMCID: PMC9000451 DOI: 10.3390/molecules27072141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Lyciumruthenicum Murray (L. ruthenicum) has been used both as traditional Chinese medicine and food. Recent studies indicated that anthocyanins are the most abundant bioactive compounds in the L. ruthenicum fruits. The purpose of this study was to investigate the preventive effects and the mechanism of the anthocycanins from the fruit of L. ruthenicum (ACN) in high-fat diet-induced obese mice. In total, 24 male C57BL/6J mice were divided into three groups: control group (fed a normal diet), high-fat diet group (fed a high-fat diet, HFD), and HFD +ACN group (fed a high-fat diet and drinking distilled water that contained 0.8% crude extract of ACN). The results showed that ACN could significantly reduce the body weight, inhibit lipid accumulation in liver and white adipose tissue, and lower the serum total cholesterol and low-density lipoprotein cholesterol levels compared to that of mice fed a high-fat diet. 16S rRNA gene sequencing of bacterial DNA demonstrated that ACN prevent obesity by enhancing the diversity of cecal bacterial communities, lowering the Firmicutes-to-Bacteroidota ratio, increasing the genera Akkermansia, and decreasing the genera Faecalibaculum. We also studied the inhibitory effect of ACN on pancreatic lipase. The results showed that ACN has a high affinity for pancreatic lipase and inhibits the activity of pancreatic lipase, with IC50 values of 1.80 (main compound anthocyanin) and 3.03 mg/mL (crude extract), in a competitive way. Furthermore, fluorescence spectroscopy studies showed that ACN can quench the intrinsic fluorescence of pancreatic lipase via a static mechanism. Taken together, these findings suggest that the anthocyanins from L. ruthenicum fruits could have preventive effects in high-fat-diet induced obese mice by regulating the intestinal microbiota and inhibiting the pancreatic lipase activity.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Xi Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Jing Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Yan-Zhi Lang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Lu Lu
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - Jia Mi
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - You-Long Cao
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - Ya-Mei Yan
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
- Correspondence: (Y.-M.Y.); (L.-W.R.); Tel.: +86-0951-688-6783 (Y.-M.Y.); +86-0951-698-0195 (L.-W.R.)
| | - Lin-Wu Ran
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (Y.-M.Y.); (L.-W.R.); Tel.: +86-0951-688-6783 (Y.-M.Y.); +86-0951-698-0195 (L.-W.R.)
| |
Collapse
|
40
|
Liu D, Ji Y, Wang K, Guo Y, Wang H, Zhang H, Li L, Li H, Cui SW, Wang H. Purple sweet potato anthocyanin extract regulates redox state related to gut microbiota homeostasis in obese mice. J Food Sci 2022; 87:2133-2146. [PMID: 35338483 DOI: 10.1111/1750-3841.16130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
This study explored the advantageous effects of purple sweet potato anthocyanin extract (PSPAE) on redox state in obese mice. The normal chow diet (NCD) group, high-fat/cholesterol diet (HCD) group, and three groups based on HCD and added with low, middle, and high dose of PSPAE (PAL, PAM, and PAH) were raised for 12 weeks. High dose of PSPAE treatment decreased the elevations of the body weight by 24.7%, serum total cholesterol by 48.3%, serum triglyceride by 42.4%, and elevated serum activities of glutathione peroxidase by 53.3%, superoxide dismutase by 57.8%, catalase by 75.4%, decreased serum contents of malondialdehyde by 27.1% and lipopolysaccharides by 40.5%, as well as increased caecal total short-chain fatty acid by 2.05-fold. Additionally, PSPAE depressed toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-κB), interleukin 6, tumor necrosis factor α, and preserved nuclear factor erythroid-2-related factor 2 (Nrf2) gene expression. Similarly, the protein expression of Nrf2 was enhanced, while TLR-4 and p-NF-κB/NF-κB were depressed by PSPAE treatment. Moreover, PSPAE administration promoted the protection of intestinal barrier function and rebuilt gut microbiota homeostasis by blooming g_Akkermansia, g_Bifidobacterium, and g_Lactobacillus. Furthermore, antibiotic interference experiments showed that the gut microbiota was indispensable for preserving the redox state of PSPAE. These results suggested that PSPAE administration could be an opportunity for improving HCD-induced obesity and the redox state related to gut dysbiosis. PRACTICAL APPLICATION: Purple sweet potato anthocyanin has diverse pharmacological properties. It is applicable for individuals to consume extracts (as pills or other forms) from raw purple sweet potato if they want to improve obesity or redox state.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Kexin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Huali Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hua Zhang
- Animal & Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, China
| | - Liwei Li
- Yunnan Tasly Deepure Biological Tea Group Co., Ltd, Simao, Yunnan, China
| | - Heyu Li
- Tianjin Ubasio Biotechnology Group Co., Ltd, Tianjin, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
41
|
Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11030506. [PMID: 35326155 PMCID: PMC8944820 DOI: 10.3390/antiox11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.
Collapse
|
42
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
43
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
44
|
Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11010109. [PMID: 35052613 PMCID: PMC8772845 DOI: 10.3390/antiox11010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection affects more than half of the world’s population, and thus, about 10 to 20% of people with H. pylori suffer from peptic ulcers, which may ultimately lead to gastric cancer. The increase in antibiotic resistance and susceptibility has encouraged the search for new alternative therapies to eradicate this pathogen. Several plant species are essential sources of polyphenols, and these bioactive compounds have demonstrated health-promoting properties, such as the gut microbiota stimulation, inflammation reduction, and bactericidal effect. Therefore, this review aims to discuss the potential effect of plant-based polyphenols against H. pylori and their role in the gut microbiota improvement.
Collapse
|
45
|
|
46
|
The Cholesterol Metabolite Cholest-5-en-3-One Alleviates Hyperglycemia and Hyperinsulinemia in Obese ( db/ db) Mice. Metabolites 2021; 12:metabo12010026. [PMID: 35050148 PMCID: PMC8779233 DOI: 10.3390/metabo12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Dietary sterols are catabolized into various substances in the intestinal tract. Dietary 3-oxo derivatives of cholesterol and plant sterols (e.g., cholest-4-en-3-one and campest-5-en-3-one) have been shown to have anti-obesity effects. In this study, we tested whether feeding cholest-5-en-3-one (5-cholestenone), a cholesterol metabolite, to db/db mice protects them from obesity-associated metabolic disorders. In db/db mice, dietary 5-cholestenone significantly alleviated hepatomegaly and elevated serum triglyceride levels; however, the effect was not sufficient to improve hepatic steatosis and obesity. On the other hand, hyperglycemia and severe hyperinsulinemia in control db/db mice were markedly attenuated in 5-cholestenone-fed db/db mice. The production of inflammatory cytokines, such as monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-alpha (TNFα), was decreased, suggesting that the suppressive actions of 5-cholestenone were attributable to the alleviation of chronic inflammation in db/db mice. Additionally, 5-cholestenone showed an inhibitory effect on TNFα-induced nuclear factor kappa B (NFκB) activation in the NFκB luciferase gene reporter assay. These results suggest that obesity-induced abnormal glucose metabolism could be alleviated in 5-cholestenone-fed db/db mice by reducing the production of inflammatory cytokines through suppression of the NFκB signaling pathway.
Collapse
|
47
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
48
|
Karn A, Diaz-Garcia L, Reshef N, Zou C, Manns DC, Cadle-Davidson L, Mansfield AK, Reisch BI, Sacks GL. The Genetic Basis of Anthocyanin Acylation in North American Grapes ( Vitis spp.). Genes (Basel) 2021; 12:1962. [PMID: 34946911 PMCID: PMC8701791 DOI: 10.3390/genes12121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxycinnamylated anthocyanins (or simply 'acylated anthocyanins') increase color stability in grape products, such as wine. Several genes that are relevant for anthocyanin acylation in grapes have been previously described; however, control of the degree of acylation in grapes is complicated by the lack of genetic markers quantitatively associated with this trait. To characterize the genetic basis of anthocyanin acylation in grapevine, we analyzed the acylation ratio in two closely related biparental families, Vitis rupestris B38 × 'Horizon' and 'Horizon' × Illinois 547-1, for 2 and 3 years, respectively. The acylation ratio followed a bimodal and skewed distribution in both families, with repeatability estimates larger than 0.84. Quantitative trait locus (QTL) mapping with amplicon-based markers (rhAmpSeq) identified a strong QTL from 'Horizon' on chromosome 3, near 15.85 Mb in both families and across years, explaining up to 85.2% of the phenotypic variance. Multiple candidate genes were identified in the 14.85-17.95 Mb interval, in particular, three copies of a gene encoding an acetyl-CoA-benzylalcohol acetyltransferase-like protein within the two most strongly associated markers. Additional population-specific QTLs were found in chromosomes 9, 10, 15, and 16; however, no candidate genes were described. The rhAmpSeq markers reported here, which were previously shown to be highly transferable among the Vitis genus, could be immediately implemented in current grapevine breeding efforts to control the degree of anthocyanin acylation and improve the quality of grapes and their products.
Collapse
Affiliation(s)
- Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (L.C.-D.); (B.I.R.)
| | - Luis Diaz-Garcia
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Pabellón, Aguascalientes 20676, Mexico
| | - Noam Reshef
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA;
| | - David C. Manns
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.C.M.); (A.K.M.)
| | - Lance Cadle-Davidson
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (L.C.-D.); (B.I.R.)
- USDA-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.C.M.); (A.K.M.)
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (L.C.-D.); (B.I.R.)
| | - Gavin L. Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
49
|
Mu J, Xu J, Wang L, Chen C, Chen P. Anti-inflammatory effects of purple sweet potato anthocyanin extract in DSS-induced colitis: modulation of commensal bacteria and attenuated bacterial intestinal infection. Food Funct 2021; 12:11503-11514. [PMID: 34700334 DOI: 10.1039/d1fo02454j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purple sweet potato anthocyanins have been acknowledged for their beneficial effects on human inflammatory bowel diseases (IBD). Although the ability of anthocyanins in modulating the gut microbiota has been reported, the relationship between the bacteria modulated by anthocyanins and intestinal inflammation has not been fully elucidated. We aimed to ascertain whether the purple sweet potato anthocyanin extract (PSPAE) modulation of gut microbiota in the dextran sodium sulphate (DSS) induced chronic colitis mouse model could result in the maintenance of intestinal homeostasis and protection against bacterial intestinal inflammation. Chronic colitis was induced by adding DSS in drinking water while administering the mice with PSPAE via gavage (20 mg kg-1). Effects on colon tissue damage, gut microbiota composition, tight junction protein, and cytokines were evaluated. PSPAE prevented the loss of Bifidobacterium and Lactobacillus and inhibited the increase of Gammaproteobacteria and Helicobacter upon DSS treatment. The non-pathogenic-dependent and pathogenic-dependent microenvironments were established upon treatment with broad-spectrum antibiotics. Both PSPAE treatment and non-pathogenic treatments modified the colonic expression of mouse tight junction proteins and maintained the architecture of the colon. However, the non-pathogenic treatment could not attenuate intestinal inflammation. Moreover, the pathogenic-dependent dysbiosis was exacerbated because of the increasing colonization of pathogens such as Helicobacter. The PSPAE exerted the modulation of gut microbiota to maintain the gut microbiome homeostasis in DSS-induced chronic colitis mice, which may help to propose a new treatment that combines efficacy and reduction of the possibility of bacterial intestinal infection.
Collapse
Affiliation(s)
- Jingjing Mu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China.
| | - Jingwen Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China.
| | - Linlin Wang
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China.
| | - Caifa Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China. .,College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China.
| | - Ping Chen
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Ministry of Agriculture, Jiangsu Xuzhou Sweet Potato Research Center, Xuzhou, 221131 Jiangsu Province, China.
| |
Collapse
|
50
|
Assefa AD, Hur OS, Hahn BS, Kim B, Ro NY, Rhee JH. Nutritional Metabolites of Red Pigmented Lettuce ( Lactuca sativa) Germplasm and Correlations with Selected Phenotypic Characters. Foods 2021; 10:foods10102504. [PMID: 34681553 PMCID: PMC8535348 DOI: 10.3390/foods10102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lettuce is an important dietary source of bioactive phytochemicals. Screening and identification of the health beneficial metabolites and evaluating the relationships with phenotypic characters can help consumers adjust their preferences for lettuce plant types. Thus, we explored the major health-beneficial individual metabolites and antioxidant potential of 113 red pigmented lettuce leaf samples. A UV–Vis spectrophotometer and UPLC-DAD-QTOF/MS (TQ/MS) instruments were used for the identification and quantification of metabolites and antioxidant activity accordingly. The metabolites were quantified against their corresponding external standards. The contents of metabolites varied significantly among lettuce samples. Cyanidin 3-O-(6″-O-malonyl)glucoside (4.7~5013.6 μg/g DW), 2,3-di-O-caffeoyltartaric acid (337.1~19,957.2 μg/g DW), and quercetin 3-O-(6″-O-malonyl)glucoside (45.4~31,121.0 μg/g DW) were the most dominant in red pigmented lettuce samples among anthocyanins, hydroxycinnamoyl derivatives, and flavonols, respectively. Lettuces with dark and very dark red pigmented leaves, circular leaf shape, a strong degree of leaf undulation, and highly dense leaf incisions were found to have high levels of flavonoids and hydroxycinnamoyl derivatives. Principal component analysis was used to investigate similarities and/or differences between samples, and the partial least square discriminant analysis classified them into known groups. The key variables that contributed highly were determined. Our report provides critical data on the bioactive constituents of red pigmented lettuce to breeders developing varieties with enhanced bioactive compounds and to nutraceutical companies developing nutrient dense foods and pharmaceutical formulations.
Collapse
|