1
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2024:nuae132. [PMID: 39365946 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
2
|
Książek E, Goluch Z, Bochniak M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients 2024; 16:2940. [PMID: 39275255 PMCID: PMC11396909 DOI: 10.3390/nu16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Zuzanna Goluch
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Marta Bochniak
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
3
|
Xin M, Xu A, Tian J, Wang L, He Y, Jiang H, Yang B, Li B, Sun Y. Anthocyanins as natural bioactives with anti-hypertensive and atherosclerotic potential: Health benefits and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155889. [PMID: 39047414 DOI: 10.1016/j.phymed.2024.155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hypertension is a highly prevalent chronic metabolic illness affecting individuals of all age groups. Furthermore, it is a significant risk factor for the development of atherosclerosis (AS), as a correlation between hypertension and AS has been observed. However, the effective treatments for either of these disorders appear to be uncommon. METHODS A systematic search of articles published in PubMed, Web of Science, ScienceDirect, Scopus, and Google Scholar databases over the last decade was performed using the following keywords: hypertension, AS, anthocyanins, antioxidants, gut microbes, health benefits, and bioactivity. RESULTS The available research indicates that anthocyanin consumption can achieve antioxidant effects by inducing the activation of intracellular nuclear factor erythroid 2-related factor (Nrf2) and the expression of antioxidant genes. Moreover, previous reports showed that anthocyanins can enhance the human body's ability to fight against inflammation and cancer through the inhibition of inflammatory factors and the regulation of related signaling pathways. They can also protect the blood vessels and nervous system by regulating the production and function of endothelial nitric oxide synthase (eNOS). Gut microorganisms play an important role in various chronic diseases. Our research has also investigated the role of anthocyanins in the metabolism of the gut microbiota, leading to significant breakthroughs. This study not only presents a unique strategy for reducing the risk of cardiovascular diseases (CVDs) without the need for medicine but also provides insights into the development and utilization of intestinal probiotic dietary supplements. CONCLUSION In this review, different in vitro and in vivo studies have shown that anthocyanins slow down the onset and progression of hypertension and AS through different mechanisms. In addition, gut microbial metabolites also play a crucial role in diseases through the gut-liver axis.
Collapse
Affiliation(s)
- Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Hongzhou Jiang
- Anhui Ziyue Biotechnology Co., Ltd, Wuhu, Anhui,241000, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Wang J, Yuan ZY, Wang XY, Zhu JX, Huang WF, Xu GH, Yi LT. Anthocyanins-rich cranberry extract attenuates DSS-induced IBD in an intestinal flora independent manner. Curr Res Food Sci 2024; 9:100815. [PMID: 39161885 PMCID: PMC11332073 DOI: 10.1016/j.crfs.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
Cranberry is abundantly rich in anthocyanins, a type of flavonoid with potent antioxidant properties and the resistance against certain diseases. In this study, anthocyanin-rich cranberry extract was extracted, purified, and its components were analyzed. 92.18 % of anthocyanins was obtained and the total content of anthocyanins was 302.62 mg/g after AB-8 resin purification. Quantification analysis showed that the extract mainly contained cyanidin-3-galactoside, procyanidin B2 and procyanidin B4. Then we explored its effects on dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice. The supplementation of cranberry extract resulted in an alleviation of IBD symptoms, evidenced by improvements in the disease activity index (DAI), restoration of colon length and colonic morphology. Cranberry extract reversed the elevated iron and malondialdehyde (MDA) levels and restored glutathione (GSH) levels in IBD mice. Further analysis revealed that cranberry modulated ferroptosis-associated genes and reduced expression of pro-inflammatory cytokines. Although cranberry influenced the intestinal flora balance by reducing Proteobacteria and Escherichia-Shigella, and increasing Lactobacillus, as well as enhancing SCFAs content, these effects were not entirely dependent on intestinal flora modulation, as indicated by antibiotic intervention and fecal microbiota transplantation (FMT) experiments. In conclusion, our findings suggest that the beneficial impact of cranberry extract on IBD may primarily involve the regulation of colonic ferroptosis, independent of significant alterations in intestinal flora.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Xin-Yu Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Ji-Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Wei-Feng Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, Fujian province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| |
Collapse
|
5
|
de Souza Gouveia Moreira L, Resende Teixeira KT, Cardozo LFMF, Alvarenga L, Regis B, Sousa de Brito J, de Oliveira Leal V, Borges NA, de Souza da Costa Brum I, Carraro-Eduardo JC, Borini GB, Berretta AA, Ribeiro-Alves M, Mafra D. Effects of Cranberry Extract ( Vaccinium macrocarpon) Supplementation on Lipid Peroxidation and Inflammation in Patients with Chronic Kidney Disease (Stages 3-4): A Randomized Controlled Trial. J Nutr Metab 2024; 2024:9590066. [PMID: 38752013 PMCID: PMC11095989 DOI: 10.1155/2024/9590066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Background Growing evidence suggests that bioactive compounds in berry fruits may mitigate inflammation in patients with chronic kidney disease (CKD). Objectives To evaluate cranberry (Vaccinium macrocarpon) supplementation effects on modulation of transcription factors involved in inflammation and oxidative stress in nondialysis (stages 3 and 4) patients with CKD. Design/Participants. A randomized, double-blind, placebo-controlled study was performed with 30 patients to receive capsules containing cranberry extract (1000 mg/day) or placebo (1000 mg/day of corn starch) for two months. Measurements. The mRNA expression of nuclear factor-erythroid 2-related factor-2 (Nrf2) and nuclear factor-kB (NF-kB) was evaluated in peripheral blood mononuclear cells (PBMCs) by quantitative real-time polymerase chain reaction. Thiobarbituric acid reactive substances (TBARS) were measured in the plasma to assess oxidative stress. Interleukin-6 (IL-6) plasma levels were assessed by enzyme-linked immunosorbent assay and C-reactive protein (CRP) by immunoturbidimetric method. Results Twenty-five patients completed the study: 12 in the cranberry group (56.7 ± 7.5 years and body mass index (BMI) of 29.6 ± 5.5 kg/m2) and 13 in the placebo group (58.8 ± 5.1 years and BMI 29.8 ± 5.4 kg/m2). There were no differences in NF-kB or Nrf2 mRNA expressions (p = 0.99 and p = 0.89) or TBARS, CRP, and IL-6 plasma levels after cranberry supplementation. Conclusions The cranberry extract administration (1000 mg/day) did not affect Nrf2 and NF-kB mRNA expression, oxidative stress, or inflammatory markers levels in nondialysis CKD patients. This trial is registered with NCT04377919.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Karla Thaís Resende Teixeira
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ludmila F. M. F. Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Livia Alvarenga
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences -Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jessyca Sousa de Brito
- Graduate Program in Biological Sciences -Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Viviane de Oliveira Leal
- Nutrition Division, Pedro Ernesto University Hospital, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | | | | | - Giovanna B. Borini
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto, São Paulo, Brazil
| | - Andresa A. Berretta
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences -Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Villalva M, Martínez-García JJ, Jaime L, Santoyo S, Pelegrín P, Pérez-Jiménez J. Polyphenols as NLRP3 inflammasome modulators in cardiometabolic diseases: a review of in vivo studies. Food Funct 2023; 14:9534-9553. [PMID: 37855750 DOI: 10.1039/d3fo03015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are components of the innate immune system, important in coordinating the inflammatory response. Among them, NLRP3 can form inflammasomes, multiprotein complexes activating the inflammatory caspase-1 and leading, through a cell death-mediated signaling cascade, to the release of several proinflammatory cytokines. Dietary polyphenols, plant secondary metabolites, have been reported to exhibit anti-inflammatory properties, although studies have focused most on their effect on the expression of the final circulating cytokines rather than on the upstream signals activating the NLRP3 inflammasome. The present review explores current knowledge on the potential of dietary polyphenols to regulate the whole NLRP3 inflammasome pathway, in the context of cardiometabolic pathologies (obesity, cardiovascular diseases, type 2 diabetes and non-alcoholic fatty liver disease), based on in vivo studies. A clear tendency towards a decrease in the expression of the whole NLRP3 inflammasome signaling pathway when several animal models were supplemented with polyphenols was observed, commonly showing a dose-response effect; these modifications were concomitant with clinical improvements in the pathologies. Nevertheless, the diversity of doses used, the disparity in polyphenol structures tested and, particularly, the scarce clinical trials and exploration of mechanisms of action show the need to develop further research on the topic.
Collapse
Affiliation(s)
- Marisol Villalva
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Juan José Martínez-García
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
7
|
Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res 2023:106812. [PMID: 37271425 DOI: 10.1016/j.phrs.2023.106812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polyphenols, also known as phenolic compounds, are chemical substances containing aromatic rings as well as at least two hydroxyl groups. Natural phenolic compounds exist widely in plants, which protect plants from ultraviolet radiation and other insults. Phenolic compounds have superior pharmacological and nutritional properties (antimicrobial, antibacterial, antiviral, anti-sclerosis, antioxidant, and anti-inflammatory activities), which have been paid more and more attention by the scientific community. Phenols can protect key cellular components from reactive free radical damage, which is mainly due to their property to activate antioxidant enzymes and alleviate oxidative stress and inflammation. It can also inhibit or isolate reactive oxygen species and transfer electrons to free radicals, thereby avoiding cell damage. It has a regulatory role in glucose metabolism, which has a promising prospect in the prevention and intervention of diabetes. It also prevents cardiovascular disease by regulating blood pressure and blood lipids. Polyphenols can inhibit cell proliferation by affecting Erk1/2, CDK, and PI3K/Akt signaling pathways. Polyphenols can function as enhancers of intrinsic defense systems, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Simultaneously, they can modulate multiple proteins and transcription factors, making them promising candidates in the investigation of anti-cancer medications. This review focuses on multiple aspects of phenolic substances, including their natural origins, production process, disinfection activity, oxidative and anti-inflammatory functions, and the effects of different phenolic substances on tumors.
Collapse
Affiliation(s)
- Wenshi Liu
- Department of Translantation/Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Yonghui Xia
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Ahmed N, El-Fateh M, Amer MS, El-Shafei RA, Bilal M, Diarra MS, Zhao X. Antioxidative and Cytoprotective Efficacy of Ethanolic Extracted Cranberry Pomace against Salmonella Enteritidis Infection in Chicken Liver Cells. Antioxidants (Basel) 2023; 12:antiox12020460. [PMID: 36830018 PMCID: PMC9952629 DOI: 10.3390/antiox12020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a globally significant zoonotic foodborne pathogen. Chicken liver is a vital organ that has been recently implicated in several reported human salmonellosis outbreaks in the U.S. One promising strategy for reducing Salmonella in chickens could be through supplementation with natural antimicrobial additives. Ethanolic extracted cranberry pomace (CPOH) is an excellent source of bioactive polyphenolic compounds with antioxidant and antimicrobial activities. However, the protective effect of CPOH against S. Enteritidis-induced chicken hepatic cell damage remains unclear. In this study, we used a chicken hepatoma cell (LMH) infection model to investigate the protective effects and potential mechanisms of CPOH. CPOH increased the viability of S. Enteritidis-infected LMH cells. Furthermore, CPOH reduced the adhesion and invasion of S. Enteritidis to LMH cells. CPOH downregulated the expression of Rho GTPase genes that are essential for Salmonella's entry into LMH cells. Additionally, the expression of antioxidant regulatory genes, such as Nrf2, HO-1, Txn, and Gclc, was increased. Our data show that CPOH effectively protected LMH cells from cell damage through the inhibition of S. Enteritidis adhesion and invasion, as well as the induction of the expression of master antioxidant genes. These findings offer opportunities to develop sustainable, safe, and economic strategies to reduce the colonization and pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Magdy S. Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Reham A. El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Moussa S. Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-514-398-7975
| |
Collapse
|
9
|
Amin R, Thalluri C, Docea AO, Sharifi‐Rad J, Calina D. Therapeutic potential of cranberry for kidney health and diseases. EFOOD 2022. [DOI: 10.1002/efd2.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science Assam Down Town University Guwahati Assam India
| | | | - Anca Oana Docea
- Department of Toxicology University of Medicine and Pharmacy of Craiova Craiova Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
10
|
Ali MA, Mahmoud SA, Alkhedaide A, Soliman MM, Al-Shafie TA, El-Sayed YS, Shukry M, Ghamry HI, Elblehi SS. Boosting effects of Cranberry and Cinnamaldehyde for pioglitazone amelioration of liver steatosis in rat via suppression of HIF-1α/Smad/β-catenin signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Teixeira KTR, Moreira LDSG, Borges NA, Brum I, de Paiva BR, Alvarenga L, Nakao LS, Leal VDO, Carraro-Eduardo JC, Rodrigues SD, Lima JD, Ribeiro-Alves M, Mafra D. Effect of cranberry supplementation on toxins produced by the gut microbiota in chronic kidney disease patients: A pilot randomized placebo-controlled trial. Clin Nutr ESPEN 2022; 47:63-69. [DOI: 10.1016/j.clnesp.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 12/26/2022]
|
12
|
Urbstaite R, Raudone L, Janulis V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry ( Vaccinium macrocarpon Aiton). Antioxidants (Basel) 2022; 11:250. [PMID: 35204133 PMCID: PMC8868480 DOI: 10.3390/antiox11020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we conducted an analysis of the qualitative and quantitative composition of anthocyanins and anthocyanidins in different cultivars and genetic clones of American cranberries grown in Lithuanian climatic conditions. Four anthocyanin compounds predominated in fruit samples of American cranberry cultivars: cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside. They accounted for 91.66 ± 2.79% of the total amount of the identified anthocyanins. The total anthocyanin content detected via the pH differential method was found to be by about 1.6 times lower than that detected via the UPLC method. Hierarchical cluster analysis and principal component analysis showed that the 'Woolman' cultivar distinguished from other cranberry cultivars in that its samples contained two times the average total amount of anthocyanins (8.13 ± 0.09 mg/g). The group of American cranberry cultivars 'Howes', 'Le Munyon', and 'BL-8' was found to have higher than average levels of anthocyanidin galactosides (means 3.536 ± 0.05 mg/g), anthocyanidins (means 0.319 ± 0.01 mg/g), and total anthocyanins (means 6.549 ± 0.09 mg/g). The evaluation of the antioxidant effect of cranberry fruit sample extracts showed that the greatest radical scavenging activity of the cranberry fruit extracts was determined in the fruit samples of 'Woolman' (849.75 ± 10.88 µmol TE/g) and the greatest reducing activity was determined in 'Le Munyon' (528.05 ± 12.16 µmol TE/g). The study showed a correlation between the total anthocyanin content and the antiradical and reductive activity of the extracts in vitro (respectively, R = 0.635 and R = 0.507, p < 0.05).
Collapse
Affiliation(s)
- Rima Urbstaite
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
| | - Lina Raudone
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania; (L.R.); (V.J.)
| |
Collapse
|
13
|
Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
15
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Teixeira LDL, Pilon G, Coutinho CP, Dudonné S, Dube P, Houde V, Desjardins Y, Lajolo FM, Marette A, Hassimotto NMA. Purple grumixama anthocyanins (Eugenia brasiliensis Lam.) attenuate obesity and insulin resistance in high-fat diet mice. Food Funct 2021; 12:3680-3691. [PMID: 33900317 DOI: 10.1039/d0fo03245j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some polyphenols have been reported to modulate the expression of several genes related to lipid metabolism and insulin signaling, ameliorating metabolic disorders. We investigated the potential for the polyphenols of two varieties of grumixama, the purple fruit rich in anthocyanins and the yellow fruit, both also rich in ellagitannins, to attenuate obesity-associated metabolic disorders. Mice were fed a high fat and high sucrose diet, supplemented daily with yellow and purple extracts (200 mg per kg of body weight) for eight weeks. Purple grumixama supplementation was found to decrease body weight gain, improve insulin sensitivity and glucose-induced hyperinsulinemia, and reduce hepatic triglyceride accumulation. A decrease in intrahepatic lipids in mice treated with the purple grumixama extract was associated with lipid metabolism modulation by the PPAR signaling pathway. LPL, ApoE, and LDLr were found to be down-regulated, while Acox1 and ApoB were found to be upregulated. Some of these genes were also modulated by the yellow extract. In addition, both extracts decreased oGTT and plasma LPS. The results were associated with the presence of phenolic acids and urolithins. In conclusion, most likely the anthocyanins from the purple grumixama phenolic extract is responsible for reducing obesity and insulin resistance.
Collapse
Affiliation(s)
- Luciane de L Teixeira
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A, Usman M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int 2021; 142:110180. [PMID: 33773656 DOI: 10.1016/j.foodres.2021.110180] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity, and cardiovascular diseases. It is characterized by the accumulation of triglycerides in the hepatocytes in the absence of alcohol consumption. The prevalence of NAFLD has abruptly increased worldwide, with no effective treatment yet available. Anthocyanins (ACNs) belong to the flavonoid subclass of polyphenols, are commonly present in various edible plants, and possess a broad array of health-promoting properties. ACNs have been shown to have strong potential to combat NAFLD. We critically assessed the literature regarding the pharmacological mechanisms and biopharmaceutical features of the action of ACNs on NAFLD in humans and animal models. We found that ACNs ameliorate NAFLD by improving lipid and glucose metabolism, increasing antioxidant and anti-inflammatory activities, and regulating gut microbiota dysbiosis. In conclusion, ACNs have potential to attenuate NAFLD. However, further mechanistic studies are required to confirm these beneficial impacts of ACNs on NAFLD.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Fei Pan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuai Hao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
18
|
Zhou F, Guo J, Han X, Gao Y, Chen Q, Huang W, Zhan J, Huang D, You Y. Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet-Fed Mice through Increased Thermogenesis. J Nutr 2020; 150:2131-2138. [PMID: 32533770 DOI: 10.1093/jn/nxaa163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although polyphenol-rich cranberry extracts reportedly have an antiobesity effect, the exact reason for this remains unclear. OBJECTIVES In light of the reported health benefits of the polyphenolic compounds in cranberry, we investigated the effects and mechanism of a cranberry polyphenolic extract (CPE) in high-fat diet (HFD)-fed obese mice. METHODS The distributions of individual CPE compounds were characterized by HPLC fingerprinting. Male C57BL/6J mice (4 wk old) were fed for 16 wk normal diet (ND, 10% fat energy) or HFD (60% fat energy) with or without 0.75% CPE in drinking water (HFD + CPE). Body and adipose depot weights, indices of glucose metabolism, energy expenditure (EE), and expression of genes related to brown adipose tissue (BAT) thermogenesis, and inguinal/epididymal white adipose tissue (iWAT/eWAT) browning were measured. RESULTS After 16 wk, the body weight was 22.5% lower in the CPE-treated mice than in the HFD group but remained 17.9% higher than in the ND group. CPE treatment significantly increased EE compared with that of the ND and HFD groups. The elevated EE was linked with BAT thermogenesis, and iWAT/eWAT browning, shown by the induction of thermogenic genes, especially uncoupling protein 1 (Ucp1), and browning-related genes, including Cd137, a member of the tumor necrosis factor receptor superfamily (Tnfrsf9). The mRNA expression and abundance of uncoupling protein 1 in BAT of CPE-fed mice were 5.78 and 1.47 times higher than in the HFD group, and 0.61 and 1.12 times higher than in the ND group, respectively. Cd137 gene expression in iWAT and eWAT of CPE-fed mice were 2.35 and 3.13 times higher than in the HFD group, and 0.84 and 1.39 times higher than in the ND group, respectively. CONCLUSIONS Dietary CPE reduced but did not normalize HFD-induced body weight gain in male C57BL/6J mice, possibly by affecting energy metabolism.
Collapse
Affiliation(s)
- Fang Zhou
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Qimin Chen
- Department of Science and Technology, National University of Singapore, Singapore
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Dejian Huang
- Department of Science and Technology, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| |
Collapse
|
19
|
Hormoznejad R, Mohammad Shahi M, Rahim F, Helli B, Alavinejad P, Sharhani A. Combined cranberry supplementation and weight loss diet in non-alcoholic fatty liver disease: a double-blind placebo-controlled randomized clinical trial. Int J Food Sci Nutr 2020; 71:991-1000. [PMID: 32237922 DOI: 10.1080/09637486.2020.1746957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A double-blind placebo-controlled randomised clinical trial was conducted on 41 patients with non-alcoholic fatty liver disease (NAFLD). Participants were randomly allocated to receive either a cranberry supplement or a placebo for 12 weeks. Both groups were assigned to follow a weight loss diet. At the end of the study, alanine aminotransferase and insulin decreased significantly in both groups (p < .05); however, this reduction was significantly greater in the cranberry group than in the placebo group (p < .05). Significant improvements in insulin resistance were observed in the cranberry group and between the two groups (p < .001 and p = .020, respectively). Also, there was an improvement in steatosis grade and anthropometric measurements in both groups (p < .05), and there was no significant difference between the two groups in regard to these factors (p > .05). It seems that 288 mg of cranberry extract might improve managing NAFLD, which is equivalent to 26 g of dried cranberry.
Collapse
Affiliation(s)
- Razie Hormoznejad
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Mohammad Shahi
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Fakher Rahim
- Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.,Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Bijan Helli
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Pezhman Alavinejad
- Alimentary Tract Research Center, Ahvaz Imam Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Epidemiology, and Biostatistics, School of public health, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
20
|
Calvano A, Izuora K, Oh EC, Ebersole JL, Lyons TJ, Basu A. Dietary berries, insulin resistance and type 2 diabetes: an overview of human feeding trials. Food Funct 2020; 10:6227-6243. [PMID: 31591634 DOI: 10.1039/c9fo01426h] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary berries are a rich source of several nutrients and phytochemicals and in recent years, accumulating evidence suggests they can reduce risks of several chronic diseases, including type 2 diabetes (T2D). The objective of this review is to summarize and discuss the role of dietary berries (taken as fresh, frozen, or other processed forms) on insulin resistance and biomarkers of T2D in human feeding studies. Reported feeding trials involve different berries taken in different forms, and consequently differences in nutritional or polyphenol composition must be considered in their interpretation. Commonly consumed berries, especially cranberries, blueberries, raspberries and strawberries, ameliorate postprandial hyperglycemia and hyperinsulinemia in overweight or obese adults with insulin resistance, and in adults with the metabolic syndrome (MetS). In non-acute long-term studies, these berries either alone, or in combination with other functional foods or dietary interventions, can improve glycemic and lipid profiles, blood pressure and surrogate markers of atherosclerosis. Studies specifically in people with T2D are few, and more knowledge is needed. Nevertheless, existing evidence, although sparse, suggests that berries have an emerging role in dietary strategies for the prevention of diabetes and its complications in adults. Despite the beneficial effects of berries on diabetes prevention and management, they must be consumed as part of a healthy and balanced diet.
Collapse
Affiliation(s)
- Aaron Calvano
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Khoo WY, Chrisfield BJ, Sae-Tan S, Lambert JD. Mitigation of nonalcoholic fatty liver disease in high-fat-fed mice by the combination of decaffeinated green tea extract and voluntary exercise. J Nutr Biochem 2020; 76:108262. [PMID: 31759197 PMCID: PMC6995759 DOI: 10.1016/j.jnutbio.2019.108262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
We have shown that combination treatment with decaffeinated green tea extract (GTE) and voluntary exercise (Ex) reduces obesity and insulin resistance in high-fat (HF)-fed mice to a greater extent than either treatment alone. Here, we investigated the effects of GTE-, Ex- or the combination on the development of obesity-related NAFLD. Male C57BL/6 J mice were treated for 16 weeks with HF diet (60% energy from fat), HF supplemented with 7.7 g GTE/kg, HF plus access to a voluntary running wheel, or the combination. We found that treatment of mice with the combination mitigated the development of HF-induced NAFLD to a greater extent than either treatment alone. Combination-treated mice had lower plasma alanine aminotransferase (92% lower) and hepatic lipid accumulation (80% lower) than HF-fed controls: the effect of the single treatments was less significant. Mitigation of NAFLD was associated with higher fecal lipid and nitrogen levels. Combination treated, but not singly treated mice, had higher hepatic expression of genes related to mitochondrial biogenesis (sirtuin 1 [59%]; peroxisome proliferator-activated receptor γ coactivator 1α [42%]; nuclear respiratory factor 1 [38%]; and transcription factor B1, mitochondrial [89%]) compared to the HF-fed controls. GTE-, Ex-, and the combination-treatment groups also had higher hepatic expression of genes related to cholesterol synthesis and uptake, but the combination was not better than the single treatments. Our results suggest the combination of GTE and Ex can effectively mitigate NAFLD. Future studies should determine if the combination is additive or synergistic compared to the single treatments.
Collapse
Affiliation(s)
- Weslie Y Khoo
- Department of Food Science, The Pennsylvania State University, University Park, USA
| | | | - Sudathip Sae-Tan
- Department of Food Science, The Pennsylvania State University, University Park, USA
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, USA; Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA.
| |
Collapse
|
22
|
Shimizu K, Ono M, Imoto A, Nagayama H, Tetsumura N, Terada T, Tomita K, Nishinaka T. Cranberry Attenuates Progression of Non-alcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice. Biol Pharm Bull 2019; 42:1295-1302. [DOI: 10.1248/bpb.b18-00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University
| | - Akane Imoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Hideki Nagayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Naho Tetsumura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
23
|
de Almeida Alvarenga L, Borges NA, Moreira LDSG, Resende Teixeira KT, Carraro-Eduardo JC, Dai L, Stenvinkel P, Lindholm B, Mafra D. Cranberries – potential benefits in patients with chronic kidney disease. Food Funct 2019; 10:3103-3112. [DOI: 10.1039/c9fo00375d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with chronic kidney disease (CKD) present many complications that potentially could be linked to increased cardiovascular mortality such as inflammation, oxidative stress, cellular senescence and gut dysbiosis.
Collapse
Affiliation(s)
| | - Natália Alvarenga Borges
- Graduate Program in Nutrition Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Cardiovascular Sciences
| | | | | | | | - Lu Dai
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Denise Mafra
- Graduate Program in Medical Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Nutrition Sciences
| |
Collapse
|
24
|
Vaccinium macrocarpon Aiton Extract Ameliorates Inflammation and Hyperalgesia through Oxidative Stress Inhibition in Experimental Acute Pancreatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9646937. [PMID: 29861777 PMCID: PMC5976997 DOI: 10.1155/2018/9646937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
We evaluated the effect of the hydroethanolic extract of fruits of Vaccinium macrocarpon (HEVm) in a model of acute pancreatitis (AP) in mice. AP was induced by two injections of L-arginine and animals were treated with HEVm (50, 100, and 200 mg/kg, p.o.) or vehicle (saline) every 24 h, starting 1 h after the induction of AP. Phytochemical analysis of the extract and measurement of inflammatory and oxidative stress parameters, as well as abdominal hyperalgesia, were performed. Catechin, epicatechin, rutin, and anthocyanins were identified in HEVm. Treatment with HEVm decreased L-arginine-induced abdominal hyperalgesia (from 48 to 72 h). Also, treatment with HEVm decreased L-arginine-induced pancreatic edema, pancreatic and pulmonary neutrophil infiltration, and levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, after 72 h of induction. L-arginine-induced hyperamylasemia and hyperlipasemia were also reduced by the treatment with HEVm in comparison to vehicle-treated group. Moreover, lipoperoxidation, carbonyl radicals, nonprotein sulfhydryl groups, and activity of catalase and superoxide dismutase, but not glutathione peroxidase, were restored by the treatment with HEVm. These results show that treatment with HEVm decreased hyperalgesia and pancreatic/extrapancreatic inflammation and oxidative damage in L-arginine-induced AP, making this extract attractive for future approaches designed to treat this condition.
Collapse
|
25
|
Protection by different classes of dietary polyphenols against palmitic acid-induced steatosis, nitro-oxidative stress and endoplasmic reticulum stress in HepG2 hepatocytes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins. Int J Mol Sci 2017; 18:ijms18020376. [PMID: 28208630 PMCID: PMC5343911 DOI: 10.3390/ijms18020376] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin–Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.
Collapse
|