1
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Balogun O, Brownmiller CR, Lee SO, Kang HW. Onion Peel Extract Prevents Intestinal Inflammation via AMK-Activated Protein Kinase Activation in Caco-2/HT-29 Cells. Nutrients 2024; 16:3609. [PMID: 39519442 PMCID: PMC11547908 DOI: 10.3390/nu16213609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Obesogenic diets cause intestinal inflammation and dysfunction. Polyphenols have shown a positive impact on reducing inflammation in in vitro studies. However, their bioactivity may not be the same in the in vivo system due to structural alteration by the gastrointestinal digestive process. The purpose of this study was to investigate the anti-inflammatory effect of onion peel and its major bioactive compound, quercetin, in the intestine and further examine the impact of intestinal digestion on this effect. METHODS Onion peel extract (OPE) and quercetin (Q) were digested using gastrointestinal digestive enzymes in vitro and then treated into lipopolysaccharide (LPS)-stimulated Caco-2/HT-29 cells. Genes and proteins related to tight junction, inflammation, and epithelial integrity were measured. RESULTS OPE and digested OPE (DOPE) had a higher protective effect on LPS-induced tight junction and inflammatory genes and paracellular permeability than Q and digested Q (DQ). DOPE was more effective than OPE, while digestion did not change the activity of Q. The anti-inflammatory effect of OPE and Q with or without digestion was achieved by inhibiting nuclear factor kappa B through AMP-activated protein kinase-activated silent mating-type information regulation 2 homolog 1. CONCLUSIONS It was the first to find that a crude extract, after undergoing gastrointestinal digestion, demonstrated a notably superior anti-inflammatory effect in the cell study, suggesting the consumption of onion peels could potentially yield similar benefits in the human intestine. This discovery underscores the potential of onion peel polyphenols in combating intestinal inflammation, making them a compelling area of research for future therapeutic applications using food byproducts.
Collapse
Affiliation(s)
- Olugbenga Balogun
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Cindi R. Brownmiller
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; (C.R.B.); (S.-O.L.)
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; (C.R.B.); (S.-O.L.)
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
6
|
Han J, Chen Y, Xu X, Li Q, Xiang X, Shen J, Ma X. Development of Recombinant High-Density Lipoprotein Platform with Innate Adipose Tissue-Targeting Abilities for Regional Fat Reduction. ACS NANO 2024; 18:13635-13651. [PMID: 38753978 DOI: 10.1021/acsnano.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.
Collapse
Affiliation(s)
- Junhua Han
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yingxian Chen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolong Xu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Qingmeng Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xin Xiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaowei Ma
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, P. R. China
| |
Collapse
|
7
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
8
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
9
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
10
|
Netzer NC, Strohl KP, Pramsohler S. Influence of nutrition and food on sleep-is there evidence? Sleep Breath 2024; 28:61-68. [PMID: 37740061 PMCID: PMC10954981 DOI: 10.1007/s11325-023-02921-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The influence of sleep disorders on metabolism, especially concerning obesity and diabetes, as well as obesity and obstructive sleep apnea, has been widely investigated. However, the effect of nutrition and the intake of certain foods on sleep has only recently gained attention. In recent years, there have been publications on intake of certain foods and certain diets regarding their influence on sleep, as well as activity of adipocytes and their effect on production of sleep hormones. METHODS Following PRISMA guidelines, we performed a PubMed search using the key words "sleep," "sleep disorders," "nutrition," "food," and "food intake" published from 2012 to 2022. We excluded by consensus all articles with diets and exercise programs or bariatric surgery for weight loss to treat sleep apnea, all articles on connections between sleep disorders and metabolic disorders, and articles concerning the influence of drugs on neuroactive substances. RESULTS Of the 4155 publications revealed, 988 had nutrition, metabolism, and sleep as the primary topic of research. Of these 988 publications, only 26 fulfilled the content requirements concerning the influence of certain food and diets on sleep or sleep disorders, including the influence of the gastrointestinal system and adipocytes on sleep hormones. None of the investigations revealed clear evidence of an effect of a certain diet or food on sleep. Epidemiologic surveys suggest that shortened or fragmented sleep and chronotype in adults influence nutrition and fat metabolism. Additionally, there is evidence that adipocyte signaling influences neuronal mediators and hormones of the sleep-wake cycle. CONCLUSION There is no evidence of a direct influence of certain nutrition or food intake on sleep. Obesity via adipocyte signaling may influence the sleep-wake cycle, though the molecular research on this topic is based on animal studies.
Collapse
Affiliation(s)
- Nikolaus C Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, University Innsbruck, Innsbruck, Austria.
- Institute for Mountain Emergency Medicine, Terra X Cube, EURAC Research, Via Hypathia 2, 39100, Bozen, Italy.
- Div. of Sport Medicine, Dept. of Medicine, University Hospitals Ulm, Ulm, Germany.
| | - Kingman P Strohl
- Div. Pulmonary Medicine, Dept. Internal Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, University Innsbruck, Innsbruck, Austria
- Div. of Sport Medicine, Dept. of Medicine, University Hospitals Ulm, Ulm, Germany
| |
Collapse
|
11
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Duan Y, Dai H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway. Chin J Nat Med 2023; 21:812-829. [PMID: 38035937 DOI: 10.1016/s1875-5364(23)60481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 12/02/2023]
Abstract
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinglan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huimin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weiguang Sun
- GuangZhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Chung M, Hwang J, Park S. Antiobesity effects of onion ( Allium cepa) in subjects with obesity: Systematic review and meta-analysis. Food Sci Nutr 2023; 11:4409-4418. [PMID: 37576046 PMCID: PMC10420769 DOI: 10.1002/fsn3.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 04/30/2023] [Indexed: 08/15/2023] Open
Abstract
Onions are rich in bioactive compounds and have been found to prevent various chronic diseases, including obesity. We performed a systematic review and meta-analysis to investigate the antiobesity effect of onions. Studies were identified in PubMed/MEDLINE, Embase, Web of Science, and CENTRAL focusing on clinical trials evaluating the antiobesity effects of onion in obese subjects. The risk of bias in the studies was evaluated using Cochrane's Risk of Bias tool. The effect of onions was analyzed using data from the selected studies, and the results were indicated by weighted mean difference with 95% CI. The I 2 static test was used to examine heterogeneity between the studies. A total of 38 studies were reviewed, of which five clinical trials meeting the criteria were selected. As investigational products, onion peels were used in four studies and onions were used in one study. Following systematic review, it was determined that the risk of bias was generally low, and body weight, BMI, waist circumference, and triglyceride levels were significantly reduced in the onion groups compared to the placebo. In conclusion, onion intake had an antiobesity effect by reducing body weight and body fat, and this effect was particularly pronounced with onion peel.
Collapse
Affiliation(s)
- Min‐Yu Chung
- Department of Food and NutritionGangseo UniversitySeoulKorea
| | - Jin‐Taek Hwang
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| | - Soo‐Hyun Park
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| |
Collapse
|
13
|
Millán-Laleona A, Bielsa FJ, Aranda-Cañada E, Gómez-Rincón C, Errea P, López V. Antioxidant, Antidiabetic, and Anti-Obesity Properties of Apple Pulp Extracts ( Malus domestica Bork): A Comparative Study of 15 Local and Commercial Cultivars from Spain. BIOLOGY 2023; 12:891. [PMID: 37508324 PMCID: PMC10376420 DOI: 10.3390/biology12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Apples (Malus domestica Borkh.) have a great agricultural and economic impact worldwide; they also present an interesting nutritional value, and their consumption has been associated with beneficial health effects. In this study, 15 apple varieties (three commercial, 12 autochthonous genotypes) were collected from mountainous areas in Spain and were evaluated for their phenolic content, antioxidant, anti-obesity and antidiabetic activities. Quercetin was tested as the reference substance in bioassays due to its role as one of the most common flavonoids in apples and other vegetables. Total Phenolic Content (TPC) of apple pulp extracts was quantified using the Folin-Ciocalteu method. The antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and xanthine/xanthine oxidase (X/XO) scavenging assays. Antidiabetic and anti-obesity potential were evaluated by inhibition of alpha-glucosidase (α-GLU), advance glycation end products (AGEs) formation and pancreatic lipase. The results showed in general higher phenol content in autochthonous varieties than in commercial apple pulp extracts. Phenolic-rich extracts showed better antioxidant profiles and significantly inhibited AGEs production and the α-glucosidase enzyme in a dose-dependent manner. None of them showed pancreatic lipase inhibitory effects but in general, the genotype known as "Amarilla de Octubre" was the best in terms of TPC and bioactive properties.
Collapse
Affiliation(s)
- Adrián Millán-Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Francisco Javier Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - Eduardo Aranda-Cañada
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Errea
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
14
|
Schirinzi V, Poli C, Berteotti C, Leone A. Browning of Adipocytes: A Potential Therapeutic Approach to Obesity. Nutrients 2023; 15:2229. [PMID: 37432449 DOI: 10.3390/nu15092229] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
The increasing prevalence of overweight and obesity suggests that current strategies based on diet, exercise, and pharmacological knowledge are not sufficient to tackle this epidemic. Obesity results from a high caloric intake and energy storage, the latter by white adipose tissue (WAT), and when neither are counterbalanced by an equally high energy expenditure. As a matter of fact, current research is focused on developing new strategies to increase energy expenditure. Against this background, brown adipose tissue (BAT), whose importance has recently been re-evaluated via the use of modern positron emission techniques (PET), is receiving a great deal of attention from research institutions worldwide, as its main function is to dissipate energy in the form of heat via a process called thermogenesis. A substantial reduction in BAT occurs during normal growth in humans and hence it is not easily exploitable. In recent years, scientific research has made great strides and investigated strategies that focus on expanding BAT and activating the existing BAT. The present review summarizes current knowledge about the various molecules that can be used to promote white-to-brown adipose tissue conversion and energy expenditure in order to assess the potential role of thermogenic nutraceuticals. This includes tools that could represent, in the future, a valid weapon against the obesity epidemic.
Collapse
Affiliation(s)
- Vittoria Schirinzi
- Endocrinology and Care of Diabetes Unit-Azienda Ospedaliero-Universitaria S. Orsola Malpighi, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Carolina Poli
- IRCCS-Azienda Ospedaliero-Universitaria S. Orsola Malpighi, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
15
|
Budhalakoti N. Synthesis of Silver Nanoparticles Using Onion Peel Polyphenols and Their Antimicrobial Effect. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Li J, Wu K, Zhong Y, Kuang J, Huang N, Guo X, Du H, Guo C, Li R, Zhu X, Zhang T, Gong L, Sheng L, Sun R. Si-Ni-SAN ameliorates obesity through AKT/AMPK/HSL pathway-mediated lipolysis: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115892. [PMID: 36334816 DOI: 10.1016/j.jep.2022.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Ni-San (SNS) is a famous Chinese herbal formula used in China for thousands of years. It has clinical effects on a variety of lipid metabolism disorders, but the ameliorating effects of SNS on obesity and underlying mechanisms remained poorly elucidated. AIM OF THE STUDY This study aims to explore the therapeutic effect and mechanism of SNS on obesity from multiple perspectives in vitro and in vivo. MATERIALS AND METHODS The high-fat diet (HFD)-induced obesity mouse model was established to evaluate the effect of SNS. Then network pharmacologic methods were performed to predict underlying mechanisms, and the core pathways were verified in animal and cell studies. RESULTS Our results demonstrated that SNS significantly reduced body weight, body fat content, white adipose tissue (WAT) expansion in obese mice, and lipid accumulation in primary mouse embryonic fibroblasts (MEFs) cells. Network pharmacologic analysis identified 66 potential therapeutic targets, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these genes revealed that the most important signaling pathway includes AMP-activated protein kinase (AMPK) signaling pathway, regulation of lipolysis in adipocytes, lipid and atherosclerosis. Western blot assay confirmed that SNS activated hormone-sensitive triglyceride lipase (HSL) and adipose triglyceride lipase (ATGL) activity and promoted lipolysis through AMPK signaling pathway. CONCLUSION The results confirmed that SNS improves lipid accumulation through AKT/AMPK/HSL axis mediated lipolysis, which opens a new option for clinical treatment of obesity and associated complications.
Collapse
Affiliation(s)
- Jianchao Li
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Kaiyi Wu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jiangying Kuang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Xin Guo
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Hang Du
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Chong Guo
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Rongrong Li
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Tianyu Zhang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Liping Gong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Lisong Sheng
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
17
|
Kim YI, Lee ES, Song EJ, Shin DU, Eom JE, Shin HS, Kim JE, Oh JY, Nam YD, Lee SY. Lacticaseibacillus paracasei AO356 ameliorates obesity by regulating adipogenesis and thermogenesis in C57BL/6J male mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Romero-Juárez PA, Visco DB, Manhães-de-Castro R, Urquiza-Martínez MV, Saavedra LM, González-Vargas MC, Mercado-Camargo R, Aquino JDS, Toscano AE, Torner L, Guzmán-Quevedo O. Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutr Neurosci 2023; 26:25-39. [PMID: 34905445 DOI: 10.1080/1028415x.2021.2012629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Obesity results from an unbalance in the ingested and burned calories. Energy balance (EB) is critically regulated by the hypothalamic arcuate nucleus (ARC) by promoting appetite or anorectic actions. Hypothalamic inflammation, driven by high activation of the microglia, has been reported as a key mechanism involved in the development of diet-induced obesity. Kaempferol (KF), a flavonoid-type polyphenol present in a large number of fruits and vegetables, was shown to regulate both energy metabolism and inflammation. OBJECTIVES In this work, we studied the effects of both the central and peripheral treatment with KF on hypothalamic inflammation and EB regulation in mice with obesity. METHODS Obese adult mice were chronically (40 days) treated with KF (0.5 mg/kg/day, intraperitoneally). During the treatment, body weight, food intake (FI), feed efficiency (FE), glucose tolerance, and insulin sensitivity were determined. Analysis of microglia activation in the ARC of the hypothalamus at the end of the treatment was also performed. Body weight, FI, and FE changes were also evaluated in response to 5µg KF, centrally administrated. RESULTS Chronic administration of KF decreased ∼43% of the density, and ∼30% of the ratio, of activated microglia in the arcuate nucleus. These changes were accompanied by body weight loss, decreased FE, reduced fasting blood glucose, and a tendency to improve insulin sensitivity. Finally, acute central administration of KF reproduced the effects on EB triggered by peripheral administration. CONCLUSION These findings suggest that KF might fight obesity by regulating central processes related to EB regulation and hypothalamic inflammation.
Collapse
Affiliation(s)
- Pedro A Romero-Juárez
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Diego Bulcão Visco
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México.,Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brasil.,Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raul Manhães-de-Castro
- Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brasil.,Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mercedes V Urquiza-Martínez
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Luis Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Mari C González-Vargas
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Rosalio Mercado-Camargo
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Jailane de Souza Aquino
- Laboratório de Nutrição Experimental, Departamento de Nutrição, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana E Toscano
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Departmento de Enfermagem, Universidade Federal de Pernambuco, Recife, Brasil.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brasil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México
| | - Omar Guzmán-Quevedo
- Instituto Tecnológico Superior de Tacámbaro, Michoacán, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, México.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brasil
| |
Collapse
|
19
|
Karami F, Ghorbani M, Sadeghi Mahoonak A, Pourhossein A, Bagheri A, Khodarahmi R. Increasing Antioxidant Activity in Food Waste Extracts by β-Glucosidase. Food Technol Biotechnol 2022; 60:458-468. [PMID: 36816873 PMCID: PMC9901336 DOI: 10.17113/ftb.60.04.22.7443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/02/2022] [Indexed: 11/12/2022] Open
Abstract
Research background Food by-products such as onion peels and olive leaves are rich in bioactive compounds applicable as natural and low-cost sources of antioxidants. Still, these compounds mainly exist in glycosylated form. Often, hydrolysis of glycoside compounds increases their antioxidant activity and health benefits. However, not many studies have been done concerning the β-glucosidase effect, specifically from Aspergillus niger, on glycosylated compounds within these by-products. Also, changes in the antioxidant activity of the mentioned by-products under the effect of β-glucosidase have not been reported yet. Therefore, this study considers the effect of A. niger β-glucosidase on glucoside compounds and the antioxidant activity of onion peel and olive leaf extracts. Experimental approach The antioxidant activity of the extracts was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Also, glucose, total phenolic and flavonoid contents were measured. Moreover, TLC and HPLC analyses were performed before and after the enzymatic hydrolysis. Results and conclusions The obtained results showed an increase in the extract antioxidant activity after treatment. Also, β-glucosidase increased the glucose content of the extracts. The thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) results showed the β-glucosidase efficacy to hydrolyze quercetin glucosides in onion peel extract, and the quercetin concentration increased from (0.48±0.04) mg/mL in the untreated extract to (1.26±0.03) mg/mL in the treated extract (0.5% m/V) after 3 h of enzymatic hydrolysis at 45 °C. Also, the content of quercetin-3-O-glucoside increased considerably from (1.8±0.1) to (54±9) µg/mL following the enzyme treatment. Moreover, oleuropein in olive leaf extract (1% m/V) was hydrolyzed completely from (0.382±0.016) to 0 mg/mL by β-glucosidase for 24 h at 50 °C. Novelty and scientific contribution This study showed that A. niger β-glucosidase, as a stable enzyme, hydrolyzed quercetin and oleuropein glycosides in onion peel and olive leaf extracts. Thus, A. niger β-glucosidase is a good candidate for processing the food waste and extracting valuable bioactive compounds. Also, the treated extracts with higher antioxidant and biological activity, and without bitter taste can be applicable as potent, natural and cost-effective antioxidants in the food industry.
Collapse
Affiliation(s)
- Farahnaz Karami
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Basij street, 4918943464 Gorgan, Iran,Medical Biology Research Center, Kermanshah University of Medical Sciences, Daneshgah street, 6714415185 Kermanshah, Iran
| | - Mohammad Ghorbani
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Basij street, 4918943464 Gorgan, Iran,Coresponding authors: Phone: +989112754553, E-mail:
| | - Alireza Sadeghi Mahoonak
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Basij street, 4918943464 Gorgan, Iran
| | - Alireza Pourhossein
- Nano Drug Delivery Research Center, Health Technology Institue, Kermanshah University of Medical Sciences, Daneshgah street, 6714415153 Kermanshah, Iran
| | - Ahmad Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Daneshgah street, 6714415185 Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Daneshgah street, 6714415185 Kermanshah, Iran,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Daneshgah street, 6714415153 Kermanshah, Iran,Coresponding authors: Phone: +989112754553, E-mail:
| |
Collapse
|
20
|
Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022; 27:molecules27217320. [PMID: 36364145 DOI: 10.3390/molecules27217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, we discuss the advantages of vegetable sprouts in the development of food products as well as their beneficial effects on a variety of disorders. Sprouts are obtained from different types of plants and seeds and various types of leafy, root, and shoot vegetables. Vegetable sprouts are enriched in bioactive compounds, including polyphenols, antioxidants, and vitamins. Currently, different conventional methods and advanced technologies are used to extract bioactive compounds from vegetable sprouts. Due to some issues in traditional methods, increasingly, the trend is to use recent technologies because the results are better. Applications of phytonutrients extracted from sprouts are finding increased utility for food processing and shelf-life enhancement. Vegetable sprouts are being used in the preparation of different functional food products such as juices, bread, and biscuits. Previous research has shown that vegetable sprouts can help to fight a variety of chronic diseases such as cancer and diabetes. Furthermore, in the future, more research is needed that explores the extraordinary ways in which vegetable sprouts can be incorporated into green-food processing and preservation for the purpose of enhancing shelf-life and the formation of functional meat products and substitutes.
Collapse
|
21
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
22
|
Peanut Shell Extract and Luteolin Regulate Lipid Metabolism and Induce Browning in 3T3-L1 Adipocytes. Foods 2022; 11:foods11172696. [PMID: 36076880 PMCID: PMC9455591 DOI: 10.3390/foods11172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Peanut shells are agricultural waste products that require utilization. The freeze-dried ethanolic peanut shell extract (PSE) contained 10.01 ± 0.55 mg/g of luteolin (LUT) with a total polyphenol content of 18.11 ± 0.88 mg GAE/g. Thus, LUT is one of the major polyphenolic components in PSE. Although PSE displays antibacterial and neurotrophic activities, minimal research is available addressing its potential role in lipid metabolism. This study investigated the role of PSE in terms of inhibiting adipogenesis, accelerating lipolysis, and promoting lipid browning using the 3T3-L1 cell line. Without affecting cell viability, high concentrations of PSE and LUT prevented adipogenesis by reducing the mRNA levels of C/EBPα, PPARγ, and SREBP1-c, and increasing the protein levels of pACC and pAMPK. Moreover, PSE and LUT induced lipolysis by activating lipolytic proteins, and enhanced the protein expressions of the brown adipocyte-specific markers, UCP1, PGC-1α, and SIRT1 in fully differentiated 3T3-L1 adipocytes. Increased mitochondrial biosynthesis provided additional evidence in favor of these findings. Due to their anti-obesity properties, it is proposed that PSE and LUT could be used as potential dietary supplements.
Collapse
|
23
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
24
|
The effects of brewers' spent grain on high-fat diet-induced fatty liver. Biochem Biophys Res Commun 2022; 616:49-55. [PMID: 35636255 DOI: 10.1016/j.bbrc.2022.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Obesity drives nonalcoholic fatty liver disease (NAFLD). This study investigated the effects of dietary brewers' spent grain (BSG) supplementation on obesity-induced NAFLD. Mice fed a high-fat diet supplemented with 30% BSG (HFD30) had reduced body weight and decreased plasma total cholesterol (TC) concentrations compared with HFD-fed mice. Retroperitoneal white adipose tissue (RWAT) and liver weights were reduced. Consistent with reduced hepatic triacylglycerol, TC, and non-esterified fatty acid concentrations, HFD30-fed mice showed reduced hepatic steatosis. 3-hydroxy-3-methylglutaryl-CoA reductase and low-density lipoprotein receptor genes were increased, whereas carnitine palmitoyltransferase 1 alpha, ATP-binding cassette subfamily A member 1 (Abca1), and cholesterol 7 alpha-hydroxylase genes were upregulated in the liver of HFD30-fed mice. Abca1 gene expression was also increased in epididymal WAT and RWAT of HFD30-fed mice. BSG supplementation increased and decreased fecal fat and bile acid concentrations, respectively. Taken together, BSG supplementation reduced HFD-induced hepatic lipid accumulation by increasing fatty acid oxidation and bile acid synthesis in the liver as well as decreasing lipid absorption in the intestine.
Collapse
|
25
|
Chen T, Jia F, Yu Y, Zhang W, Wang C, Zhu S, Zhang N, Liu X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022; 27:molecules27144476. [PMID: 35889348 PMCID: PMC9325244 DOI: 10.3390/molecules27144476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women’s physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Jia
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Yu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wufan Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaoying Wang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiqin Zhu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nana Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinmin Liu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Correspondence:
| |
Collapse
|
26
|
Bioactive Compounds and Adipocyte Browning Phenomenon. Curr Issues Mol Biol 2022; 44:3039-3052. [PMID: 35877434 PMCID: PMC9320013 DOI: 10.3390/cimb44070210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity have become worldwide health issues in most countries. Current strategies aimed to prevent or reduce overweight and obesity have mainly focused on the genes and molecular mechanisms that give the functional characteristics to different types of adipose tissue. The Browning phenomenon in adipocytes consists of phenotypic and metabolic changes within white adipose tissue (WAT) activated by thermogenic mechanisms similar to that occurring in brown adipose tissue (BAT); this phenomenon has assumed great relevance due to its therapeutic potential against overweight and obesity. In addition, the study of inflammation in the development of overweight and obesity has also been included as a relevant factor, such as the pro-inflammatory mechanisms promoted by M1-type macrophages in adipose tissue. Studies carried out in this area are mainly performed by using the 3T3-L1 pre-adipocyte cell line, testing different bioactive compound sources such as plants and foods; nevertheless, it is necessary to standardize protocols used in vitro as well to properly scale them to animal models and clinical tests in order to have a better understanding of the mechanisms involved in overweight and obesity.
Collapse
|
27
|
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J, Lu B. The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing. J Nutr Biochem 2022; 108:109091. [PMID: 35718097 DOI: 10.1016/j.jnutbio.2022.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.
Collapse
Affiliation(s)
- Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
28
|
Wu J, Du J, Li Z, He W, Wang M, Jin M, Yang L, Liu H. Pentamethylquercetin Regulates Lipid Metabolism by Modulating Skeletal Muscle-Adipose Tissue Crosstalk in Obese Mice. Pharmaceutics 2022; 14:pharmaceutics14061159. [PMID: 35745732 PMCID: PMC9227162 DOI: 10.3390/pharmaceutics14061159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Irisin is an exercise-induced hormone that regulates lipid metabolism. The present study investigates whether the anti-obesity effect of the natural flavonoid pentamethylquercetin (PMQ) is related to irisin secretion from skeletal muscle in whole animals and cultured cells. Obese mice induced by monosodium glutamate were administered oral PMQ to determine blood irisin level and in vivo parameters of lipid metabolism, and cultured mouse C2C12 myoblasts and 3T3-L1 preadipocytes were employed to investigate the related molecular identities. PMQ increased circulating irisin and decreased bodyweight, insulin, and lipid levels accompanied with increasing brown-like adipocyte formation in obese mice. The brown adipocyte marker uncoupling protein 1 (UCP-1) and other brown-like adipocyte-specific genes and/or markers were increased in mouse white fat tissue, while PMQ treatment reversed the above changes. PMQ also dose-dependently increased the reduced levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and fibronectin type III domain-containing 5 (FNDC5) signal molecules in obese mice. Interestingly, the irisin level was increased in the culture medium of C2C12 cells treated with PMQ, and the conditioned medium stimulated the brown-like transition of 3T3-L1 preadipocytes with the increased expression of PGC-1α, FNDC5, UCP-1, and other brown-like adipocyte-specific genes. The effects of conditioned culture medium were abolished in C2C12 cells with silenced PGC-1α. On the other hand, PMQ-induced upregulation of PGC-1α and FNDC5 expression was reduced by AMPK inhibitor Compound C in C2C12 cells. Our results demonstrate the novel information that PMQ-induced irisin secretion from skeletal muscle involves the improvement of metabolic dysfunction in obese mice via activating the AMPK/PGC-1α/FNDC5 signal pathway, suggesting that PMQ modulates skeletal muscle-adipose tissue crosstalk and may be a promising drug candidate for treating obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Jianzhao Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Jingxia Du
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Zhi Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Wei He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Min Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Manwen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (L.Y.); (H.L.)
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (L.Y.); (H.L.)
| |
Collapse
|
29
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
30
|
Wang X, Liu F, Cui Y, Yin Y, Li S, Li X. Apple Polyphenols Extracts Ameliorate High Carbohydrate Diet-Induced Body Weight Gain by Regulating the Gut Microbiota and Appetite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:196-210. [PMID: 34935369 DOI: 10.1021/acs.jafc.1c07258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the potential contribution of appetite regulation and modulation of gut microbiota to the ameliorated effects of apple polyphenols extracts (APE) on high carbohydrate diet (HCD)-induced body weight (BW) gain, we conducted this study. One hundred C57BL/6 male mice were randomly divided into seven groups and fed with the following diets for 12 weeks: chow diet (CON), HCD (HCD), high fructose and sucrose diet (HSCD), and HCD and HSCD with 125 or 500 mg/kg·day APE gavage. Compared to the CON group, the BW of mice in the HCD and HSCD groups increased significantly. HSCD induced a more significant weight gain in the white adipose tissue (WAT) and liver than HCD, accompanied by severe impairment of glucose tolerance and a larger diameter of adipocytes. On the other hand, by decreasing food intake, APE significantly reduced BW via mechanisms, including decreased weights of the WAT and liver, amelioration of glucose tolerance, and amplification of WAT browning by upregulating the mRNA levels of Ucp-1 and Cidea. Moreover, APE promoted transcription and secretion of GLP-1, with the increased expression of gut anorexigenic hormone peptides Ffar 2/3 in the colon and anorectic neuropeptide gene expression of Pomc, Cart, and Mc4r in the hypothalamus, causing increased satiety. Additionally, APE significantly increased Verrucomicrobia colonization and the relative abundance of Akkermansia. APE potentially ameliorates high simple carbohydrate diet-induced body weight gain by mechanisms related to gut microbiota regulation and appetite inhibition.
Collapse
Affiliation(s)
- Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yan Yin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Shilan Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
31
|
Jeria N, Cornejo S, Prado G, Bustamante A, Garcia-Diaz DF, Jimenez P, Valenzuela R, Poblete-Aro C, Echeverria F. Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2013498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Jeria
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Cornejo
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Prado
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paula Jimenez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Nutritional Science Department, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigación en Rehabilitación en Salud, Universidad de las Americas, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
32
|
Kumar M, Barbhai MD, Hasan M, Punia S, Dhumal S, Radha, Rais N, Chandran D, Pandiselvam R, Kothakota A, Tomar M, Satankar V, Senapathy M, Anitha T, Dey A, Sayed AAS, Gadallah FM, Amarowicz R, Mekhemar M. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed Pharmacother 2021; 146:112498. [PMID: 34953395 DOI: 10.1016/j.biopha.2021.112498] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Mrunal D Barbhai
- Chemical and Biochemical Processing Division, ICAR - Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124 Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum - 695091, Kerala, India
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR - Central Institute for Research on Cotton Technology, Nagpur, Maharashtra, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Wolaita Sodo, Ethiopia.
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; Division of Plant Physiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Farouk M Gadallah
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany.
| |
Collapse
|
33
|
Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep 2021; 11:23237. [PMID: 34853352 PMCID: PMC8636588 DOI: 10.1038/s41598-021-02544-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of adipose tissue with aging and the accumulation of senescent cells has been implicated in the pathophysiology of chronic diseases. Recently interventions capable of reducing the burden of senescent cells and in particular the identification of a new class of drugs termed senolytics have been object of extensive investigation. We used an in vitro model of induced senescence by treating both pre-adipocytes as well as mature adipocytes with hydrogen peroxide (H2O2) at a sub-lethal concentration for 3 h for three consecutive days, and hereafter with 20 uM quercetin at a dose that in preliminary experiments resulted to be senolytic without cytotoxicity. H2O2 treated pre-adipocytes and adipocytes showed typical senescence-associated features including increased beta-galactosidase activity (SA-ß-gal) and p21, activation of ROS and increased expression of pro-inflammatory cytokines. The treatment with quercetin in senescent pre-adipocytes and adipocytes was associated to a significant decrease in the number of the SA-β-gal positive cells along with the suppression of ROS and of inflammatory cytokines. Besides, quercetin treatment decreased miR-155-5p expression in both models, with down-regulation of p65 and a trend toward an up-regulation of SIRT-1 in complete cell extracts. The senolytic compound quercetin could affect AT ageing by reducing senescence, induced in our in vitro model by oxidative stress. The downregulation of miRNA-155-5p, possibly through the modulation of NF-κB and SIRT-1, could have a key role in the effects of quercetin on both pre-adipocytes and adipocytes.
Collapse
|
34
|
Quercetin as a supplement improving endurance exercise capacity – review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Rafique MA, Kiran S, Javed S, Ahmad I, Yousaf S, Iqbal N, Afzal G, Rani F. Green synthesis of nickel oxide nanoparticles using Allium cepa peels for degradation of Congo red direct dye: an environmental remedial approach. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2793-2804. [PMID: 34850694 DOI: 10.2166/wst.2021.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct dyes are used in different textile operations and processings. The textile industries are disposing of unused direct dyes into the aquatic environment which is posing a serious alarming threat to aquatic lives. The current study deals with the synthesis of nickel oxide nanoparticles using Allium cepa peels aqueous extract. Nickel oxide nanoparticles (NiO-NPs) were characterized by scanning electron microscopy (SEM). Synthesized NiO-NPs were used to remove Congo red direct dye. Various experimental factors like concentration of dye and nanoparticles, pH, and temperature were optimized. Congo red direct dye was decolorized up to 90% at optimized conditions (Congo Red Direct dye concentration 0.02%, catalyst dose 0.003 g·L-1, pH 6, and temperature 50 °C). The real textile industry effluent disclosed 70% decolorization at optimized conditions. The percent reduction in total organic carbon (TOC) and chemical oxygen demand (COD) was found to be 73.24% and 74.56% in the case of Congo red dye catalytic treatment and the percent reduction in TOC and COD was found to be 62.47% and 60.23%, respectively, in the treatment of textile effluent using nickel oxide nanoparticles as a catalyst. Treated and untreated dye samples were exposed to Fourier transform infrared (FTIR) and UV-Visible spectral analyses too. The reaction products were studied by degradation pathway.
Collapse
Affiliation(s)
- Muhammad Asim Rafique
- School of Economics and Management, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan E-mail:
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Nazar Iqbal
- School of Economics and Management, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fouzai Rani
- School of Economics and Management, Yanshan University, Qinhuangdao, Hebei Province, China
| |
Collapse
|
37
|
Balogun O, Kang HW. Garlic Scape ( Allium sativum L.) Extract Decreases Adipogenesis by Activating AMK-Activated Protein Kinase During the Differentiation in 3T3-L1 Adipocytes. J Med Food 2021; 25:24-32. [PMID: 34619042 DOI: 10.1089/jmf.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulating adipogenesis and lipogenesis in white adipose tissue (WAT) is an efficient strategy to reduce obesity. This study investigates whether garlic scape extract (GSE) has anti-adipogenic and anti-lipogenic effects and which stage of adipogenesis is critical for its effect using 3T3-L1 cells. 3T3-L1 cells that were treated with GSE during adipogenesis and differentiation exhibited reduced peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein a (Cebpa) and Cebpb, acetyl-CoA carboxylase, fatty acid synthase, sterol regulatory element binding protein 1c, diacylglycerol acyltransferase 1, and perilipin 1 genes. When the cells were treated with GSE during postdifferentiation or during preadipocytes, they showed less reduction and no change, respectively. Consistent with this, lipid accumulation was strongly reduced in the cells that were treated during adipogenesis and differentiation and to a lesser extent in the cells that were treated during preadipocytes and postdifferentiation. Phosphorylation on AMP-activated protein kinase (AMPK) and its downstream proteins was increased together with increased carnitine palmitoyl transferase 1α and phosphorylation on hormone-sensitive lipase in the cells that were treated with GSE during differentiation. In summary, GSE reduced intracellular lipid accumulation by suppressing adipogenic and lipogenic genes and proteins by possibly the activation of AMPK signaling pathway during adipocyte differentiation. This result indicates that garlic scape may have the potential to prevent obesity by regulating lipid metabolism in WAT.
Collapse
Affiliation(s)
- Olugbenga Balogun
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| |
Collapse
|
38
|
Pei Y, Parks JS, Kang HW. Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
39
|
de la Luz Cádiz-Gurrea M, Fernández-Ochoa Á, Del Carmen Villegas-Aguilar M, Arráez-Román D, Segura-Carretero A. Therapeutic Targets for Phenolic Compounds from Agro-industrial Byproducts against Obesity. Curr Med Chem 2021; 29:1083-1098. [PMID: 34544333 DOI: 10.2174/0929867328666210920103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is considered as a global epidemic worldwide. This disorder is associated to several health effects such as metabolic disturbances that need both prevention and treatment actions. In this sense, bioactive secondary metabolites can be obtained from cheap sources such as agro-industrial waste providing a sustainable alternative against obesity. Among these secondary metabolites, phenolic compounds present a common chemical structure core with different substitutions that provides them biological properties such as antioxidant, inflammatory, anti-aging capacities. OBJECTIVE The aim of this review is to compile anti-obesity therapeutic targets for phenolic compounds from agro-industrial byproducts. METHOD Scientific information has been obtained from different databases such as Scopus, PubMed and Google Scholar in order to select the available full text studies in last years. RESULTS This review shows that peel, seed, pomace and other byproducts from agro-industry have different effects inhibiting enzymes related to lipid or glucose metabolism and modulating biomarkers, genes and gut microbiota in animal models. CONCLUSION Revalorizing actions of agro-industrial byproducts in the prevention or treatment of obesity or associated disorders can be considered to develop new high value products that act on lipid, glucose and energy metabolisms, oxidative stress, inflammation, adipose tissue or gut microbiota. However, further human studies are need in order to stablish the optimal administration parameters.
Collapse
Affiliation(s)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin. Germany
| | | | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Granada. Spain
| | | |
Collapse
|
40
|
Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion ( Allium cepa L.). Front Nutr 2021; 8:669805. [PMID: 34368207 PMCID: PMC8339303 DOI: 10.3389/fnut.2021.669805] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Onion (Allium cepa L.) is a common vegetable, widely consumed all over the world. Onion contains diverse phytochemicals, including organosulfur compounds, phenolic compounds, polysaccharides, and saponins. The phenolic and sulfur-containing compounds, including onionin A, cysteine sulfoxides, quercetin, and quercetin glucosides, are the major bioactive constituents of onion. Accumulated studies have revealed that onion and its bioactive compounds possess various health functions, such as antioxidant, antimicrobial, anti-inflammatory, anti-obesity, anti-diabetic, anticancer, cardiovascular protective, neuroprotective, hepatorenal protective, respiratory protective, digestive system protective, reproductive protective, and immunomodulatory properties. Herein, the main bioactive compounds in onion are summarized, followed by intensively discussing its major health functions as well as relevant molecular mechanisms. Moreover, the potential safety concerns about onion contamination and the ways to mitigate these issues are also discussed. We hope that this paper can attract broader attention to onion and its bioactive compounds, which are promising ingredients in the development of functional foods and nutraceuticals for preventing and managing certain chronic diseases.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Fang-Jun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Hang Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Bao-He Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
41
|
Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of Brown Adipose Tissue and Promotion of White Adipose Tissue Browning by Plant-based Dietary Components in Rodents: A Systematic Review. Adv Nutr 2021; 12:2147-2156. [PMID: 34265040 PMCID: PMC8634450 DOI: 10.1093/advances/nmab084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Activation of brown adipose tissue (BAT) and promotion of white adipose tissue (WAT) browning is considered a potential tool to combat obesity and cardiometabolic disorders. The use of plant-based dietary components has become one of the most used strategies for activating BAT and promoting WAT browning in rodents. The main reason is because plant-based dietary components are usually recognized as safe when the dose is properly adjusted, and they can easily be administrated by being added to the diet or dissolved in water. The present systematic review aimed to study the effects of plant-based dietary components on activation of BAT and promotion of WAT browning in rodents. A systematic search of PubMed and Scopus (from 1978 to 2019) identified eligible studies. Studies assessing the effects of plant-based dietary components added to diet and/or water on uncoupling protein 1 (UCP1) expression in BAT and/or WAT were included. Studies that used dietary components of animal origin, did not specify the effects on UCP1, or were conducted in other species different from mice or rats were excluded. Of 3919 studies identified in the initial screening, 146 studies were finally included in the review. We found that tea extract catechins, resveratrol, capsaicin and capsinoids, cacao extract flavanols, and quercetin were the most studied components. Scientific evidence suggests that some of these dietary components activate BAT and promote WAT browning via activation of the AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These findings reveal that there is strong scientific evidence supporting the use of plant-based dietary components to activate BAT and promote WAT browning in rodents and thus to potentially combat obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. Del Conocimiento, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, Li Y. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021; 35:4727-4747. [PMID: 34159683 DOI: 10.1002/ptr.7104] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Quercetin is the major representative of the flavonoid subgroup of flavones, with good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It can significantly influence the development of liver diseases via multiple targets and multiple pathways via antifat accumulation, anti-inflammatory, and antioxidant activity, as well as the inhibition of cellular apoptosis and proliferation. Despite extensive research on understanding the mechanism of quercetin in the treatment of liver diseases, there are still no targeted therapies available. Thus, we have comprehensively searched and summarized the different targets of quercetin in different stages of liver diseases and concluded that quercetin inhibited inflammation of the liver mainly through NF-κB/TLR/NLRP3, reduced PI3K/Nrf2-mediated oxidative stress, mTOR activation in autophagy, and inhibited the expression of apoptotic factors associated with the development of liver diseases. In addition, quercetin showed different mechanisms of action at different stages of liver diseases, including the regulation of PPAR, UCP, and PLIN2-related factors via brown fat activation in liver steatosis. The compound inhibited stromal ECM deposition at the liver fibrosis stage, affecting TGF1β, endoplasmic reticulum stress (ERs), and apoptosis. While at the final liver cancer stage, inhibiting cancer cell proliferation and spread via the hTERT, MEK1/ERK1/2, Notch, and Wnt/β-catenin-related signaling pathways. In conclusion, quercetin is an effective liver protectant. We hope to explore the pathogenesis of quercetin in different stages of liver diseases through the review, so as to provide more accurate targets and theoretical basis for further research of quercetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Malik G, Dhatt AS, Malik AA. A Review of Genetic Understanding and Amelioration of Edible Allium Species. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2019.1709202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Geetika Malik
- Division of Vegetable Science and Floriculture, ICAR-Central Institute of Temperate Horticulture, Srinagar, J&K, India
| | - Ajmer Singh Dhatt
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajaz Ahmed Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, J&K, India
| |
Collapse
|
45
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
46
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Mulberry leaf activates brown adipose tissue and induces browning of inguinal white adipose tissue in type 2 diabetic rats through regulating AMP-activated protein kinase signalling pathway. Br J Nutr 2021; 127:810-822. [PMID: 33971987 DOI: 10.1017/s0007114521001537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.
Collapse
|
48
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
49
|
Potential of Nutraceutical Supplementation in the Modulation of White and Brown Fat Tissues in Obesity-Associated Disorders: Role of Inflammatory Signalling. Int J Mol Sci 2021; 22:ijms22073351. [PMID: 33805912 PMCID: PMC8037903 DOI: 10.3390/ijms22073351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.
Collapse
|
50
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|